
 

 

 
Abstract—In this paper, based on the space fractional order 

diffusion equation, we estimate the equation parameters by 
using an improved ant colony algorithm, that is, the Niche Ant 
Colony Algorithm (NACA) based on fitness sharing principle. 
Its efficiency is verified by application of 20 standard test 
functions of 1–20 variables compared with standard ant colony 
algorithm and standard genetic algorithm. Then, the parameters 
identification of the space fractional order diffusion equation is 
performed with the niche ant colony algorithm. Furthermore, 
the sensitivity analysis of the proposed method to transition 
probability and pheromone evaporation factor has been studied. 
The numerical results indicate that NACA has rapid convergent 
speed, high calculation precision, and good anti-noise property. 
 

Index Terms—space fractional order diffusion equation, 
parameter identification, niche ant colony algorithm, fitness 
sharing principle 
 

I. INTRODUCTION 

T is well known that the classical diffusion equations have 
played many important roles in modeling contaminant 

diffusion processes. However, in the recent two decades, 
people realized that the classical model is inadequate to 
simulate many real situations, where a particle plume spreads 
faster or slower than predicted by the integer-order diffusion 
equation, and shifted their partial focus to fractional order 
diffusion equations.  Some fractional order diffusion 
equations are proved to be successfully used for modeling 
some anomalous diffusion physical phenomena in many 
fields, such as environment engineering, chemical 
engineering, automatic control, and so on. 

In recent years, with the further developments of fractional 
order differential equations in the applied sciences, there exist 
several pieces of research on theoretical analysis and 
numerical methods for the forward problem of space 
fractional order diffusion equations. Ma [1] studied the 
framework and convergence analysis of finite element method 
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for space fractional order differential equations with 
inhomogeneous boundary conditions. Sakamoto and 
Yamamoto [2] showed some better results on the uniqueness 
and stability of the solution to the initial value/boundary value 
problems for fractional diffusion-wave equations. Huang et 
al.  [3] proposed a high order finite difference-spectral 
method for solving space fractional diffusion equations by 
combining the second order finite difference method in time 
and the spectral Galerkin method in space. Chen and Deng [4] 
derived a class of fourth order approximations for space 
fractional derivatives and used the derived schemes to solve 
the space fractional order diffusion equation with variable 
coefficients in one-dimensional and two-dimensional cases. 
Japundžić and Rajter-Ćirić [5] considered a space fractional 
reaction-advection-diffusion equation which is actually a 
semi-linear Cauchy problem with a spatial fractional order 
derivative operator and proved assertions concerning the 
existence and uniqueness of solution within certain 
Colombeau space. Yang, Liu, and Turner [6] considered the 
numerical solution of two types of fractional partial 
differential equation with Riesz space fractional derivatives 
(FPDE-RSFD) on a finite domain and obtained some better 
results. A.Bouhassoun [7] used telescoping decomposition 
method to derive approximate analytical solutions of 
fractional differential equations and provided a simple way to 
adjust and control the convergence region of solution series 
by introducing the multistage strategy. M.Asgari [8] proposed 
a new numerical method for solving a linear system of 
fractional integro-differential equations based on the new 
operational matrices of triangular functions. H. Song et al.[9] 
investigated numerical solutions of generalized variable order 
fractional partial differential equations by using Bernstein 
polynomials. Meanwhile, there are some researches for 
inverse problems of fractional differential equations. For a 
backward problem of the time-fractional diffusion equation, 
Liu and Yamamoto [10] proposed a regularizing scheme by 
the quasi-reversibility with fully theoretical analysis and 
tested its numerical performance. Zheng and Wei [11] studied 
a backward diffusion problem for a space fractional diffusion 
equation in a strip domain by the Fourier regularization 
method. Under an assumption that the unknown source term is 
time independent, Zhang and Xu [12] deduced the analytical 
solution based on the method of the eigenfunction expansion 
for an inverse source problem of a fractional diffusion 
equation and proved the uniqueness of the inverse problem by 
analytic continuation and Laplace transform. Rodrigues et al. 
[13] dealt with the use of the conjugate gradient method in 
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conjunction with an adjoint problem formulation for the 
simultaneous estimation of the spatially varying diffusion 
coefficient and of the source term distribution in a 
one-dimensional nonlinear diffusion problem. Cheng et al. 
[14] proved the uniqueness in the inversion problem of 
simultaneously determining a fractional order and a 
space-dependent diffusion coefficient of a one-dimensional 
fractional diffusion equation with zero Neumann boundary 
conditions and the additional boundary data. Bondarenko and 
Ivaschenko [15] constructed a weighted difference scheme 
which is conditionally stable and convergent with zero 
Dirichlet boundary conditions to solve the forward problems 
of time fractional diffusion equation and presented numerical 
results by using the Levenberg–Marquart algorithm. 
However, most of the results from these studies have been 
obtained by using the traditional deterministic optimization 
methods. The stochastic global optimization methods to 
estimate the parameters in the inverse problems of fractional 
differential equations have rarely been reported. In fact, 
compared with the deterministic optimization methods, 
stochastic optimization methods require no prior assumptions 
or transformation of the objective function and have been 
widely applied to the parameters identification of the other 
research fields [16-18]. In this article, we will consider the 
inversion problem for determining the space fractional order 
and source term of fractional order diffusion equation with the 
niche ant colony algorithm. To our knowledge, no relevant 
report is yet available in the field of the previous inversion 
problem with the niche ant colony algorithm. As a newly 
developed global optimal method, ant colony algorithm has 
also captured the interest of numerous scholars. The original 
ant colony algorithm was proposed by Colorni et al. [19] in 
the 1990s. This algorithm is an optimization methodology 
based on the foraging behavior of Argentine ants. In 1995, 
Bilchev [20] proposed the continuous ant colony algorithm 
for the first time, however, what they investigated actually 
was the genetic algorithm based on the ant colony algorithm. 
Li [21] proposed an adaptive ant colony system algorithm for 
continuous-space optimization problems. Chen et al. [22] 
presented a continual domain ant colony algorithm based on 
overlapping mutation operations. Dreo [23-24] proposed a 
continuously interacting ant colony algorithm based on an 
intensive non-hierarchical process. Chen [25] proposed a 
method that approximates the variance of continuous 
functions with discrete points. Zhang [26] proposed a 
continual domain ant colony algorithm for constrained 
multiobjective function optimization. In general, for ant 
colony algorithm, however, the information difference is 
achieved through genetic manipulation, which easily causes 
premature events. To address the premature defect, various 
niche approaches, usually called niche techniques, were 
recently developed. Among these niche methods (including 
crowding [27], fitness sharing [28], clearing [29], and 
clustering-based niche methods [30]), fitness sharing is a 
well-known niche technique that offers a variety of modified 
schemes [31-33]. Niche, as an evolutionary computation 
concept, was first formally applied to genetic algorithm [34]. 
However, niche has also been applied to other algorithms, 
such as the ant colony algorithm, and some promising results 
have been obtained [35-36]. Although NACA has been 

adopted to deal with a number of optimization problems, no 
relevant report is yet available in the field of parameter 
inversion. In this paper, NACA based on the fitness-sharing 
principle is applied to the parameters inversion of the space 
fractional order diffusion equation and provides some 
improved results. 

The remainder of work is organized as follows: the niche 
ant colony algorithm (NACA) based on fitness sharing 
principle is introduced in detail in Section 2. Section 3 gives 
several numerical results of multimodal function 
optimization. Section 4 shows several inversion examples of 
the parameter identification of the space fractional order 
diffusion equation. Finally, the conclusion is presented in the 
final section. 
  

II. NICHE ANT COLONY ALGORITHM 

The concept of niche method comes from the analogy with 
natural ecosystems, which are often composed by different 
subspaces (niches) that support different types of life (species 
or organisms). Within a niche, the available resources are 
finite and must be shared among its individuals. On the other 
hand, among different niches, there will be no conflict for the 
resources. In evolutionary computation, a niche is commonly 
referred to as an optimum of the domain, and the fitness 
represents the resources of that niche. Niche technique can 
promote the diversity of a population, and improve the 
capability of individuals in exploration. 

A. NACA Based on Fitness Sharing Principle 

Niche formation, specifically relative to fitness sharing, 
was explained by Goldberg and Richardson [28] with a 
variation of the k-armed bandit problem. The niche algorithm 
was applied to find and preserve multiple solutions in genetic 
algorithm. With the fitness-sharing approach, the search 
landscape is modified by reducing the payoff in densely 
populated regions. This approach reduces the fitness of an 
individual by an amount that is proportional to the number of 
similar individuals in the population. On the basis of the same 
theory, we apply the fitness-sharing algorithm to ACA and 
propose the NACA based on fitness sharing principle. 

Similarly, in this paper, a sharing function is defined to 
calculate the niche counts, which are further used immediately 
prior to the selection operation to de-rate the fitness of 
individuals in densely populated subspaces as follows: 

1
( )

0

ij
ij

ij

d
d

Sh d

otherwise






  
      

 　

              (1) 

where   is the niche radius that is given by the formula: 
2

1
(1 / (2 )) ( )

n u ln
k kk

q x x


                  (2) 

where q  is the number of niches, n   is the dimension of the 

feasible region, { , }u l
k kx x  denote the upper and lower bounds 

of the kth dimension of the feasible region, ijd  is the distance 

between individuals i  and j , and , 1, 2,...,i j N , N  denotes 

the population size. The sharing function describes the 
similarity among different individuals: ( ) 1ijSh d   indicates 

that i  and j  are the same individuals or 0ijd  , whereas 
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( ) 0ijSh d   suggests that  i  and j  belong to different 

niches. In (1),    is a constant (typically set to one) used to 
control the shape of the sharing function. The similarity 
among individuals for real coded evolutionary algorithms is 
computed through the Euclidean distance in real-valued 
space. 

For each individual i , some individuals are measured to be 

similar by  . The raw fitness if   (the objective function 

value for the individual i ) is to be shared with such 

individuals. The niche count im  is given by: 

 
1

Sh
N

i ij
j

m d


                                        (3) 

The value of im  is comparable to the number of 

individuals around the ith individual. A large value indicates 
that more individuals surround the ith individual. The shared 
fitness of individual i , with raw fitness if , is given by: 

 i
i

i

f
f

m
                                                (4) 

Through fitness sharing, the replicas and the offspring of an 
individual are produced inversely proportional to the similar 
ones in the same niche. Even elitists could not take over the 
population, which means that the fitness-sharing scheme is 
capable of counterbalancing the genetic drift. Thus, the 
fitness-sharing technique allows the exploration and 
exploitation of fitness landscape by favoring the formation of 
stable subpopulations. With properly parameterized fitness 
sharing (population size N  and niche radius  ), the niche 
equilibrium is eventually reached, where all individuals are 
distributed among niches according to their fitness, and all 
species of the identified niches are maintained to the final 
population. 

A general pseudocode representation is provided as 
follows: 
Algorithm: Niche Ant Colony Algorithm based on the 
Fitness Sharing Principle  

 
Procedure Initialization  
(i) Parameters Initialization: such as population size, the 

global transition probability, the evaporation coefficient of 
pheromone, the proportional factor, the feasible region, and 
the radius of niche (Obtained from (2) );  

(ii) Population Initialization:  
for  1i   to sizep   do  

            *1X i start end start rand    ; (The initial 

position of ants)  
         FitnessValue i k f X i  ; (The fitness value before 

sharing, where f is the optimization function) 
end for 

end procedure 
*  The function  1rand  provides samples from the uniform 

[0,1] distribution. 
 

while stopping criterion not met do  
    De-rate quality; 
    Calculate transition probability; 
    Update positions of ants (in the feasible region); 

Update pheromones; 
end while 

 
Procedure De-rate quality 

for 1i   to   do  
       0NicheCount   

for 1j   to   do 

   distance ,i jd p p  

if  d    then 
                     ShareValue 1 d

   

else 
ShareValue 0   

             endif 
            NicheCount NicheCount ShareValue   
       end for 
     

/FitnessValue Modified FitnessValue NicheCount   (The 

fitness value after sharing) 
  end for 

end procedure 
 

Procedure Calculate transition probability 
[i] k/T FitnessValue Modified  ; (The initial pheromone) 

_ (T)T Best Max  

 For 1i   to sizep   do 

Pr [ ] ( _ ) / _ob i T Best T T Best   

end for 
For 1i   to sizep   do  

        if 0Pr [ ]ob i P   

                 _ * 1 0.5Temp X i min step rand     

      else 

                max_ * 1 0.5Temp X i step rand      

      endif    
      if sT mp te tar  

          sT mp te tar  

           elseif Temp end  

                     Temp end  

      endif 
end for 

end procedure 
 
Procedure Update positions of ants and pheromones  

For 1i   to sizep     do 

if      /  /Temp NicheCount f X i NicheCount   

 X i Temp   

    /FitnessValue Modified f i NicheC tX oun                 

        _ 1  * /ecT i new T i k f ip X    (Update pheromones) 

     endif 
end for 

end procedure 
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The description of the NACA can also be given in Figure 1. 
 

 
 

Fig. 1. Flowchart of NACA. 

 

III. APPLICATION IN MULTIMODAL FUNCTION OPTIMIZATION 

It is well known that multimodal function optimization is 
useful for analyzing algorithm properties. In this section, in 
order to test the performance of NACA based on fitness 
sharing principle, NACA is applied to find the global 
optimum of 20 nonlinear test functions. The benchmark 
functions are described in Table I and the properties of these 

benchmark functions are given in Table II. More details about 
these test functions can be found in the literature [37]. The 
aim of this study is the search for global optimum of nonlinear 
functions. So it is very important that our NACA effectively 
converges to this optimum. The global optimization of the 20 
test functions is accomplished by use of the following 
methods: standard binary-coded genetic algorithm (Named 
SGA [37]), standard ant colony algorithm (Named ACA) and 
niche ant colony algorithm (Named NACA). As we all 
known, the metaheuristic methods are generally based on 
random distribution. In order to remove the influence of the 
randomness, 50 runs are carried out to obtain an average 
result. Setting the number of niches to 10, the number of 
individuals is 100, the transition probability is 0.7, the 
pheromone evaporation factor is 0.2, and the radius is 
calculated according to (2). The maximum iteration is 200. 
All algorithms have been tested in MATLAB (version 7.1) 
with double precision over the same Pentium IV personal 
computer with a 2.3GHz processor, running Windows 7 
operating system over 2G of memory. The computational 
results and calculating accuracy of the 20 nonlinear test 
functions on global optimization with the methods of SGA, 
ACA and NACA are given in Table III.  Table IV gives the 
results of statistical tests, including average, best, worst 
performance, and Std. From Table III and Table IV, we can 
conclude that for the 20 test functions, the results achieved 
with NACA are satisfactory in global optimum. Moreover, by 
carefully looking at the Table III, we can see, the obtained 
results indicate that incorporating niche technique in the ACA 
would lead to a significant increase in the performance of 
ACA. It is apparent that when the niche technique is taken into 
account, the performance is improved as compared to the 
other methods. This verifies the effectiveness and the ability 
of the proposed NACA in solving the global numerical 
optimization problem. 

 

TABLE II Properties of the benchmark functions 

(lb denotes lower bound, ub denotes upper bound ) 

Name lb  ub 
Theoretical 
minimum 

Continuity 

F1 0  1 -1.12323 Continuous 
F3 -10  10 -12.03125 Continuous 

Branin 
x:-5 
y:0 

 
x:10 
y:15 

0.39789 Continuous 

Camelback 
x:-3 
y:-2 

 
x:3 
y:2 

-1.03163 Continuous 

Goldprice -2  2 3.00000 Continuous 
Pshubert1 -10  10 -186.73091 Continuous 
Pshubert2 -10  10 -186.73091 Continuous 
Shubert -10  10 -186.73091 Continuous 
Quartic -10  10 -0.35239 Continuous 

Hartman1 0  1 -3.86278 Continuous 
Shekel 1 0  10 -10.15320 Continuous 
Shekel 2 0  10 -10.40294 Continuous 
Shekel 3 0  10 -10.53641 Continuous 

Hartman2 0  1 -3.32237 Continuous 
Hosc45 0  1 1.0000 Continuous 
Brown 1 -1  4 2.0000 Continuous 
Brown 3 -1  4 0 Continuous 

F5n -10  10 0 Continuous 
F10n -10  10 0 Continuous 
F15n -10  10 0 Continuous 

 
 

Yes 

No 

Start 

Initialize parameter and 
population 

De-rate quality 

Calculate transition probability 

Update positions of ants (in the feasible region) 

Update 
pheromones 

Is termination 
condition 

met? 

End 

Output the best 
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TABLE I Benchmark functions 

Name Dim Definition  

F1  1        125.04.05sin75.02 2  xxxf   

F3  1     
5

1

sin 1
j

f x j j x j


          

Branin  2         22, 1 cosf x y a y bx cx d h f x h         

Camelback  2       2 4 2 2 2, 4 2.1 / 3 4 4f x y x x x xy y y        

Goldsteinprice 2  
     

   

2 2 2

2 2 2

, 1 1 19 14 3 14 6 3

30 2 3 18 32 12 48 36 27

f x y x y x x y xy y

x y x x y xy y

          
         

 
 

 

Pshubert1 2           
5 5

2 2

1 1

, cos 1 cos 1 0.5 1.42513 0.80032
i i

f x y i i x i i i y i x y
 

                            
    

Pshubert2 2           
5 5

2 2

1 1

, cos 1 cos 1 1.42513 0.80032
i i

f x y i i x i i i y i x y
 

                     
   
    

Shubert 2       
5 5

1 1

, cos 1 cos 1
i i

f x y i i x i i i y i
 

   
              
   
 

 
 

Quartic 2   
21024

,
224 yxxx

yxf 
 

 

Hartman1 3     
4 3 2

1 1

expi ij j ij
i j

f x c a x p
 

 
    

 
    

Shekel 1 4     
5 4 2

1 1

(1/ ( ))j ij i
i j

f x x a c
 

       

Shekel 2 4     
7 4 2

1 1

(1/ ( ))j ij i
i j

f x x a c
 

       

Shekel 3 4     
10 4 2

1 1

(1/ ( ))j ij i
i j

f x x a c
 

       

Hartman2 6     
4 6 2

1 1

expi ij j ij
i j

f x c a x p
 

 
    

 
    

Hosc45 10  
10

1

( ) 2
!
i

i

x
f x

n

    

Brown 1 20   1

2

203 2
1( ) ( 3) 10 ( 3) ( ) e i ix x

i i i i
j J j J

f x x x x x 


 

             
    

Brown 3 20     2 2
1

19 ( 1) 12 2
1

1

( ) ( )
i i

x x

i i
i

f x x x
  




       

F5n 20            
19

2 22 2
1 1 20

1

( ) 20 10 sin 1 1 10 sin 1i i
i

f x y y y y   


            
   

F10n 20            
19

2 22 2
1 1 20

1

( ) 20 10 sin 1 1 10 sin 1i i
i

f x x x x x   


            
   

F15n 20                
19

2 22 2 2
1 1 20 20

1

( ) 1 10 sin 3 1 1 sin 3 1 10 1 1 sin 2i i
i

f x x x x x x  


                
   
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TABLE III Mean Results with SGA, ACA, and NACA 

Name 
Theoretical 
minimum 

Minimum found 
with SGA 

Absolute 
error 

Minimum found 
with ACA 

Absolute 
error 

Minimum found 
with NACA 

Absolute 
error 

F1  -1.12323 -1.12323 0 -1.12384 -0.00061 -1.12323 0 
F3  -12.03125 -12.03120 5e-05 -12.03673 -0.00548 -12.03126 -1e-05 
Branin  0.39789 0.39798 9e-05 0.39773 -0.00016 0.39789 0 
Camelback  -1.03163 -1.03163 0 -1.03412 -0.00249 -1.03163 0 
Goldprice  3.00000 3.00000 0 3.00842 0.00842 3.00000 0 
Pshubert1  -186.73091 -186.73000 0.00091 -186.73903 -0.00812 -186.73056 0.00035 
Pshubert2  -186.73091 -186.73100 -9e-05 -186.73146 -0.00055 -186.73056 0.00035 
Shubert  -186.73091 -186.73100 -9e-05 -186.73625 -0.00534 -186.73075 0.00016 
Quartic  -0.35239 -0.35239 0 -0.35689 -0.0045 -0.35238 1e-05 
Hartman1  -3.86278 -3.86249 0.00029 -3.86731 -0.00453 -3.86269 9e-05 
Shekel 1  -10.15320 -10.13490 0.0183 -10.15589 -0.00269 -10.15299 0.00021 
Shekel 2  -10.40294 -10.16770 0.23524 -10.39041 0.01253 -10.40983 -0.00689 
Shekel 3  -10.53641 -10.40340 0.13301 -10.53003 0.00638 -10.53910 -0.00269 
Hartman2  -3.32237 -3.30652 0.01585 -3.32644 -0.00407 -3.32468 -0.00231 
Hosc45  1.0000 1.99506 0.99506 2.00000 1 2.00000 1 
Brown 1  2.0000 43.62810 41.6281 23.63478 21.63478 14.55599 12.55599 
Brown 3  0 1.30600 1.306 1.74537 1.74537 0.55284 0.55284 
F5n  0 0.47353 0.47353 0.75752 0.75752 0.14393 0.14393 
F10n  0 7.83515 7.83515 28.47829 28.47829 6.30256 6.30256 
F15n  0 0.52117 0.52117 36.82356 36.82356 0.49156 0.49156 

 
 

TABLE IV The final values of NACA for benchmark functions 

Name  Best values  Mean values Worst values Std 

F1  -1.12322694  -1.12323 -1.12322028 3.27123e-005 
F3  -12.0312453  -12.03126 -12.0312205 2.92548e-005 

Branin  0.397885481  0.39789 0.39786613 3.77021e-010 
Camelback  -1.03161887  -1.03163 -1.031603256 5.02839e-014 
Goldprice  3.00000  3.00000 3.00000 0.000000 
Pshubert1  -186.730358  -186.73056 -186.730139 7.517211e-011 
Pshubert2  -186.730383  -186.73056 -186.730086 6.156257e-011 
Shubert  -186.730648  -186.73075 -186.730454 2.382433e-012 
Quartic  -0.35238037  -0.35238 -0.35236775 2.122787e-014 

Hartman1  -3.86262158  -3.86269 -3.86278985 6.474739e-011 
Shekel 1  -10.1530751  -10.15299 -10.1527028 6.294378e-013 
Shekel 2  -10.3840353  -10.40983 -10.3670377 3.515644e-013 
Shekel 3  -10.5212159  -10.53910 -10.5525469 6.176972e-012 

Hartman2  -3.30265822  -3.32468 -3.34721509 8.551455e-007 
Hosc45  1.865241201  2.00000 2.257526500 1.423352e-005 
Brown 1  14.42658985  14.55599 14.23658287 3.176082e-007 
Brown 3  0.544890491  0.55284 0.564879256 3.982072e-008 

F5n  0.152300649  0.14393 0.160353757 3.901671e-009 
F10n  6.325799582  6.30256 6.275698211 1.933588e-006 
F15n  0.488390032  0.49156 0.463043328 2.250400e-007 

 
 

We have also performed a comparison of NACA with six 
other methods of iterative improvement listed in Table V: 
pure random search (PRS) [38], multistart (MS) [39], 
simulated diffusion (SD) [40], simulated annealing (SA) [41], 
tabu search (TS) [42], and standard binary-coded genetic 
algorithm (SGA) [37]. The efficiency is qualitative in terms of 
the number of function evaluations necessary to find the 
global optimum. Each program is stopped as soon as the 
relative error between the best point found and the known 
global optimum is less than 1%. The numbers of function 
evaluations used by the various algorithms to optimize four 
test functions are listed in Table VI. It is noted that we do not 
program ourselves the competitive algorithms used for the 
comparison, but we report the results published by Cvijovic 

and Klinowski [42] and Andre et al. [37]. We can see that 
results achieved with NACA are satisfactory in global 
optimum and convergent speed (see the numbers of function 
evaluations in Table VI). In addition our results are the 
average outcome of 50 independent runs. 

 
TABLE V Global optimization methods used for 

performance analysis 
Method Name Reference 

PRS Pure random search 38 
MS Multistart 39 
SD Simulated diffusion 40 
SA Simulated annealing 41 
TS Tabu search 42 

SGA Standard binary-code genetic algorithm 37 
NACA  This work 
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TABLE VI  Number of function evaluations in global 
optimization of test functions by the seven different methods 

Method 
Function 
Goldprice Branin Hartman 1 Hartman2 

PRS 5125 4850 5280 18090 
MS 4400 1600 2500 6000 
SD 5439 2700 3416 3975 
SA 563 505 1459 4648 
TS 486 492 508 2845 
GA 4632 2040 1680 53792 
NACA 427 389 408 932 

 

IV. PARAMETER INVERSION BASED ON THE SPACE 

FRACTIONAL DIFFUSION EQUATION 

A. Example 1 - Inversion for Fractional Order 

A space fractional order advection-diffusion equation is 
given as follows: 

 
0

( , ) ( , ) ( , )
( ) ( ) ( , ),0 , 0

( ,0) ,0

(0, ) , 0

( , ) , 0L

C x t C x t C x t
a x b x q x t x L t

t x x
C x C x x L

C t C t

C L t C t

 

 

   
     

     
  
  
              (5) 

where C  is the mean concentration of substance dispersed in 
the general cross section of the flow,    0,1 , 1, 2     are 

called the fractional orders of the derivative in space, ( )a x is 

the advection coefficient and  ( )b x  is the diffusion 

coefficient,  ,q x t is the source. ( , ) ( , )
,

C x t C x t

x x

 

 

 
 

  here 

mean the Riemann-Liouville derivatives: 

0

2

1
0

( , ) ( , )1
, 0 1

(1 ) ( )

( , ) ( , )1
,1 2

(2 ) ( )

x

x

C x t C t
d

xx x

C x t C t
d

xx x



 



 


 

 


 

  

 
  
   

 
  
   





         (6) 

where      is Gamma function. 

Suppose the distributions of  ,C x t  in 0 0, 0x x x L     

or in t T  are known, an inverse problem of fraction order 
identification for convection–diffusion equation is making 
certain fractional orders ,  . Having available an auxiliary 

measurement of the concentration  ,C x t  in a point set 

downstream of the source and the time behavior of the 
concentration at the domain boundaries, we wish to decide the 
fractional orders ,   . 

In this paper, if we let
(3 )

( )
(3 )

a x x 


  


 
, 

2
( )

(3 )
b x x



 

 ,   2C x x  , 0 0C  , 24 1LC t   ,  

2 2 2 2 1( , ) (4 1)( ) 4(2 )q x t t x x x t           , then one 

can get the solution of  (5) as follows: 
2 2( , ) (4 1)C x t t x                                          (7) 

In order to decide the fractional orders ,  , some 

conditions should be given. In this paper, we give the 
additional condition  ,C x T for  1T  . From (7), we can see 

that   ,C x T  depends on ,   . So, the identification 

problem of fractional orders ,   can be formalized as 

follows: 

   , ,
1

min , ,
n

obs j cal j
j

f C C   


                        (8) 

where 
,obs jC   is observed value, and 

,cal jC   is calculated value. 

This is a complicated nonlinear parameter optimization 
problem. This kind of parameter optimization model is very 
intractable mathematically with traditional optimization 
methods. We use NACA to solve it in this paper. We initially 
perform the inversion of two parameters without noise. The 
different inversion parameter intervals are as follows: 
0.1 0.8   , 1.5 2.0  . Setting the number of niches to 

4, the number of individuals is 100, the transition probability 
is 0.7, the pheromone evaporation factor is 0.2, the maximum 
iterations is 200, and the radius is still calculated according to 
(2). Similar to that in Section 3, 50 runs are carried out to 
obtain an average result in the following simulations. Table 
VII shows the inversion results. As we have seen, the 
inversion precisions of these parameters are high and the 
relative errors of the parameters inversion can be maintained 
at less than 0.05%. The CPU time of two-parameter inversion 
is 2.38s. 

In order to show the superiority of NACA, the other two 
optimization methods (ant colony algorithm (ACA) and 
standard genetic algorithm (SGA)) are used to inverse the 
fractional order. Each algorithm is statistically compared with 
NACA by a statistical test called t-test for independent 
samples with significance level of 0.05. The real number 1 
denotes that the NACA algorithm is superior to or inferior to 
other algorithms. For each problem, the algorithms carry out 
50 independent runs. The setting of the NACA parameters is 
the same as the previous cases. For SGA, the crossover rate is 
0.8, and the mutation rate increases linearly from 0.001 to 0.6 
during the evolution. For ACA the transition probability is 
0.7, the pheromone evaporation factor is 0.2, the maximum 
iterations is 200. The iterative process of the objective 
function is shown in Fig.2.The results on the parameter 
inversion problems (Mean, Best, Worst, Std, and t-test 
results) are recorded in Table VIII. It can be seen that NACA 
produces superior performance than ACA and SGA in terms 
of average, best, and worst performance. Furthermore, the Std 
of CS is much smaller than these two methods. In summary, 
NACA outperforms other algorithms in statistically 
significant fashion over the parameter estimation problems 
and has a relatively high possibility of finding the satisfactory 
inverse results. 

 
TABLE VII The parameter inversion results without noise 

Parameter 
True 
value 

Inversion 
value 

Absolute 
error 

Relative  error（
%） 

  0.5 0.50026 0.00026 0.052 

  1.8 1.800022 0.000022 0.0012 
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TABLE VIII The inversion results for parameter inversion problem 

             Algorithm 
     

Best Mean Worst Std p-value Best Mean Worst Std p-value 

ACA 0.50098 0.50145 0.50223 2.467e-2 
2.26e-18 

(1) 
1.80095 1.80164 1.80621 4.852e-2 

2.84e-19 
(1) 

SGA 0.51023 0.52238 0.54827 6.253e-1 
1.68e-21 

(1) 
1.81021 1.830592 1.87264 8.124e-1 

5.38e-22 
(1) 

NACA 0.50018 0.50026 0.50035 1.239e-4  1.800012 1.800022 1.800030 5.268e-5  

 
TABLE IX The inversion results with different transition probabilities 

Transition probability   Relative error (%)   Relative error (%) Time (s) 

0.1 0.52107 4.214 1.850369 2.798 2.26237 
0.2 0.51295 2.590 1.808491 0.472 2.63212 
0.3 0.49056 1.888 1.782167 0.991 2.77263 
0.4 0.53061 6.122 1.762010 2.111 2.33598 
0.5 0.50821 1.642 1.830065 1.670 2.47244 
0.6 0.50469 0.938 1.818503 1.028 2.59590 
0.7 0.50026 0.052 1.800022 0.001 2.38249 
0.8 0.50191 0.382 1.790042 0.553 2.67292 
0.9 0.47903 4.193 1.859105 3.284 2.71289 

 
TABLE X The inversion results with different pheromone evaporation factors 

Pheromone evaporation 
factors 

  Relative error (%)   Relative error (%) Time (s) 

0.1 0.50157 0.314 1.808154 0.453 2.50350 
0.2 0.50026 0.052 1.800022 0.001 2.67170 
0.3 0.50985 1.970 1.805824 0.324 2.42177 
0.4 0.52844 5.688 1.772135 1.548 2.31588 
0.5 0.46952 6.096 1.842483 2.360 2.53479 
0.6 0.51362 2.724 1.820217 1.123 2.38904 
0.7 0.48487 3.026 1.780125 1.104 2.52762 
0.8 0.506235 1.247 1.819851 1.103 2.63487 
0.9 0.54251 8.502 1.8630258 3.501 2.54535 

 
 

 
 

Fig. 2. Convergence of objective function. 

  
(a)  Influences of algorithm parameters 

   In this subsection, the influences of algorithm parameters 
to inversion results are discussed, including the transition 
probability and the pheromone evaporation factor. The setting 
of parameters is the same as the previous example. Table IX 
and Table X show the inversed results of fractional order with 
different algorithm parameters. As shown in Table IX, the 
optimal results go to be the best when the transition 
probability reaches 0.7, while the CPU time has no evident 

change. From the obtained inversed results in Table X, it is 
indicated that when pheromone evaporation factor equals to 
0.2, the inversion procedure finds the optimal results. And, as 
a consequence, we have used these two values for all the 
previous parameters inversion. 
(b) Anti-noise property 

To test the robustness and stability of NACA, we will add 
different levels of noise to the seismograms as follows: 

 *
, , 1obs j obs jC C                       (9) 

where    is the noise level; *
,obs jC   is the measured velocity 

with noise;    is the random number according to standard 
normal distribution. In this process, the parameter values are 
the same as the foregoing example. Tables XI-XIII show the 
inversion results with 5%, 10% and 15% noises, respectively. 
The tables show that the inversion results are satisfactory. 
 
TABLE XI  The parameter inversion results with 5% noise 

Parameter 
True 
value 

Inversion 
value 

Absolute 
error 

Relative  error (%) 

  0.5 0.500324 0.000324 0.0684 

  1.8 1.799347 0.000653 0.0363 

 
TABLE XII The parameter inversion results with 10% noise 

Parameter 
True 
value 

Inversion 
value 

Absolute 
error 

Relative  error (%) 

  0.5 0.499345 0.000655 0.1310 

  1.8 1.801405 0.001405 0.0781 
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TABLE XIII The parameter inversion results with 15% noise 

Parameter 
True 
value 

Inversion 
value 

Absolute 
error 

Relative  error (%) 

  0.5 0.498851 0.001149 0.2298 

  1.8 1.804751 0.004751 0.2639 

 
 

B. Example 2 - Inversion for Source Term  

In this subsection, we will inverse the source term of the 
following space fractional order diffusion equation 
initial-boundary value problem with NACA. 

( ) ( , ),1 2, 0, 0
u u

d x q x t t x l
t x




 

      
 

  (10) 

0

1

2

( , 0) ( )

(0, ) ( )

( , ) ( )

u x f x

u t b t

u l t b t


 
 

  (11) 

where  0f x  is an initial function,  1b t  and  2b t  are 

boundary functions, ( )d x   is the diffusion coefficient,   ,q x t  

is the source term. 
 
(a) The implicit difference scheme for forward problem  

Firstly let us deal with numerical method for the forward 
problem given by (10) with the initial boundary value 
conditions (11). 

Based on Grünwald’s definition for the fractional 
derivative, discretizing space domain by 

 , 1, 2, ,ix i x i M    , and time domain by 

 , 1, 2, ,jt j t j M     , there is: 

 
2

1

( )1 1
lim ( ( 1) , )

( ) ( 1)

N

N
k

ku
u x k h t

kx h






 



 
  
        (12) 

where x  is the space mesh step, and  t  is the time mesh 

step.  As for the integer order derivatives
u

t




  in (10), we 

discretize it by utilizing general one-order forward difference 
scheme: 

       1, , ,
j

i j i j

i

u t t u t t u x t
t

t t

   
   

  
       (13) 

Let   ,j
i i ju u x t ,  ,j

i i jd d x t ,  ,j
i i jq q x t  , 

and thanks to (12) and (13), we can get: 
1 1

1
1

0

( )

( 1)( )( )

j j i
j ji i i

i k i
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u u d k
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


 

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
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 

                     (14) 
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,
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
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equation (14) can be re-arranged as follows: 
    1

,(1 ) j j j
i x i i id t u u q t

                                   (15) 
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here C  is defined by: 
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where  , 0,1, ...
( )

j i
i

d t
j M

x 



 


. 

Then, the implicit scheme (15) can be rewritten in the 
following matrix form: 

1( ) j jU IU Q  I C                (17) 

Thus, we can solve (17) to obtain  1jU . 
 

(b) Numerical testification 

We will present an example to show numerical 
convergence of the difference scheme given by (17). Set the 
fractional order as 1.8  , and diffusion coefficient 

as 2.8( ) (2.2) / 8d x x   , and initial function as   3
0f x x   

in (11), and boundary function   1 0b t  ,   2
tb t e , and 

3( , ) tu x t e x   as a true solution of the forward problem, and 

then the source term in (11) is given as 3( , ) (1 ) tq x t x e x    

. 
By the above difference scheme (17), the forward problem 

can be worked out. The numerical solutions and exact 
solution at time of  1t  are plotted in Fig.3. By Fig.3, we can 
see that the difference scheme given by (17) is of numerical 
convergence, and numerical solutions basically coincide with 
the exact solution. 

 

 
Fig. 3. Numerical and exact solutions at given time 1t  . 

 
(c) Source term inversion problem 

We take the function 3 3 4( , ) (1 ) t t tq x t x e x e x e x          

as the true source term, and apply the NACA to reconstruct its 
coefficient    1 2, 1, 1D D D    . We initially perform the 

inversion of two parameters without noise. The different 
inversion parameter intervals are as follows:

13 1D   , 

23 1D   . Setting the number of niches to 4, the number of 

individuals is 100, the maximum iterations is 200, and the 
radius  is still calculated according to (2). Similar to that in 
Section III, 50 runs are carried out to obtain an average result 
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in the following simulations. Let us first investigate impacts of 
the algorithm parameters on the inversion algorithm, 
including the transition probability and the pheromone 
evaporation factor.  Table XIV and Table XV show the 
inversed results of source term with different algorithm 
parameter. As shown in Table XIV, the optimal results go to 
be the best when the transition probability reaches 0.7, while 
the CPU time has no evident change. From the obtained 
inversed results in Table XV, it is indicated that when 
pheromone evaporation factor equals to 0.2, the inversion 
procedure finds the optimal results. 

2 2

true inv trueErr D D D   

denotes the relative error of the solution. 
 

TABLE XVI The parameter inversion results with different 

levels of noise 

Noise level True value Inversion value Err（%） 
5% (-1,-1) (-0.9949027, -0.9960168) 0.0046 

10% (-1,-1) (-0.9906529, -0.9891224) 0.0101 
15% (-1,-1) (-0.9758215, -0.9722254) 0.0260 

 
 

(d) Anti-noise property 

For the purpose of examining the robustness and stability 
of NACA on the source term inversion, we will use 
measurement with different levels of noise: 5% noise, 10% 
noise, and 15% noise. These different levels of noise will be 
dealt with as follows: 

 *
, , 1obs j obs jC C                       (18) 

where    is the noise level; *
,obs jC   is the measured velocity 

with noise;    is the random number according to standard 
normal distribution. In this process, the parameter values are 
the same as the foregoing example. Table XVI shows the 
inversion results. As we can see, the inversion results with 
different levels of noise are satisfactory. 

V.   CONCLUSION 

We numerically study the use of NACA for parameter 
estimation based on the space fractional order diffusion 
equation. This article shows that NACA is effective for 
multiparameter estimation. As shown in the examples, the 
proposed method has been successful at inverting parameters. 
The present work investigates the inversion of fractional order 
and source term involved in space fractional order diffusion 
equation. The numerical results show that the proposed 
method can provide accurate inversion solution for 
two-parameter inversion. To some extent, these results maybe 
can verify the effectiveness of the NACA for multiparameter 
identification of the space fractional order diffusion equation. 
Also shown in this paper is the result that the NACA inversion 
method possesses good performance to resist the noisy 
measurement data for the multiparameter estimation. With 
5%, 10%, and 15% noises, the results obtained with the 
NACA are satisfactory. 

For the problem of parameter inversion of the space 
fractional order diffusion equation, some practical 
implementation issues still need to be resolved. Nevertheless, 
the better results obtained mean that there is good potential 
that the method can be employed to solve more complicated 
multiparameter inversion simultaneously. And this is an 
important direction for our future research. 

 

TABLE XIV The inversion results with different transition probabilities 

Transition probability  1 1,true trueD D   1 1,inv invD D  Err Time (s) 

0.1 (-1,-1) (-0.9391825, -0.9424503) 0.0592 22.84521 
0.2 (-1,-1) (-0.9436245, -0.9490321) 0.0537 23.29652 
0.3 (-1,-1) (-0.9521436, -0.9561286) 0.0459 23.02153 
0.4 (-1,-1) (-0.9259264, -0.9199013) 0.0772 22.90254 
0.5 (-1,-1) (-1.0396982, -0.9601253) 0.0398 23.07454 
0.6 (-1,-1) (-0.9785621, -0.9801325) 0.0206 23.04203 
0.7 (-1,-1) (-0.9994781, -0.9991258) 0.0007 22.75255 
0.8 (-1,-1) (-0.9792604, -0.9798153) 0.0204 22.80521 
0.9 (-1,-1) (-0.9498702, -0.9391368) 0.0558 22.72989 

 
TABLE XV The inversion results with different pheromone evaporation factors 

Pheromone evaporation 
 factors 

 1 1,true trueD D   1 1,inv invD D  Err Time (s) 

0.1 (-1,-1) (-0.987808, -0.9891224) 0.0115 23.184521 
0.2 (-1,-1) (-0.9988197, -0.999208) 0.0010 23.22565 
0.3 (-1,-1) (-0.9794781, -0.9802851) 0.0202 23.03252 
0.4 (-1,-1) (-0.9612457, -0.9601812) 0.0393 23.09528 
0.5 (-1,-1) (-0.9548711, -0.9485692) 0.0484 23.07454 
0.6 (-1,-1) (-0.9711241, -0.9758023) 0.0267 23.04203 
0.7 (-1,-1) (-0.9654212, -0.9582478) 0.0383 22.95645 
0.8 (-1,-1) (-0.9800148, -0.9810256) 0.0195 22.88145 
0.9 (-1,-1) (-0.9311087, -0.9286598) 0.0701 22.91809 
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BRIEF DESCRIPTION OF THE CHANGES： ADD SENTENCE 

“RADIUS  IS STILL CALCULATED ACCORDING TO (2). SIMILAR TO 

THAT IN SECTION III, 50 RUNS ARE CARRIED OUT TO OBTAIN 

AN AVERAGE RESULT IN THE FOLLOWING SIMULATIONS. LET US 

FIRST INVESTIGATE IMPACTS OF THE ALGORITHM PARAMETERS 

ON THE INVERSION ALGORITHM, INCLUDING THE”  ON THE 

LEFT TOP OF PAGE 10, WHICH MISSED IN THE ONLINE 

VERSION. 
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