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Abstract—This study considers second law analysis of hydro-
magnetic couple stress fluid through a channel filled with non-
Darcian porous medium. We assumed that the fluid exchanges
heat with the ambient following Newtonian law. The governing
non-linear equations of the fluid flow were formulated and non-
dimensionalised. A semi-analytical solution of the dimensionless
momentum and energy equations are obtained using Ado-
mian decomposition method (ADM) and differential transform
method (DTM). The approximate solutions are utilized to com-
pute the entropy generation and the Bejan numbers. The effects
of pertinent flow parameters on the velocity, temperature,
entropy generation and the Bejan numbers are presented and
discussed graphically.

Index Terms—Non-Darcian porous medium; Hydromagnetic;
Couple stress fluid; Adomian Decomposition method (ADM);
Differential Transform method (DTM); Entropy generation.

I. INTRODUCTION

IN recent times, the study of electrically conducting fluid
has been the focus of many authors due to its sev-

eral applications in the industry like geothermal reservoirs,
nuclear reactor, marine propulsion, electronic packaging,
microelectronic device operations, textile industry, polymer
technology, metallurgy, crude oil purification and the cool-
ing of reactors. For instance, Alam et al. [1] discussed
viscous heating effect on magnetohydrodynamic heat and
mass transfer; and concluded that magnetic field parameter
retards local Nusselt number. Turkyilmazohlu [2] presented
the effects of thermal radiation on the time-dependent MHD
permeable flow with varying viscosity and submitted that
magnetic field increases fluid temperature but retards the
skin friction. In [3], Adesanya et al. investigated the entropy
generation of MHD third grade fluid through porous medium
and discovered that magnetic field parameter decreases fluid
velocity but increases the temperature. Other interesting
studies on MHD flow are in [4-9].

Fluid flows through non-Darcian porous medium abound
in many real life scenarios such as geophysical and petro-
chemical flows. The application of porous media to improve
convection heat transfer has been studied by numerous au-
thors like Chauhan et al [10] who investigated slip conditions
effects on both forced convection and entropy generation in
a circular channel through a highly porous medium. It was
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submitted that porosity parameter increases the entropy gen-
eration but reduces the Bejan number. In a related study, Jha
et al. [11] investigated mixed convection in a vertical cylinder
filled with porous material. Salah et al. [12] considered MHD
flows of second grade fluid in a porous medium and rotating
frame. Gbadeyan et al. [13] carried out an investigation on
the irreversibility analysis resulting from the effects of partial
slippage and couple stresses in a channel filled with highly
porous medium. Other contributions on porous medium are
[14-15].

However, in most engineering processes, efficient energy
utilization has been a great concern due to the continuous
exchange of heat between the fluid and its solid boundaries
which usually results into great disorderliness, giving rise
to increase in entropy generation during convection. Since
increase in entropy production measures the destruction of
exergy in a system, it is therefore, pertinent to have a critical
study of the factors that account for this irreversibility in
order to reduce the wastefulness in thermal systems.

After the pioneering work of Bejan [16, 17, 18], numerous
researchers have discussed entropy generation under various
physical situations. Adesanya et al. [19] presented entropy
generation analysis of couple stress fluid in a porous channel
using the convective heating boundary conditions. Ajibade
et al. [20] studied entropy generation under the effect of
suction/injection. Das et al. [21] presented the irreversibility
analysis of electrically conducting viscous flow in a porous
channel with slip boundary conditions and submitted that
increasing value of magnetic field parameter increases loss
of useful energy while it decreases heat transfer rate at the
lower plate. For other studies on entropy generation see Refs.
[22-32].

In all these previous studies, attention has hardly been
focused to study the effects of hydromagnetic couple stress
fluid on entropy generation rate in a steady flow through a
channel occupied by a non-Darcian medium. Such a study
is useful and important basically for (i) gaining fundamental
understanding of such flows; (ii) the need to ensure entropy
minimization in a hydromagnetic couple stress fluid flow;
and (iii) possible application of such non-Newtonian fluids
in petroleum production, power engineering, movement of
biological fluids and food and construction engineering.

The primary motivation for this paper is derived from the
above issues which is very important yet unaddressed in the
previous papers on the subject [19, 23]. The objective of
this study is, therefore, to investigate entropy generation of
a hydromagnetic couple stress fluid flow through a channel
filled with a non- Darcian medium. To this end, two semi-
analytical methods namely: Adomian decomposition method
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(ADM) and the differential transform method (DTM) are
used to obtain the solution of the couple fourth order
nonlinear set of differential equations. Although various
numerical techniques [33-36] are available in literature, the
two numerical methods (ADM and DTM) are found to
converge rapidly to the exact solution, see Refs.[37,38] and
Table 1.

The organization of the rest of this work is as fol-
lows; section two presents problem formulation and non-
dimensionalization, section three contains the solution to
the boundary value problems via ADM. In section four,
results are graphically discussed, while in section five the
concluding remarks are presented.

II. MODEL FORMULATION

Consider an electrically conducting couple stress fluid
flowing steadily through porous medium. Hot fluid is injected
at plate y = 0 and sucked off at the upper plate y = h with
the same velocity. A uniformly transverse magnetic field is
applied in the direction of flow, and the interaction of the
induced magnetic field is assumed to be negligible when
compared with the interaction of the applied magnetic field.
There is an axi-symmetrical exchange of heating between
the wall plates and the ambient temperature. The equations
for the conservation of momentum, conservation of energy
and entropy generation that govern the flow can be written
as [19]

Fig. 1. Schematic diagram of the problem
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The boundary conditions are

u
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, k
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′
);
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where u
′

is the axial velocity, µ is the dynamic viscosity, h
is the channel width, ρ is the fluid density, T

′
is the fluid

temperature, T0 is the initial fluid temperature, Tf is the
final fluid temperature, k is the thermal conductivity of the
fluid , Cp is the specific heat at constant pressure, v0 is the
constant velocity of fluid suction/injection, σ is the electrical
conductivity of the fluid, η is the fluid particle size effect due
to couple stresses, K is the porous media permeability, b is
the empirical constant in the second order (porous inertia
resistance), EG is the local volumetric entropy generation
rate and γ1,2 are the heat transfer coefficients.
The following dimensionless variables are introduced
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Substituting (5) into (1)-((4), the following dimensionless
equations are obtained
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with the boundary conditions

u(0) = 0 =
d2u(0)

dy2
,
dθ(0)

dy
= Bi1(θ(0)− 1);

u(1) = 0 =
d2u(1)

dy2
,
dθ(1)

dy
= −Bi2(θ(1)) (9)

where u is the dimensionless velocity,s is the suc-
tion/injection parameter, θ is the dimensionless temperature,
a is the couple stress parameter, Pr is the Prandtl number,
Br is the Brinkman number, Ω is the parameter that measures
the temperature difference between the two heat reservoirs,
H2 is the magnetic field parameter, Ns is the dimensionless
entropy generation rate, Be and Bi1,2 are the Bejan number
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and Biot numbers respectively and G is the axial pressure
gradient, β is the porous media shape parameter and α is the
second order porous media resistance parameter.

III. SOLUTION BY ADOMIAN DECOMPOSITION METHOD
(ADM)

Writing (6) and (7) in integral form yields
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Note that the boundary conditions u(0) = u
′′
(0) = 0 and

f1, f2, f3, f4 are the parameters to be determined later.

By ADM, an infinite series solution can be defined
as
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In view of (13) and (14), the zeroth order term can be
written as
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n=0
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n=0

θ0(y) = f3 + f4y (16)

TABLE I
COMPUTATION SHOWING CONVERGENCE OF SOLUTION WHEN

s=0.1,H=a=Br=β=α=Bi1=Bi2= G= 1

y Exact solution ADM Abs Error DTM Abs Error
0 −2.7756× 10−17 2.7756×10−17 2.7756×10−17

0.1 0.003647072 2.93073 ×10−14 1.28806 ×10−11

0.2 0.006896387 2.01133 ×10−14 2.5258 ×10−11

0.3 0.009436924 6.97446×10−14 3.66252 ×10−11

0.4 0.011049005 2.86358×10−13 4.6465 ×10−11

0.5 0.011601677 6.81247 ×10−13 5.42441 ×10−11

0.6 0.011051182 1.31362 ×10−12 5.94085 ×10−11

0.7 0.009440522 2.25145 ×10−12 6.13774 ×10−11

0.8 0.006900099 3.57501×10−12 5.95401 ×10−11

0.9 0.003649445 5.37918 ×10−12 5.32521 ×10−11

while other terms are determined using the recurrence rela-
tions
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The accuracy of the results of these computations can be
verified by comparing the approximate solutions obtained via
ADM and DTM with the exact solution presented in Table
1.

IV. ENTROPY GENERATION

Investigating entropy generation within the flow, according
to Bejan [16] the local entropy generation rate as shown in
(3) is
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The first term in the above equation is the irreversibility due
to heat transfer, the second and the third terms account for
entropy generation due to fluid friction and couple stress
respectively while the last three terms represent irreversibility
due to the effect of magnetic field and porosity.

The dimensionless form as shown in (8) is given as
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Investigating entropy generation within the flow, let
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The Bejan number Be = 0 is the irreversibility due to viscous
dissipation, couple stress effect, magnetic effect and porous
media and Be = 1 is when the irreversibility due to heat
transfer dominates the flow. Be = 0.5 indicates that viscous
dissipation and heat transfer contribute equally to entropy
generation. The Bejan number can be written as

Be =
N1

Ns
=

1

1 + Φ
,Φ =

N2

N1
(20)

V. RESULTS AND DISCUSSION

Second law analysis of hydromagnetic couple stress fluid
through a non-Darcian porous medium has been considered.
The graphical results are presented in this section to explain
the influence of pertinent parameters on velocity, tempera-
ture, entropy generation and Bejan number.

A. Effects of Parameters Variation on Velocity profiles

Effect of parameters variation on velocity are shown in
Figures 2-6. Fig. 2 depicts the plot of magnetic field param-
eter on velocity profile; the figure shows that increase in the
magnetic field parameter reduces fluid velocity. This can be
attributed to the force exerted by the applied magnetic field
on fluid particles which clumps the fluid particles together
leading to an increase in viscosity and consequently, the drop
in fluid velocity. In Figs. 3 and 4, the effects of porous
media parameters (β, α) are presented; the graphs reveal that
fluid velocity reduces as porous media parameters increase.
This can be attributed to the reduction in the porous media
permeability (K) of the fluid which reduces the free flow of
fluid particles.

Moreover, Fig. 5 represents the plot of couple stress
inverse parameter on velocity profile. As observed from the
plot, increase in couple stress inverse parameter increases the
velocity profile. It means that couple stress parameter will
eventually reduce fluid velocity due to increased viscosity
of the fluid. In Fig.6 the effect of pressure gradient on fluid
velocity is described, the plot reveals that fluid velocity is
accelerated as the values of (G) increases.

Fig. 2. Effect of magnetic field parameter (H2) on velocity profile

Fig. 3. Effect of porous media shape parameter (β) on velocity profile

Fig. 4. Effect of second order media shape factor parameter (α) on velocity
profile

Fig. 5. Effect of couple stress inverse parameter (a) on velocity profile

Fig. 6. Effect of pressure gradient (G) on velocity profile

B. Effects of Parameters Variation Temperature profiles

The influence of parameters variation on fluid temperature
are displayed in plots 7-11. Fig. 7 displays the graph of
magnetic field parameter variation on fluid temperature. It
is observed that fluid temperature increases with increase
in magnetic field parameter. This is due to an increase in
heat source from the Ohmic heating present in the flow; this
enhances transfer of heat to the boundaries. Furthermore,
Fig. 8 indicates that as porous media shape parameter rises
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in value fluid temperature is enhanced. The reduction in the
porous media permeability of the fluid is responsible for the
rise in temperature.

The influence of the inverse of couple stress parameter on
temperature is shown in Fig. 9. It is noticed from the graph
that as couple stress parameter increases the temperature of
the fluid drops. The implication of this is that increase in
couple stresses enhances fluid thickness that is, the dynamic
viscosity increases with a corresponding increase in the
temperature. Fig. 10 displays the effect of lower Biot number
(Bi1) on fluid temperature. As seen from the graph, the
temperature increases as convective heating from the lower
wall increases, while the trend is reversed in Fig. 11 with
upper Biot number (Bi2) due to the cooling effect.

Fig. 7. Effect of magnetic field parameter (H2) on temperature profile

Fig. 8. Effect of porous media shape parameter (β) on temperature profile

Fig. 9. Effect of couple stresses (a) on temperature profile

Fig. 10. Effect of convective heating (Bi1) on temperature profile

Fig. 11. Effect of convective cooling (Bi2) on temperature profile

C. Effects of Parameter Variation on Entropy Generation

In this section the effect of parameters variation on entropy
generation rate in Figs. 12-18 are presented. In Fig. 12, the
influence of magnetic field parameter on entropy generation
is depicted. It is indicated in the graph that entropy generation
is enhanced with increase in magnetic field parameter. This
can be traced to Fig. 2 which shows that fluid velocity de-
creases with increased Hartman number caused by clumping
of fluid particle. Furthermore, it is shown in Fig. 7 that fluid
temperature rises as Hartman number is increased due to
increased heat transfer to the boundaries from Ohmic heating.
The effect of these is the significant rise in entropy generation
displayed in Fig. 11. In Figs. 13 and 14, the effects of
porous shape parameters on entropy generation are displayed.
The plots indicate that increase in porous shape parameters
reduces entropy generation. This is clearly shown in Figs. 3
and 4 that fluid velocity reduces with increase in porosity
parameters; the drop in fluid velocity reduces the random
movement of fluid particles and consequently the reduction
in entropy generation rate.

Moreover, in Fig. 15 the graph displays the influence of
couple stress inverse parameter on the entropy generation
rate. It is revealed that entropy generation rises with in-
crease in couple stress inverse parameter (a). This implies
that couple stresses reduce entropy generation due to the
reduction in random movement of fluid particles. The drop in
the randomness of fluid particles is clearly revealed in Fig.
5 which shows that fluid velocity decreases with increase
in couple stresses. Effect of pressure gradient on entropy
production is shown in Fig.16, it is depicted from the plot
that a rise in pressure gradient enhances entropy generation
rate because of the significant rise in fluid velocity (see Fig.
6). Finally, Figs. 17 and 18 show similar result, the plots
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depict the effect of Biot numbers on entropy generation.
As observed from the figures, entropy generation increases
considerably across the channel as both lower and upper Biot
numbers increase in values.

Fig. 12. Effect of magnetic field parameter (H2) on entropy generation
rate

Fig. 13. Effect of porous media shape factor parameter (β) on entropy
generation rate

Fig. 14. Effect of second order media shape factor parameter (α) on entropy
generation rate

Fig. 15. Effect of couple stresses (a) on entropy generation rate

Fig. 16. Effect of pressure gradient (G) on entropy generation rate

Fig. 17. Effect of convective heating (Bi1) on entropy generation rate

Fig. 18. Effect of convective cooling (Bi2) on entropy generation rate

D. Effects of Parameter Variation on Bejan Number

Influence of parameters variation on Bejan number are
presented in Figs. 19-25. Figs. 19-25 display the plots of
variation in magnetic field parameter, porous media shape
parameter, couple stresses, Biot numbers, Brinkman number
and Prandtl number respectively on Bejan number. The plots
indicate that increase in these parameters increases Bejan
number. However, in Fig. 16 Prandtl number decreases Bejan
number slightly at the lower wall. The results indicate the
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dominance of irreversibility due to heat transfer in the middle
and upper walls across the channel.

Fig. 19. Effect of magnetic field parameter (H2) on Bejan number

Fig. 20. Effect of porous media shape parameter (β) on Bejan number

Fig. 21. Effect of couple stress inverse (a) on Bejan number

Fig. 22. Effect of convective heating (Bi1) on Bejan number

Fig. 23. Effect of convective cooling (Bi2) on Bejan number

Fig. 24. Effect of Brinkman number (Br) on Bejan number

Fig. 25. Effect of Prandtl number (Pr) on Bejan number

VI. CONCLUSIONS

Second law analysis of hydromagnetic couple stress fluid
through a channel filled with non-Darcian porous medium
has been investigated. The non-linear governing equations of
momentum and energy are solved numerically by ADM and
DTM. The results are used to compute the non-dimensional
entropy generation and Bejan number. Conclusions of the
study are as follows:
• Fluid velocity decreases with increase in magnetic

field parameter, porosity parameters and couple stresses
while pressure gradient accelerates fluid velocity;

• there is a rise in fluid temperature with increase in
magnetic field parameter, porous media shape param-
eter, couple stresses and convective heating parameter
while fluid temperature reduces as convective cooling
parameter increases in value;

• magnetic field parameter, pressure gradient and Biot
numbers enhance entropy production but the entropy
generation rate reduced with increase in porosity and
couple stress parameters;

• there is an increase in Bejan number in the middle and
upper walls of the channel with increase in porous me-
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dia shape parameter, magnetic field parameter, couple
stresses, Biot numbers, Brinkman number and Prandtl
number; and

• entropy generation due to heat transfer dominates the
flow at the middle and upper walls of the channel.
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