
High-accuracy Alternating Difference Scheme for
the Fourth-order Diffusion Equation

Geyang Guo∗, Shujuan Lü

Abstract—In this paper, a highly accurate parallel difference
scheme for the fourth-order diffusion equation is studied. Based
on a group of new Saul’yev type asymmetric difference schemes,
a high-order, unconditionally stable and parallel alternating
group explicit scheme is derived. The scheme is fourth-order
truncation error in space, which is much more accurate than
the known methods. Numerical experiments are performed to
examine the convergence, unconditional stability and accuracy.
A comparison of the accuracy of this scheme with the prior
AGE methods is presented.

Index Terms—fourth-order diffusion equation, alternating
difference scheme, high accuracy, parallel computation, uncon-
ditional stability.

I. INTRODUCTION

W ITH the development of the high-performance com-
puter, the need to construct parallel algorithms has

long been desired. In the past decade, the alternating schemes
were widely studied. The pioneer work can be traced to 1983,
Evans and Abdullah first developed the alternating group ex-
plicit (AGE) scheme [1, 2] for parabolic equation. The AGE
scheme uses the explicit scheme and the implicit scheme
alternately in the time and space direction, which can imple-
ment the parallel computation and is unconditionally stable.
Afterwards, the alternating segment explicit-implicit (ASE-
I) scheme [3] and the alternating segment Crank-Nicolson
(ASC-N) scheme [4] were proposed. Recently, the alternating
schemes have been extended to two-dimensional diffusion
systems [5], dispersive equation [6, 7, 8, 10, 11, 13, 16], non-
linear three-order KdV equation [9], fourth-order diffusion
equation [12, 14] and Helmholtz equation [17], respectively.
The results of numerical examples show that these schemes
have unconditional stability and intrinsic parallelism. Mean-
while, the introduction of the alternating schemes leads to
the rapid development of the domain decomposition parallel
methods [18, 19, 20]. However, the majority of the literature
have focused their attentions on the parallelism, the major
problem in the above algorithms is that the truncation error is
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only near second order in space. The construction of the high-
ly accurate parallel difference scheme has been considered
by only a limited number of investigators. In [10, 11, 15], the
fourth-order accurate AGE and ASC-N schemes have been
constructed for the dispersive equation by a group of new
high-order accurate asymmetric difference schemes.

In view of the limited information available of highly
accurate parallel difference method, this paper undertakes
a study of the construction of high-order accurate algorith-
m for the fourth-order diffusion equation. The numerical
solving methods were widely studied [12, 14, 21, 22, 23, 24].
Although the unconditionally stable general schemes with
intrinsic parallelism for fourth-order diffusion equation have
been derived in [12], the truncation error is only near second
order in space. In this work, a group of new Saul’yev asym-
metric difference schemes is constructed, basing on these
schemes, we will derive a fourth-order accurate alternating
group explicit (AGE) scheme, and it also has unconditional
stability and intrinsic parallelism. Its numerical simulations
show better accuracy than the AGE1 and AGE2 schemes in
[12]. We hope the result of this paper makes an essential
contribution in this direction.

We consider the following problem

Lu =
∂u

∂t
+ α

∂4u

∂x4
= 0, x ∈ [0, l], t ∈ [0, T ], (1)

with initial condition

u(x, 0) = u0(x), x ∈ [0, l], (2)

and the boundary conditions

u(0, t) = uxx(0, t) = u(l, t) = uxx(l, t) = 0, t ∈ [0, T ].
(3)

where u0(x) is a given function, α is a constant.
The rest of this paper is organized as follows. In section

II, some basic schemes are given and the new AGE scheme
is developed. In section III, the truncation errors and the
unconditional stability are discussed. In section IV, numerical
experiments are performed. At last, a brief conclusion is
given.

II. THE NEW ALTERNATING GROUP EXPLICIT SCHEME

A. The Basic Schemes

Divide the domain of definition [0, l] × [0, T ] by parallel
lines x = xj = jh(j = 0, 1, 2 · · · , J), t = tn = nτ(n =
0, 1, 2 · · · , N), where h = l/J is space mesh length, τ =
T/N is time mesh length. J and N are positive integers. We
use Un

j to represent the approximate solution of u(xj , t
n),

where u(x, t) represents the exact solution of (1). We first
give six new asymmetric schemes (4)− (9) (See Fig. 1).

−rUn+1
j+3 +6rUn+1

j+2 −6rUn+1
j+1 +(1+ r)Un+1

j = −6rUn
j+2+

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_09

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



                   b: scheme (5) c: scheme (8)                                          a:scheme (4)
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Fig. 1. The New Asymmetric Schemes (4)-(9)

33rUn
j+1+(1−55r)Un

j +39rUn
j−1−12rUn

j−2+rUn
j−3, (4)

(1 + r)Un+1
j − 6rUn+1

j−1 + 6rUn+1
j−2 − rUn+1

j−3 = −6rUn
j−2+

33rUn
j−1+(1−55r)Un

j +39rUn
j+1−12rUn

j+2+rUn
j+3, (5)

6rUn+1
j+2 −33rUn+1

j+1 +(1+55r)Un+1
j −39rUn+1

j−1 +12rUn+1
j−2

−rUn+1
j−3 = rUn

j+3 − 6rUn
j+2 + 6rUn

j+1 + (1− r)Un
j , (6)

−rUn+1
j+3 +12rUn+1

j+2 −39rUn+1
j+1 +(1+55r)Un+1

j −33rUn+1
j−1

+6rUn+1
j−2 = (1− r)Un

j + 6rUn
j−1 − 6rUn

j−2 + rUn
j−3, (7)

−rUn+1
j+3 +12rUn+1

j+2 −33rUn+1
j+1 +(1+28r)Un+1

j −6rUn+1
j−1 =

6rUn
j+1+(1−28r)Un

j +33rUn
j−1−12rUn

j−2+rUn
j−3, (8)

−6rUn+1
j+1 +(1+28r)Un+1

j −33rUn+1
j−1 +12rUn+1

j−2 −rUn+1
j−3 =

rUn
j+3−12rUn

j+2+33rUn
j+1+(1−28r)Un

j +6rUn
j−1. (9)

where r = ατ/6h4.
The discrete initial-boundary value conditions are

U0
j = u0(xj), j = 0, 1, 2, · · · , J

Un
0 = Un

−1 + Un
1 = Un

−2 + Un
2 = 0,

Un
J = Un

J−1 + Un
J+1 = Un

J−2 + Un
J+2 = 0,

n = 0, 1, 2, · · · , N.

Let L(4)
h , L

(5)
h , L

(6)
h , L

(7)
h , L

(8)
h , L

(9)
h be the discretizied op-

erators for L based on schemes (4) − (9). From the Taylor
series expansion at (xj , t

n), we obtain the following trunca-
tion error expressions (10)-(15) for formulaes (4)− (9):

L
(4)
h un

j − [Lu]nj = 3rh[
∂2u

∂t∂x
]nj +

9

2
rh2[

∂3u

∂t∂x2
]nj

+
5

2
rh3[

∂4u

∂t∂x3
]nj +

3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4), (10)

L
(5)
h un

j − [Lu]nj = −3rh[
∂2u

∂t∂x
]nj +

9

2
rh2[

∂3u

∂t∂x2
]nj

−5

2
rh3[

∂4u

∂t∂x3
]nj − 3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4), (11)

L
(6)
h un

j − [Lu]nj = −3rh[
∂2u

∂t∂x
]nj − 9

2
rh2[

∂3u

∂t∂x2
]nj

−5

2
rh3[

∂4u

∂t∂x3
]nj − 3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4), (12)

L
(7)
h un

j − [Lu]nj = 3rh[
∂2u

∂t∂x
]nj − 9

2
rh2[

∂3u

∂t∂x2
]nj

+
5

2
rh3[

∂4u

∂t∂x3
]nj +

3

2
rhτ [

∂3u

∂t2∂x
]nj +O(τ + h4), (13)

L
(8)
h un

j − [Lu]nj = −6rh[
∂2u

∂t∂x
]nj + 7rh3[

∂4u

∂t∂x3
]nj

−3rhτ [
∂3u

∂t2∂x
]nj +O(τ + h4), (14)

L
(9)
h un

j − [Lu]nj = 6rh[
∂2u

∂t∂x
]nj − 7rh3[

∂4u

∂t∂x3
]nj

+3rhτ [
∂3u

∂t2∂x
]nj +O(τ + h4). (15)

B. The New Alternating Group Explicit Scheme

The new parallel AGE scheme is constructed as follow.
Assuming J−1 = 6k, k ≥ 1 is a positive integer. we consider
the model of the group at the (n+1)st and the (n+2)nd time
levels, where n is an even number. We divide the nodes of the
(n+1)st time level into k groups, each group contains 6 nodes
in x direction. Based on the alternating technique, we divide
the nodes of the (n+2)nd time level into k+1 groups, the first
and the (k+1)st groups contain 3 nodes in x direction. The
other groups contain 6 nodes in x direction. The nodes in
every group can be computed by the asymmetric difference
schemes (a,c,b’,a’,c’,b) according to the rule displayed in
Fig. 2.

The new AGE scheme can be expressed as

(I + rG1)U
n+1 = (I − rG2)U

n, (16)

(I + rG2)U
n+2 = (I − rG1)U

n+1, (17)

n = 0, 2, 4, 6, · · · .

where Un = (un
1 , u

n
2 , · · · , un

J−1)
T , and the matrices G1 and

G2 are given by

G1 =


Q6×6

Q6×6

. . .
Q6×6

Q6×6

 ,

G2 =


Ql

3×3 P3×3

Q6×6

. . .
Q6×6

PT
3×3 Qr

3×3

 ,
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Fig. 2. The Diagram of the New AGE Scheme

Q6×6 =


1 −6 6 −1
−6 28 −33 12 −1
6 −33 55 −39 12 −1
−1 12 −39 55 −33 6

−1 12 −33 28 −6
−1 6 −6 1


6×6

,

P3×3 =

 −1 12 −39
−1 12

−1


3×3

,

Ql
3×3 =

 −55 33 −6
33 −28 6
−6 6 −1


3×3

,

Qr
3×3 =

 −1 6 −6
6 −28 33
−6 33 −55


3×3

.

III. THE ANALYSIS OF THE TRUNCATION ERRORS AND
STABILITY

A. The Analysis of the Truncation Errors

Let us give out the error analysis for the AGE scheme. In
the AGE scheme, there are three pairs of schemes (4) and
(6), (5) and (7), (8) and (9) which are alternatingly used
between two times levels. From the Taylor series expansion
at (xj , t

n) for formula (4) and expansion at (xj , t
n+1) for

formula (6), we get the following truncation error expres-
sions, respectively.

L
(4)
h un

j − [Lu]n+1
j = 3rh[

∂2u

∂t∂x
]n+1
j +

9

2
rh2[

∂3u

∂t∂x2
]n+1
j

+
5

2
rh3[

∂4u

∂t∂x3
]n+1
j − 3

2
rhτ [

∂3u

∂t2∂x
]n+1
j +O(τ +h4), (18)

L
(6)
h un

j − [Lu]n+1
j = −3rh[

∂2u

∂t∂x
]n+1
j − 9

2
rh2[

∂3u

∂t∂x2
]n+1
j

−5

2
rh3[

∂4u

∂t∂x3
]n+1
j +

3

2
rhτ [

∂3u

∂t2∂x
]n+1
j +O(τ +h4), (19)

Similarly, we obtain the truncation error expressions (20)−
(23), respectively.

L
(5)
h un

j − [Lu]n+1
j = −3rh[

∂2u

∂t∂x
]n+1
j +

9

2
rh2[

∂3u

∂t∂x2
]n+1
j

−5

2
rh3[

∂4u

∂t∂x3
]n+1
j +

3

2
rhτ [

∂3u

∂t2∂x
]n+1
j +O(τ +h4), (20)

L
(7)
h un

j − [Lu]n+1
j = 3rh[

∂2u

∂t∂x
]n+1
j − 9

2
rh2[

∂3u

∂t∂x2
]n+1
j

+
5

2
rh3[

∂4u

∂t∂x3
]n+1
j − 3

2
rhτ [

∂3u

∂t2∂x
]n+1
j +O(τ +h4), (21)

L
(8)
h un

j − [Lu]n+1
j = −6rh[

∂2u

∂t∂x
]n+1
j + 7rh3[

∂4u

∂t∂x3
]n+1
j

+3rhτ [
∂3u

∂t2∂x
]n+1
j +O(τ + h4), (22)

L
(9)
h un

j − [Lu]n+1
j = 6rh[

∂2u

∂t∂x
]n+1
j − 7rh3[

∂4u

∂t∂x3
]n+1
j

−3rhτ [
∂3u

∂t2∂x
]n+1
j +O(τ + h4). (23)

For the pairs of the asymmetrical schemes, by comparing
the results (18) with (12), (19) with (10), (20) with (13),
(21) with (11), (22) with (15),(23) with (14), we find that
the leading terms have opposite signs at the adjacent time
levels, the effect of the terms with h, h2, h3 can be canceled.
Therefore, the truncation errors are O(τ + h4). The above
discussions proved that the truncation error of the new AGE
method is approximately O(h4) in space.

B. The Analysis of the Unconditional Stability
To prove the stability, we have to introduce the follow-

ing Kellogg Lemma [25].
Lemma 1. If ρ > 0, C+CT is nonnegative definite, then

(I + ρC)−1 exists and there holds

||(I + ρC)−1||2 ≤ 1.

Lemma 2. Under the conditions of Lemma 1, the following
inequality holds

||(I − ρC)(I + ρC)−1||2 ≤ 1.

Theorem 1. For any real number r, the AGE scheme
(16)-(17) is unconditionally stable.

Proof: By eliminating Un+1 from (16)-(17), we obtain
Un+2 = GUn. where G is the growth matrix

G = (I + rG2)
−1(I − rG1)(I + rG1)

−1(I − rG2).

For any even number n, there holds

Gn = (I+rG2)
−1(I−rG1)(I+rG1)

−1[(I−rG2)(I+rG2)
−1

·(I − rG1)(I + rG1)
−1]n−1(I − rG2).

Since G1 and G2 are all symmetric, for any real number
r, we can obtain the following inequality from the Kellogg
Lemma

∥Gn∥2 ≤ ∥(I + rG2)
−1∥2 · ∥(I − rG1)(I + rG1)

−1∥n2
·∥(I − rG2)(I + rG2)

−1∥n−1
2 · ∥(I − rG2)∥2.

Hence

∥Gn∥2 ≤ ∥(I − rG2)∥2 ≤
√

∥(I − rG2)∥∞ · ∥(I − rG2)∥1
≤

√
1 + 146r

This shows that the AGE scheme is unconditionally stable.
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IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments for
(1)− (3) using the following model problem

u0(x) = sinx, α = 1, l = π.

The exact solution of this problem is

u(x, t) = e−t sinx.

We first illustrate the convergence rates in space for the
new AGE scheme. Let vnj = u(xj , t

n) be the exact solution
of the problem (1)−(3) and un

j be the approximate solution.
We introduce the following L∞−norm error and L2−norm
error

E∞,h = max
j

|vnj − un
j |,

E2,h =
(∑

j

|vnj − un
j |2h

) 1
2 .

Thus, we can calculate the rates of convergence by the
following definitions

rate =
log(E∞,h1/E∞,h2)

log(h1/h2)
,

rate =
log(E2,h1/E2,h2)

log(h1/h2)
.

where h1 and h2 are the space mesh steps.
Let ’AGE6’ represents the new AGE 6-points scheme de-

scribed above, ’AGE4’ represents the AGE 4-points scheme
in [12], and ’AGE8’ represents the AGE 8-points scheme
in [12]. For the AGE6, AGE4, AGE8 schemes, we give the
L∞−norm errors, L2−norm errors and the convergence rates
in Tables I and II, respectively. We can see from these tables
that the convergence rate of the new AGE6 scheme appears
to be O(h4) in space, which is coincident with our theoretical
analysis, while the AGE4 and the AGE8 schemes appear to
be O(h2) in space [12].

Next, we compare the errors for the AGE6 scheme with the
AGE4 and the AGE8 schemes at the same time t in Tables
III and IV, respectively, where the absolute error ae = |un

j −

u(xj , t
n)|, the relative error pe =

|un
j − u(xj , t

n)|
|u(xj , tn)|

×%, and

‘Exact’ represents the values of the exact solution u(xj , t
n).

The results show that the AGE6 scheme is more accurate
than the AGE4 and the AGE8 schemes in [12]. In addition,
from Figures 3-8, we can see clearly that the AGE6 solutions
are more accurate than the AGE4 and AGE8 solutions.

Third, we verified the stability of the AGE6 method. From
Tables V and VI, we can easily find that the high-accuracy
AGE6 method is unconditionally stable.

Finally, based on the group of asymmetric difference
schemes (4)-(9), the AGE6 scheme changes the global do-
main of definition into some small independent segments,
and can be computed in parallel, the parallelism is clarity.

V. CONCLUSION

In this paper, we first constructed a group of new asymmet-
ric schemes, basing on the idea of the alternating schemes,
we designed the new AGE scheme with high-order accuracy
for the fourth-order diffusion equation. The theoretics anal-
ysis and the numerical simulations show that the new AGE
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Fig. 3. Comparison of the absolute errors t = 0.1, h = π/71, τ = 10−6
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TABLE I
THE CONVERGENCE RATE OF THE AGE6 SCHEME AT t = 0.1, τ = 1× 10−6

h π/7 π/13 π/19 π/25

L∞ 1.0134E-4 8.8584E-6 1.9557E-6 6.4410E-7

Rate − 3.9470 3.9815 4.0462

L2 1.3027E-4 1.1184E-5 2.4597E-6 8.0928E-7

Rate − 3.9660 3.9907 4.0511

TABLE II
THE CONVERGENCE RATE OF THE AGE6 SCHEME AT t = 0.01, τ = 1× 10−6

h π/7 π/13 π/19 π/25

L∞ 1.1088E-5 9.6926E-7 2.1392E-7 7.0340E-8

Rate − 3.9373 3.9817 4.0525

L2 1.4254E-5 1.2237E-6 2.6914E-7 8.8550E-8

Rate − 3.9660 3.9920 4.0507

TABLE III
THE ERRORS OF NUMERICAL SOLUTION AT J = 24, τ = 1× 10−6, t = 0.1

scheme error j=4 j=8 j=12 j=15 j=22

AGE6 ae(10−7) 3.1179 5.4533 6.4411 6.1396 2.3782

pe(10−7) 7.1527 7.1381 7.1326 7.1345 7.1398

AGE4[12] ae(10−4) 1.1459 2.0082 2.3740 2.2623 0.8754

pe(10−4) 2.6291 2.6291 2.6291 2.6291 2.6291

AGE8[12] ae(10−4) 1.1461 2.0086 2.3742 2.2625 0.8757

pe(10−4) 2.6291 2.6291 2.6291 2.6291 2.6291

Exact (10−1) 4.3591 7.6398 9.0305 8.6055 3.3309

TABLE IV
THE ERRORS OF NUMERICAL SOLUTION AT J = 48, τ = 1× 10−6, t = 0.01

scheme error j=8 j=16 j=24 j=32 j=40

AGE6 ae(10−8) 2.2930 5.4578 6.8330 5.9426 3.1638

pe(10−8) 4.7197 6.4465 6.9053 6.7701 5.8579

AGE4[12] ae(10−6) 3.3272 5.7981 6.7768 6.0114 3.6989

pe(10−6) 6.8484 6.8484 6.8484 6.8484 6.8484

AGE8[12] ae(10−6) 3.3274 5.7985 6.7772 6.0117 3.6991

pe(10−6) 6.8488 6.8488 6.8488 6.8488 6.8488

Exact (10−1) 4.5585 8.4667 9.8954 8.7773 5.4015

TABLE V
THE ERRORS OF NUMERICAL SOLUTION AT J = 120, τ = 1× 10−9, t = 0.001, r = τ/6h4

r error j=10 j=30 j=50 j=70 j=90 j=110

r1 = r ae(10−11) 1.0193 2.3443 3.2153 3.2361 2.4046 1.1853

pe(10−11) 3.4621 3.3404 3.3419 3.3404 3.3397 3.4412

r2 = 10r ae(10−10) 1.0077 1.0854 1.4387 1.4688 1.0925 2.1654

pe(10−10) 1.0024 1.5466 1.4954 1.5162 1.5173 1.0036

r3 = 100r ae(10−8) 1.0044 1.1747 1.5611 1.5921 1.1841 1.0020

pe(10−8) 1.0406 1.6739 1.6226 1.6434 1.6445 1.0421
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TABLE VI
THE ERRORS OF NUMERICAL SOLUTION AT J = 36, τ = 1× 10−7, t = 1, r = τ/6h4

r error j=5 j=10 j=15 j=20 j=25 j=30 j=35

r1 = r ae(10−7) 2.2759 4.1477 5.2859 5.4804 4.7049 3.0941 1.0013

pe(10−6) 1.5020 1.5019 1.5018 1.5018 1.5019 1.5020 1.5021

r2 = 10r ae(10−8) 3.6756 6.5949 8.2352 8.5414 7.3896 4.9830 1.5292

pe(10−7) 2.4257 2.3881 2.3412 2.3408 2.3589 2.4189 2.5620

r3 = 100r ae(10−6) 1.9044 3.4810 4.5504 4.6169 3.9578 2.5904 7.7288

pe(10−5) 1.2568 1.2605 1.2652 1.2653 1.2634 1.2574 1.2431
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Fig. 6. Comparison of the relative errors t = 0.01, h = π/49, τ = 10−6
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Fig. 7. Comparison of the absolute errors t = 0.001, h = π/241, τ =
10−7
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Fig. 8. Comparison of the relative errors t = 0.001, h = π/241, τ =
10−7

scheme constructed in the paper has fourth-order accuracy,
which is more accurate than the AGE1, AGE2 schemes in
[12].
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