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Abstract—This paper is concerned with some recursive re-
lations of the derivatives of the Gamma function Γ(α) and
incomplete Gamma function Γ(α, z) for the complex value
of α. In particular, dnΓ

dαn (−m)(n,m = 0, 1, 2, . . .) can be
expressed as linear forms in djΓ

dαj (1)(j = 0, 1, . . . , n + 1)

while ∂nΓ
∂αn (−m, z) can be represented as the combination of

∂jΓ
∂αj (1, z)(j = 0, 1, . . . , n + 1) and the elementary functions.
With the aid of these results, we can establish the closed forms
of some special integrals associated with Γ(α) and Γ(α, z),
which can be expressed by the Riemann zeta functions and
some special constants.

Index Terms—Incomplete Gamma function, Gamma func-
tion, Neutrix limit, Hurwitz zeta function, Digamma function.

I. INTRODUCTION

THE incomplete Gamma function Γ(α, z) was defined
by the following integral [1]

Γ(α, z) =

∫ ∞

z

tα−1e−tdt, (1)

where α ∈ C, |arg(z)| < π, z ≠ 0 and the Gamma function
Γ(α) was defined by

Γ(α) =

∫ ∞

0

tα−1e−tdt, Re(α) > 0, (2)

where α can be extended to all complex numbers except non-
positive integers after an appropriate analytic continuation. In
this paper, we assume that |arg(z)| < π, z ̸= 0 and α ∈ C.

For convenience, we introduce the following notations

N := {1, 2, 3, . . .}, N0 := N∪{0}, N−
0 := {0,−1,−2, . . .}.

Denote

Γ(n)(α) =
dn

dαn
Γ(α) =

∫ ∞

0

tα−1e−t lnn tdt,

Γ(n)(α, z) =
∂n

∂αn
Γ(α, z) =

∫ ∞

z

tα−1e−t lnn tdt,

(3)

for n ∈ N0.
In recent years the issue of the neutrix limit for dealing

with special functions such as the Gamma and incomplete
Gamma function [2]∼[7], the Beta and incomplete Beta
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function [8]∼[10] and the Hurwitz zeta function [11] for
non-positive integers have attracted much attention. Using
the neutrix limit, Γ(n)(−m) (n,m ∈ N0) can be defined by
the following neutrix calculus [2]∼[5]

Γ(n)(−m) = N − lim
ε→0+0

∫ ∞

ε

t−m−1e−t lnn tdt, (4)

where N is the neutrix [12]. Fisher and Kılıçman [2]
discussed some recursive relations of the derivatives of the
Gamma function for non-positive integers. However, there
are some mistakes expressed in Theorem 4, 5 in [2] and
the corresponding corrections will be shown in Remark 2.4
and 2.5 in this paper. Fisher et al. [6], [7] used the neutrix
limit to establish the definition of the lower incomplete
Gamma function γ(α, x) and the locally summable function
γ(α, x+) = H(x)γ(α, x) for the non-positive integer α,
where H(x) denotes the Heaviside’s function. Subsequently,
Özçağ et al. [3] studied the partial derivatives of γ(α, x) and
γ(α, x+) for non-positive integers. Lin et al. [4] proved that
∂nγ
∂αn (0, x) can be expressed by ∂n+1

∂αn+1 γ(1, x)(n ∈ N0) and
the elementary functions.

The paper is structured as follows. Section II establishes
some recursive relations of the derivatives of the Gamma
function. Specially, Γ(n)(−m)(n,m ∈ N0) can be repre-
sented as linear forms in Γ(j)(1)(j = 0, 1, . . . , n + 1).
Section III describes the recurrence formula for the par-
tial derivatives of the incomplete Gamma function. In par-
ticular, Γ(n)(−m, z) can be expressed by Γ(j)(1, z)(j =
0, 1, . . . , n+1) and the elementary functions. In Section IV,
we present some examples to investigate the closed forms for
some special integrals and the arbitrary precision calculation
of Γ(n)(α) and Γ(n)(α, z). A final conclusion is drawn in
Section V.

II. THE RECURSIVE FORMULAS OF THE DERIVATIVES OF
THE GAMMA FUNCTION

Theorem 2.1 Let n ≥ 1 be an integer. Then the recurrence
relation of Γ(n)(α)(α ∈ C\N−

0 ) can be expressed as follows,

Γ(n)(α) =



ψ(α)Γ(α), n = 1,

(n− 1)!

n−2∑
k=0

(−1)n−k

k!

×ζ(n− k, α)Γ(k)(α), n > 1,

+ψ(α)Γ(n−1)(α)

(5)

where ζ(s, α) is the Hurwitz zeta function defined by

ζ(s, α) =
∞∑
l=0

1

(l + α)
s (Re(s) > 1), (6)
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and the Digamma function ψ(α) is defined by

ψ(α) = −γ − 1

α
+

∞∑
l=1

(
1

l
− 1

l + α

)
, (7)

where γ denotes Euler’s constant.
Proof. The Digamma function ψ(α) and its k−order

derivatives ψ(k)(α) can be expressed as follows([1], Sect.
12.3),

ψ(α) =
d

dα
ln Γ(α) = −γ − 1

α
+

∞∑
l=1

(
1

l
− 1

l + α

)
, (8)

for α ∈ C \ N−
0 , and

ψ(k)(α) =
dk

dαk
ψ(α) = k!(−1)k+1

∞∑
l=0

1

(l + α)
k+1

, (9)

for k ∈ N, where γ denotes Euler’s constant. From (8), we
have

Γ′(α) = ψ(α)Γ(α), α ∈ C \ N−
0 . (10)

Calculating (n− 1)-order derivatives on α for (10) by using
the Leibniz’s rule, we get

Γ(n)(α) =

n−1∑
k=0

(
n− 1
k

)
ψ(n−1−k)(α)Γ(k)(α), (11)

for α ∈ C \ N−
0 . Inserting (9) into (11), we can yield (5).

�

For the derivation of Γ(n)(−m)(n,m ∈ N0), Theorem 1
and 3 in [2] can be expressed in the following Lemma.

Lemma 2.2 Let n,m ≥ 0 be integers. Then

Γ(n)(0) =
Γ(n+1)(1)

n+ 1
, (12)

and

Γ(−m) =
(−1)m

m!
(Hm − γ), (13)

where Hm =
m∑
l=1

1
l

and H0 = 0. In particular,

Γ(0) = Γ′(1) = −γ.

Theorem 2.3 Let n,m ≥ 1 be integers. Then Γ(n)(−m)
can be represented as follows,

Γ(n)(−m) =
(−1)mn!

m!

n+1∑
j=0

Γ(n+1−j)(1)Hm(1j)

(n+ 1− j)!
, (14)

where Γ(j)(1)(j = 1, 2, . . . , n + 1) is given by (5) and
Hm(1j)(j ∈ N0) is the multiple harmonic sum defined by

Hm(10) = 1,

Hm(1j) =
∑

m>m1>···>mj>1

1
m1m2···mj

(j > 0).
(15)

Proof. Integrating by parts for (4), we obtain

Γ(n)(−m)

= − 1

m
N − lim
ε→0+0

∫ ∞

ε

e−t lnn tdt−m

=
1

m
N − lim
ε→0+0

(
e−εε−m lnn ε

−
∫ ∞

ε

t−me−t lnn tdt

+n

∫ ∞

ε

t−m−1e−t lnn−1 tdt
)

=
1

m

(
nΓ(n−1)(−m)− Γ(n)(1−m)

)
.

(16)

Reusing (16), we have

Γ(n)(−m)

=
1

m!

[
(m− 2)!Γ(n)(2−m)

−n(m− 2)!Γ(n−1)(1−m)

+n(m− 1)!Γ(n−1)(−m)
]

= · · ·
=

1

m!

[
(−1)mΓ(n)(0)

+n
m−1∑
j=0

(−1)j(m− 1− j)!Γ(n−1)(j −m)
]
.

(17)

Combining (12) with (17), we get

Γ(n)(−m) =
(−1)m

m!
×
[Γ(n+1)(1)

n+ 1

+n
m∑

k=1

(−1)k(k − 1)!Γ(n−1)(−k)
]
.

(18)

Now let n = 1 in (18). It follows by (13) and (18) that

Γ′(−m)

=
(−1)m

m!

(
Γ′′(1)

2
+

m∑
k=1

1

k
(Hk − γ)

)
=

(−1)m

m!

(
Γ′′(1)

2
− γHm +Hm(12)

)
.

(19)

Repeating use (18), we proceed to get

(−1)mm!

n!
Γ(n)(−m)

=
Γ(n+1)(1)

(n+ 1)!
+

m∑
k=1

1

k

(
Γ(n)(1)

n!

+
1

(n− 2)!

k∑
l=1

(−1)l(l − 1)!Γ(n−2)(−l)

)
=

Γ(n+1)(1)

(n+ 1)!
+

Γ(n)(1)

n!
Hm

+
1

(n− 2)!

m∑
m1=1

m1∑
l=1

(−1)l(l − 1)!

m1
Γ(n−2)(−l)

= · · ·

=
n−2∑
j=0

Γ(n+1−j)(1)

(n+ 1− j)!
Hm(1j)+

∑
m>m1>···>mn−2>1

mn−2∑
l=1

(−1)l(l − 1)!

m1 · · ·mn−2
Γ′(−l).

(20)

Due to Γ′(1) = −γ and Γ(1) = 1, we can yield (14) after
inserting (19) into (20). �
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Remark 2.4 From (5), we can obtain that Γ′′(1) =
ψ(1)Γ

′
(1) + ζ(2, 1)Γ(1) = γ2 + ζ(2), where ζ(2) is the

Riemann zeta function. Comparing with (19), we know that
(−1)m

2m! Γ′′(1) is lost in the following formula(Theorem 4 in
[2])

Γ′(−m) =
(−1)m

m!
(Hm(12)−Hmγ) , (21)

which is resulting from the case m = 1 of (21) is ignored in
the process of the mathematical induction. Therefore, (21)
should be corrected by (19).

Remark 2.5 Setting m = 1 in (14), we have

Γ(n)(−1) = −n!
n+1∑
j=2

Γ(j)(1)

j!
+ n!(γ − 1). (22)

Comparing with (22), the minus-sign ”− ” is lost in the left
side of the first item of the following formula(Theorem 5 in
[2])

Γ(n)(−1) = n!
n+1∑
j=2

Γ(j)(1)

j!
+ n!(γ − 1). (23)

The reason is similar to Remark 2.4. So, (23) should be
corrected by (22).

III. THE PARTIAL DERIVATIVES OF THE INCOMPLETE
GAMMA FUNCTION

Theorem 3.1 Let n be a non-negative integer. Then

Γ(n)(α, z) = Γ(n)(α)

−n!
∞∑
k=0

(−1)kzk+α

k!

n∑
j=0

(−1)j lnn−j z

(α+ k)
j+1

(n− j)!

(24)

for α ∈ C \ N−
0 .

Proof. For the incomplete Gamma function Γ(α, z) ([13],
Sect. 9.2), we have

Γ(α, z) = Γ(α)−
∞∑
k=0

(−1)kzk+α

k! (α+ k)
, (25)

where α ∈ C\N−
0 . Calculating n-order partial derivatives on

α for (25) by using the Leibniz’s rule, we can obtain (24). �

Lemma 3.2 For n ∈ N0, we have

Γ(n)(0, z) =
Γ(n+1)(1, z)− e−z lnn+1 z

n+ 1
. (26)

Proof. Setting α = 0 in (3) and integrating by parts, we
have

Γ(n)(0, z)

=

∫ ∞

z

t−1e−t lnn tdt

=

∫ ∞

z

e−t lnn td ln t

= −e−z lnn+1 z +

∫ ∞

z

e−t lnn+1 tdt

−n
∫ ∞

z

t−1e−t lnn tdt

= Γ(n+1)(1, z)− e−z lnn+1 z − nΓ(n)(0, z),

(27)

which implies that (26) holds. �

Lemma 3.3 For m ∈ N, Γ(−m, z) is given by

Γ(−m, z) = (−1)m

m!

[
Γ(1)(1, z)− e−z ln z

+e−z
m∑

k=1

(−1)k(k − 1)!z−k
]
.

(28)

Proof. With the aid of (26), we note that (28) holds if and
only if the following formula

Γ(0, z) = (−1)mm!Γ(−m, z)

−e−z
m∑

k=1

(−1)k(k − 1)!z−k,
(29)

holds for m ∈ N.
Therefore, we aim to prove (29) holds for m ∈ N by using

the mathematical induction.
(I). When m = 1, (29) reduces to

Γ(0, z) = −Γ(−1, z) + z−1e−z, (30)

which can be obtained by using the following recursive
relation([13], Sect. 9.2)

Γ(α+ 1, z) = αΓ(α, z) + zαe−z. (31)

(II). Now assume that (29) holds for m = p(p ∈ N), i.e.,

Γ(0, z) = (−1)pp!Γ(−p, z)

−e−z

p∑
k=1

(−1)k(k − 1)!z−k.
(32)

Combining (31) with (32), we yield

Γ(0, z)
= (−1)pp!

[
−(p+ 1)Γ(−p− 1, z) + z−p−1e−z

]
−e−z

p∑
k=1

(−1)k(k − 1)!z−k

= (−1)p+1(p+ 1)!Γ(−p− 1, z)

−e−z

p+1∑
k=1

(−1)k(k − 1)!z−k,

(33)

which means that (29) holds for m = p + 1. According to
the mathematical induction, we conclude that (29) holds for
m ∈ N. �

Theorem 3.4 Let n and m be positive integers. Then
Γ(n)(−m, z) can be expressed as follows,

Γ(n)(−m, z) = (−1)mn!

m!
×e−z

n∑
j=0

Hm,j+1(z) ln
n−j z

(n− j)!
+

n∑
j=0

Hm(1j)
Γ(n+1−j)(1, z)− e−z lnn+1−j z

(n+ 1− j)!

 ,

(34)

where

Hm,1(z) =

m∑
k=1

(−1)k(k − 1)!z−k,

Hm,l+1(z) =
∑

m≥m1≥···≥ml≥1

1

m1 · · ·ml
×

ml∑
k=1

(−1)k(k − 1)!z−k, l ∈ N.

(35)
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Proof. Similar to the proof of Theorem 2.3, one has

Γ(n)(−m, z)

=

∫ ∞

z

t−m−1e−t lnn tdt

=
(−1)m

m!

[
Γ(n)(0, z) +Hm,1(z)e

−z lnn z

+n
m∑

m1=1
(−1)m1(m1 − 1)!Γ(n−1)(−m1, z)

]
.

(36)

With the help of (26), (36) can be rewritten as follows,

Γ(n)(−m, z)

=
(−1)m

m!

[
n

m∑
m1=1

(−1)m1(m1 − 1)!

×Γ(n−1)(−m1, z) +Hm,1(z)e
−z lnn z

+
Γ(n+1)(1, z)− e−z lnn+1 z

n+ 1

]
.

(37)

Inserting (28) into (37) as n = 1, we obtain

Γ(1)(−m, z)

=
(−1)m

m!

[
Hm

(
Γ(1)(1, z)− e−z ln z

)
+e−zHm,2(z) + e−zHm,1(z) ln z

+
1

2

(
Γ

(2)

(1, z)− e−z ln2 z
)]

.

(38)

Reusing (37), we have

Γ(n)(−m, z) = (−1)mn!

m!
×[

n−2∑
j=0

Hm(1j)
Γ(n+1−j)(1, z)− e−z lnn+1−j z

(n+ 1− j)!

+e−z
n−2∑
j=0

Hm,j+1(z) ln
n−j z

(n−j)! +
∑

m>m1>···>mn−2>1

1
m1m2···mn−2

mn−2∑
l=1

(−1)l(l − 1)!Γ(1)(−l, z)

]
.

(39)

Combining (38) and (39), we finally obtain (34). �

IV. APPLICATIONS

A. The expressions of the closed forms for some special
integrals

With the aid of (5), we can obtain the closed forms of the
following integrals∫ ∞

0

tα−1e−t lnn tdt = Γ(n)(α), (40)

for α = m or 2m−1
2 (m ∈ N) and n ∈ N0, which can be

expressed by the Riemann zeta functions and some special
constants such as Euler’s constant γ and π in the following
examples by using the Mathematica software.

Example 4.1 Setting α = 5, n = 3 in (40), we have∫ ∞

0

t4e−t ln3 tdt

= 60− 210γ + 150γ2 − 24γ3

+
[
25− 12γ

]
π2 − 48ζ(3).

(41)

Example 4.2 Setting α = 3, n = 4 in (40), we have∫ ∞

0

t2e−t ln4 tdt

= 12γ2 − 12γ3 + 2γ4 +
[
2− 6γ + 2γ2

]
π2

+
3

10
π4 + 8

[
2γ − 3

]
ζ(3).

(42)

Example 4.3 Setting α = 1
2 , n = 3 in (40), we have

1√
π

∫ ∞

0

t−
1
2 e−t ln3 tdt

= −3

2
γπ2 − γ3 − 3

[
2γ2 + π2

]
ln 2

−12γ ln2 2− 8 ln3 2− 14ζ(3).

(43)

Example 4.4 Setting α = 5
2 , n = 4 in (40), we have

1√
π

∫ ∞

0

t
3
2 e−t ln4 tdt

= 12γ2 − 8γ3 +
3γ4

4

+3
[
2− 4γ +

3γ2

4

]
π2 +

21π4

16
+3
[
16γ − 16γ2 + 2γ3 − 8π2 + 3γπ2

]
ln 2

+3
[
16− 32γ + 6γ2 + 3π2

]
ln2 2 + 12 ln4 2

+8
[
3γ − 8

]
ln3 2 + 14

[
6ln 2− 8 + 3γ

]
ζ(3).

(44)

Calculating n−order derivatives on β for the following
integral [14](pp.657),∫ ∞

0

e−αtΓ(β, t)dt =
Γ(β)

α

[
1− (1 +α)−β

]
, β > 0, (45)

we yield ∫ ∞

0

e−αtΓ(n)(β, t)dt

=
1

α
Γ(n)(β)

[
1− (1 + α)−β

]
− 1

α

n−1∑
k=0

Ck
n

×Γ(k)(β) lnn−k[(1 + α)−1](1 + α)−β .

(46)

Similarly, we can obtain the closed forms of integrals
(46) in the following examples.

Example 4.5 Setting α = 1
2 , n = 3, β = 3 in (46), we

have

27

∫ ∞

0

e−
1
2 tΓ(3)(3, t)dt

= 38
[
− 6γ + 9γ2 − 2γ3

]
+ 19

[
3− 2γ

]
π2

+16
[
6− 18γ + 6γ2 + π2

]
ln

3

2

+48
[
2γ − 3

]
ln2

3

2
+ 32 ln3

3

2
− 152ζ(3).

(47)

Example 4.6 Setting α = 1, n = 2, β = 3
2 in (46), we

have √
2

π

∫ ∞

0

e−tΓ(2)
(3
2
, t
)
dt

= (1− 2
√
2)
[
γ − γ2

4
− π2

8

]
+(3− 4

√
2)
[
1− γ

2

]
ln 2 +

[
2
√
2− 9

4

]
ln2 2.

(48)

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_04

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



B. Arbitrary precision calculation of Γ(n)(α),Γ(n)(α, z)

In this part, we consider the calculation of Γ(n)(α) and
Γ(n)(α, z) at any specified precision by using (3), (5) and
(24).

Here we denote the algorithm of (5) and (24) by FHP,
while NIntegrate is still used to represent the numerical
integration of (3) by the internal command NIntegrate in
Mathemaitca software.

The comparison between the FHP and the NIntegrate
algorithm by using Mathematica are listed in Table I, II,
III and IV (Computer Systems: Intel(R) Core(TM) i5-3470
CPU@3.20GHz 3.20GHz RAM 3.47GB). It’s important to
note that TP and RP represent the running time(unit: second)
and the relative error of the two numerical algorithms with
the precision P , respectively.

Seen from Tables I, II, III and IV, the relative error of
NIntegrate is much larger than FHP while the computing
speed of NIntegrate is more slowly than FHP. Furthermore,
the calculation speed of FHP is about 10 ∼ 102 times faster
than NIntegrate in Tables II, III and IV.

TABLE I
CALCULATION OF Γ(n)(α)

(n, α) (4, 3
2
) (8, 3

2
+ i)

Algorithm NIntegrate FHP NIntegrate FHP

T64 0.750 0. 1.781 0.

R64 10−65 10−80 10−64 10−79

T128 2.953 0. 6.796 0.

R128 10−129 10−160 10−128 10−159

T256 15.343 0. 31.625 0.

R256 10−257 10−320 10−256 10−319

TABLE II
CALCULATION OF Γ(n)(α)

(n, α) (16, 22
9

+ 3i)

Algorithm NIntegrate FHP

T64 1.265 0.156

R64 10−47 10−75

T128 3.437 0.156

R128 10−76 10−155

T256 8.750 0.156

R256 10−134 10−315

V. CONCLUSION

In this work, we have constructed some recursive relations
for the derivatives of the Gamma function Γ(α) and incom-
plete Gamma function Γ(α, z) for α ∈ C. With the help of

those results, the closed forms of some special integrals are
established in Examples 4.1∼ 4.6, which can be expressed by
the special constants and the Riemann zeta functions. Using
the neutrix limit, we show that Γ(n)(−m)(n,m ∈ N0) can
be expressed as linear forms in Γ(j)(1)(j = 0, 1, . . . , n+1).
By comparing with Theorem 2.3, we find that there are some
mistakes in the expression of Γ′(−m) and Γ(n)(−1) shown
in Theorem 4 and 5 in [2], respectively. Furthermore, the
corresponding corrections have been given in Remark 2.4
and 2.5, respectively. Finally, Γ(n)(−m, z) are represented
as the combination of Γ(j)(1, z)(j = 0, 1, . . . , n + 1) and
the elementary functions. Numerical results in Tables I ∼
IV show that the FHP algorithm does not only improve
the accuracy up to the specified precision usually, but also
reduces the time-consuming effectively.

TABLE III
CALCULATION OF Γ(n)(α, z)

(n, α, z) (4, 3
2
, 1
2
) (8,− 3

2
, 2 + i)

Algorithm NIntegrate FHP NIntegrate FHP

T64 0.406 0.015 1.062 0.031

R64 10−65 10−79 10−64 10−71

T128 1.859 0.015 4.062 0.031

R128 10−129 10−159 10−128 10−151

T256 9.625 0.031 20.700 0.062

R256 10−257 10−319 10−256 10−311

TABLE IV
CALCULATION OF Γ(n)(α, z)

(n, α, z) (16,− 13
5

+ i, 4 + 3i) (16,− 13
5
, 1
2
i)

Algorithm NIntegrate FHP NIntegrate FHP

T64 1.218 0.125 2.031 0.046

R64 10−64 10−66 10−64 10−64

T128 5.203 0.203 7.484 0.171

R128 10−128 10−146 10−128 10−144

T256 27.406 0.390 37.578 0.328

R256 10−256 10−306 10−256 10−304
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Incomplete Gamma Function,” Integral Transforms Spec. Funct., vol.
14, no. 4, pp. 293-299, 2003.

[7] B. Fisher, “On Defining the Incomplete Gamma Function γ(−m,x),”
Integral Transforms Spec. Funct., vol. 15, no. 6, pp. 467-476, 2004.

[8] N. Shang, A. Li, Z. Sun and H. Qin, “A Note on the Beta Function
and Some Properties of Its Partial Deriatives,” IAENG Int. J. Appl.
Math., vol. 44, no. 4, pp. 200-205, 2014.

[9] F. Al-Sirehy and B. Fisher, “Results on the Beta Function and the
Incomplete Beta Function,” Int. J. Appl. Math., vol. 26, no. 2, pp.
191-201, 2013.

[10] F. Al-Sirehy and B. Fisher, “Evaluation of the Beta Function,” Int. J.
Appl. Math., vol. 26, no. 1, pp. 59-70, 2013.

[11] Z. Sun, A. Li and H. Qin, “The Neutrix Limit of the Hurwitz Zeta
Function and Its Application,” IAENG Int. J. Appl. Math., vol. 47,
no.1, pp. 56-65, 2017.

[12] J. G. van der Corput, “Introduction to the Neutrix Calculus,” J. Anal.
Math., vol. 7, no. 1, pp. 281-398, 1959.

[13] H. Bateman and A. Erdelyi, “Higher Transcendental Functions,” vol.
II, McGraw-Hill, New York, 1953.

[14] A. Jeffrey and D. Zwillinger, “Tables of Integrals, Series, and Prod-
ucts,” Academic Press, New York, 2007.

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_04

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 




