
 

 

Abstract—In this paper, a numerical method based on 

Legendre polynomials is proposed for solving the variable 

order time fractional diffusion equation. We adopt the 

Coimbra variable order time fractional operator, which can be 

viewed as a Caputo-type definition. Operational matrix of 

differentiation is also introduced. Combining this matrix with 

the properties of Legendre polynomials, we transform the 

initial problem into a Sylvester equation. Numerical example is 

provided to demonstrate the validity and applicability of the 

technique. Moreover, comparing the methodology with the 

known method shows that our approach is more efficient and 

more convenient. 

Keywords—Variable order; Legendre polynomials; 

Operational matrix; Sylvester equation; Numerical solution 

I. INTRODUCTION 

n science and engineering, many dynamical systems can 

be described by fractional-order equation [1-3]. These 

dynamical systems generally originates in the fields of 

electrode-electrolyte [4], dielectric polarization [5], 

electromagnetic waves [6] and viscoelastic systems [7] etc. 

Various materials and processes have been found to be 

described using fractional calculus. Anomalous diffusion 

has been discussed in various physical fields [8-10]. The 

features of anomalous diffusion include history dependence, 

long-range, correlation and heavy tail characteristics. These 

features can be accommodated well by using fractional 

calculus. In order to deal with the diffusion processes in 

which the diffusion behaviors depend on time evolution, 

space variation, the variable-order diffusion models were 

proposed. The concept of variable order operator was first 

introduced by Samko[11-12] in 1993 and received much 

attention in the fields of viscoelasticity, viscoelastic 

deformation, viscous fluid. Nowadays, it has been employed 

as a powerful tool in complex anomalous diffusion 

modeling. 

Up until now, to the best of the authors knowledge, the 

main approach for solving the variable order time fractional 

diffusion equation is finite difference method. Lin et al. [13] 

applied an explicit finite difference method to investigate 

stability and convergence of approximation for the variable 
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order nonlinear fractional diffusion equation. Zhuang et al. 

[14] proposed explicit and implicit Euler method for the 

variable order fractional advection-diffusion equation. Chen 

et al. [15] used two numerical methods to solve the variable 

order anomalous sub-diffusion equation. 

Legendre polynomials play a prominent role in various 

areas of mathematics. These polynomials have frequently 

used in both the solution of differential equations and 

approximation theory [16-17]. Abbasbandy et.al. [18] 

presented the operational matrix method based on fractional 

order Legendre polynomials for the time fractional 

convection diffusion equations. Islam and Hossain [19] used 

the Bernstein and Legendre polynomials to solve the eighth 

order boundary value problem. 

In this study, we consider the following variable order 

time fractional diffusion equation: 
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where 0 ( , ) 1q x t  , ( , )f x t and ( )g x are the known 

functions. ( , )q x t
tD  denotes the variable order time fractional 

derivative defined by Coimbra [20]: 
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For the sake of simplicity, assuming ( ,0 ) ( ,0 )u x u x  , 

then the Coimbra definition can be viewed as the following 

Caputo-type definition: 
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II. LEGENDRE POLYNOMIALS AND THEIR SOME 

PROPERTIES 

The Legendre basis polynomials of degree n  in 

[0,1] are defined by [16] 
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where 
0 1( ) 1, ( ) 2 1P x P x x   . The Legendre polynomials 

of degree i  can be also given by 
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Let  
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The Legendre polynomials given by Eq.(6) can be expressed 

in the matrix form 
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A function 2( , ) ([0,1] [0,1])u x t L   can be expressed in 

terms of the Legendre basis. In practice, only the first 

( 1) ( 1)n n   term of Legendre polynomials are considered. 

Hence 
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C , ijc are called Legendre 

coefficients. 

 

Theorem 1. For any , [0,1]i jx t  , suppose that the function 
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obtained by using Legendre polynomials are the 

approximation of 
( , )u x t

x








, ( , )i jq x t  , and ( , )u x t has 

bounded mixed fractional partial derivative  
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Proof. The property of the  ( )iP x on [ 1,1] implies that 
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Now, let 

 2 2( ) (2 1) ( ) 2(2 1) ( ) (2 3) ( )i i i ix i P x i P x i P x         

then, we obtain 
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By solving this equation, we get 
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This completes the proof. 

III. THE OPERATIONAL MATRIX OF THE DERIVATIVE 

3.1 The Legendre polynomials operational matrix of integer 

order differentiation Figures 

The differentiation of vector ( )x in Eq.(9) can be 

expressed as 

( ) ( )x x D 
                              

(13) 

where D  is the ( 1) ( 1)n n    operational matrix of 

derivatives for Legendre polynomials.  

From Eq.(9), we have 

1( ) [0,1,2 , , ]n Tx x nx   A
              

(14) 

Define the ( 1)n n  matrix V and vector *
n as 

0 0 0

1 0 0

0 2 0

0 0 n

 
 
 
 
 
 
 
 

V , * 2 1[1, , , ]n T
n x x x 

 

  (15) 

Eq.(14) may then be restated as 
*( ) nx  AV 

 

  (16) 

Because 1
[ 1] ( )k
kx x
 A  , where 1

[ 1]k

A is the 1k th row 

of 1
A for 0,1, ,k n , so we have 

* * ( )n x B 

 

  (17) 

where * 1 1 1 1
[1] [2] [3] [ ][ , , , ]Tn
   B A A A A . 

Therefore 
*( ) ( )x x  AVB 

 

 (18) 

and we have the operational matrix of the derivative as 
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If we approximate ( ) ( )Tg x x g  , then for 2n  ( n is 

the order of derivatives), we obtain 
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3.2 The Legendre polynomials operational matrix of 

fractional order differentiation 

Now, we derive Legendre polynomials operational matrix 

of fractional order differentiation. 

Let  
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tD is called Legendre polynomials 

operational matrix of fractional order differentiation.  

For this purpose, we use Eq.(9) and the definition of 

Caputo-type Eq.(5), as following 
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where B  is the beta function which is defined as follows 
1 1 1
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when 0i  , 0 ( , ) 0x t  , ( , )x t  can be expressed as 
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From Eq.(21) and Eq.(24), the Legendre polynomials 

operational matrix of fractional order differentiation 
( , )q x t

D is given by 
( , ) 1( , )q x t x t D A A

 

 (25) 

IV. 4. LEGENDRE MATRICES FOR THE NUMERICAL 

SOLUTION OF THE VARIABLE ORDER TIME 

FRACTIONAL DIFFUSION EQUATION. 

Consider Eq.(1), Eq.(2) and Eq.(3), by previous section, 

the function ( , )u x t can be approximated as Eq.(12). Then 

we get 
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Similarly, the function ( , )f x t can be given by 
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F . Substituting Eq.(26), 

Eq.(27) and Eq.(28) into Eq.(1), we obtain 
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Dispersing Eq.(29) by the points ( , )i jx t , 0,1,2, ,i n
 

and 0,1,2, ,j n , we have 

 2 ( , )
T

q x t D DC C = F

 

 (30) 

Eq.(30) is a Sylvester equation. Solving it, we can get the 

matrix of C . 

From the Eq.(2), we have ( ) (0) ( )T x g xC  , then we 

may calculate 1ic , 0,1,2 ,i n .  

According to the condition Eq.(3), we can take 1 0jc  , 

0,1,2 ,j n . 

V. NUMERICAL EXAMPLE 

Example 1: Consider the following variable order time 

fractional diffusion equation [21] 
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The exact solution is  
2 2( , ) 10 (1 )( 1)u x t x x t  

 

 (33) 

We applied the Legendre polynomials method to solve 

this problem for various values of n . The absolute errors of 

the numerical solutions and the exact solution for 3n  , 

4n  , 4n  are shown in Table I. The numerical solutions 

for 3n   and the exact solution are shown in Fig. 1 and 

Fig. 2. 

Table I.  
THE ABSOLUTE ERRORS FOR DIFFERENT n  

( , )x t  
Present method 

Method in [21] 
3n   4n   5n   

(0,1) 0 0 0 0 

(0.1, 1) 1.0954e-013 7.4496e-012 2.0938e-011 2.9962e-005 

(0.2, 1) 2.9088e-013 4.5400e-011 5.8094e-010 5.9723e-005 

(0.3, 1) 3.3595e-013 1.2077e-010 3.0756e-009 8.8035e-005 

(0.4, 1) 4.7518e-014 2.2054e-010 1.1654e-008 1.1251e-004 

(0.5, 1) 7.7360e-013 3.0961e-010 3.8213e-008 1.2981e-004 

(0.6, 1) 2.3288e-012 3.2339e-010 1.1230e-007 1.3595e-004 

(0.7, 1) 4.8051e-012 1.5515e-010 2.9866e-007 1.2705e-004 

(0.8, 1) 8.3951e-012 3.6181e-010 7.2617e-007 1.0048e-004 

(0.9, 1) 1.3241e-011 1.4777e-009 1.6334e-006 5.6431e-005 

 
Fig.1. The numerical solutions for 3n  . 

In Table I, we list the results obtained by the Legendre 

polynomials method proposed in this paper together with the 

finite difference method [21] results. The displayed results 

show that our method is more convenient and more accurate 
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than the finite difference method. From Fig. 1 and Fig. 2, we 

can see clearly that the numerical solutions are very good 

agreement with the exact solution. 

 
Fig.2. The exact solution. 

Example 2: Consider the following 
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The exact solution of the above equation is 

    2 2 3, 1 5u x t x x t t    .The absolute errors between 

the exact solution and the numerical solution are displayed 

as follows: 

 
Fig. 3. The absolute error for Example 2 of 3n  . 

From Fig. 3, we can find that the absolute errors are very 

tiny and only a small number of Legendre polynomials are 

needed when 3n  . 

 

VI. CONCLUSION 

In this paper, we have proposed a numerical approach for 

solving the variable order time fractional diffusion equation 

by using Legendre operational matrix. The operational 

matrix of differentiation D and 
( , )q x t

D have been used for 

transforming the variable order time fractional diffusion 

equation into a Sylvester equation that can be solved easily. 

Finally, numerical example reveals that the present method 

is very accurate and convenient for solving this problem. 
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