
 

  
Abstract—This paper deals with the estimation of stress 

strength model R=P(X<Y) when X and Y are two independent 
inverse Weibull distributions with different parameters. The 
maximum likelihood estimator and the Bayesian estimate of R 
are proposed, and the corresponding confidence intervals are 
obtained. Monte Carlo simulations are performed to compare 
the different proposed methods. 

Index Terms—Maximum likelihood estimator, approximate 
confidence interval, bootstrap confidence interval 
 

I. INTRODUCTION 
HE problem of making inference about the stress strength 
model R=P(Y<X) has received a considerable attention. 

For example, in a reliability study, let X be the strength of a 
component and Y be the stress applied to the component, then 
R can be considered as a measure of the component 
performance. The component fails if and only if at any time 
the applied stress is greater than its strength. Because R 
represents a relation between the stress and strength of a 
component, it is popularly known as the stress-strength 
model. 

Up to now, the stress-strength model R=P(Y<X) has been 
intensively studied. Various different lifetime distributions 
are considered to estimate R, such as normal distribution, 
exponential distribution, Weibull distribution, Burr type X 
distribution, Laplace distribution, beta distribution, gamma 
distribution et al. Kotz et al. (2003) collected these choices 
and presented a review of all methods on a book in the last 
decades. Mokhlis (2005) studied Burr type III distribution. 
Saracoglu et al. (2007) studied Gompertz distribution. Kundu 
et al. (2005, 2006, 2009) studied generalized exponential and 
three parameter Weibull. Raqab et al. [8-9] studied Burr type 
X and three parameter generalized exponential. Rezaei et al. 
(2010) studied generalized Pareto distribution. 

In this article, we focus on the estimation of R=P(Y<X), 
where X and Y follow the two parameters inverse Weibull (IW) 
distribution. First, the maximum likelihood estimator and its  
asymptotic distribution are obtained. Based on the asymptotic 
distribution, the confidence interval of R can also be obtained. 
Then, the Bayesian estimate and corresponding confidence  
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interval is obtained. At last, Monte Carlo simulations are 
performed to compare the different proposed methods. 

II. INVERSE WEIBULL DISTRIBUTIONS 
Due to the convenient structure of its distribution function, 

the Weibull distribution was used very effectively in 
analyzing various lifetime data. We know that the hazard 
function of Weibull is decreasing or increasing depending on 
the shape parameter. When the data has a non-monotone 
hazard function, the Weibull distribution cannot be used, and 
the inverse Weibull (IW)  distribution may be an appropriate 
model (see Kundu D. and Howlader H (2010)). 

If a random variable Z has a Weibull distribution with a 
probability density function (pdf) as 

1( ) exp( )f z z zα ααλ λ−= − , 0z >  
then, the random variable T=1/Z has an IW distribution with 
the pdf as 

( 1)( ) exp( )f t t tα ααλ λ− + −= − , 0t >  
where λ>0 and α>0 are scale and shape parameter 
respectively. For convenience, we denote the inverse Weibull 
distribution as IW(α, λ). 

In addition, the IW distribution plays some important roles 
in other areas, such as describing the degradation phenomena 
of mechanical components, describing the context of a load 
strength relationship for a component and providing the good 
fit to survival data. Recently, many authors has been studied 
this distribution, such as Kundu et al.(2010) Calabria et 
al.(1994), Murthy et al.(2004), and Gusmao et al. (2009). 

III. RELIABILITY MODEL 
In this article, we will consider the reliability R when X and 

Y are independent but not identically IW distributed random 
variables. Let X be the strength of a component with a stress Y, 
and suppose X~IW(α, λ1) and Y~IW(α, λ2), respectively, 

1
1 1( ) exp( )Xf x x xα ααλ λ−= − , 0x >  

and 
1

2 2( ) exp( )Yf y y yα ααλ λ−= − , 0z >  
where λ1 and λ2 are unknown parameters, and α is a known 
common parameter. 

Therefore, the stress-strength structural reliability model 
can be expressed as follow 

  ( )R P Y X= <  
( 1)

1 1 20
exp[ ( ) ]x x dxα ααλ λ λ

+∞ − + −= − +∫  
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From the expression of R, if we get the estimator of the λ1 and 
λ2, then we can get the estimator of R. 

IV. POINT ESTIMATION OF R 

A.  Maximum likelihood estimation of R 
To compute the MLE of R, suppose X1, X2,…, Xn is a 

random sample from IW(α, λ1), and Y1, Y2,…, Ym is a random 
sample from IW(α, λ2). Based on the observations X and Y, the 
log-likelihood function will be 
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The MLE’s of λ1 , λ2 and α can be obtained by solve the 
following equations 
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From (3) and (4), we can get 
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Then α̂  can be obtained as a solution of the non-linear 
equation as follow 
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Here, α̂  can be obtained from the non-linear equation  
αα =)(h  

where 

1 2
1 1 i 1 i 1
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From the non-linear equation (9), we can find that α̂ is a 
fixed point solution and it can be acquired by using a iterative 
scheme as follow 

)1()(j )( += jh αα                                                                                (10) 

where ( )jα is the jth iterate of α̂ .  

The iteration procedure should be stopped when ( ) ( 1)j jα α +− is 

sufficiently small. If we obtain α̂ , then 1̂λ and 2̂λ can be 
obtained from equation (6) and equation (7), the MLE of R 
can be easily obtained as 

21
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B. Bayes estimator of R 
In this subsection, the Bayes estimation of R under the 

squared error loss can be obtained. It is assumed that λ1, λ2 and 
α have independent gamma prior with λ1~GA(a1,b1) and 
λ2~GA(a2,b2) and α~GA(a3,b3). Based on the above 
assumptions, we can get the likelihood function as 
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Therefore, we can get the joint density of the data, λ1, λ2 and 
α as 

1 2 1 2 1 2( , , , ) ( | , , ) ( ) ( ) ( )l date l dateα λ λ α λ λ π λ π λ π α=  

where ( )π ⋅  is the prior distribution.  
So the joint posterior density of λ1, λ2 and α given the data is 
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Because equation (12) cannot be obtained analytically, 

therefore, we considered Markov Chain Monte Carlo 
(MCMC) Method to compute the Bayes estimates. For more 
details about the MCMC methods, see Upadhyaya et al.[16]. 

From equation (12), the posterior pdfs of λ1 ,λ2 and α are 
obtained as follows 

( )1 2 1 1 3| , , ~ ,data Gamma n a b sλ λ α + +  

( )2 1 2 2 4| , , ~ ,data Gamma m a b sλ λ α + +  

and 

3 1 ( 1) ( 1)
1 2 3

1 1
( | , , ) exp( )

n m
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i j
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f data b x yα α
α α λ λ α α+ + − − + − +

= =
∝ − ∏ ∏  

Unfortunately, the posterior pdf α is unknown, but its plots 
show that it is similar to normal distribution. So the 
Metropolis–Hastings method can be used. 

Therefore, the following MCMC procedure is proposed to 
compute Bayes estimators of R as follows: 
Step 1: Start with initial guess (0) (0) (0)

1 2( , , )α λ λ , and set 1=t . 
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Step 2: Using Metropolis–Hastings, generate )(tα  from αf  

with the )1,( )1( −tN α  proposal distribution. 

Step 3: Generate ( )
1

tλ from ( )1 1 3,G A n a b s+ + , and 

Generate ( )
2

tλ from ( )2 2 4,GA m a b s+ + . 

Step 4: Compute ( )tR from equation (11). 
Step 5: Set 1+= tt . 
Step 6: Repeat steps 2–5, M times. 

Note that in step 2, we use the Metropolis–Hastings 
algorithm with )1,(~ )1( −tNq α proposal distribution as 
following: 
a. Let )1( −= tx α . 
b. Generate y from the proposal distribution q . 
c. Let })]()([)]()([,1min{),( yqxfxqyfyxp αα= . 

d. Accept y with probability ),( yxp or accept x with 

probability ),(1 yxp− . 
Now the approximate posterior mean and posterior 

variance of R become 
( )
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respectively. 
The credible interval of R can be obtained by using 

numerical integration method. The importance sampling 
method proposed by Chen et al. (1999) can be used to 
compute the approximate highest posterior density (HPD) 
interval. It is not pursued here. 

V. INTERVAL ESTIMATION OF R 

A.  Approximate confidence interval 

In this section, the asymptotic distributions of )ˆ,ˆ,ˆ(ˆ
21 αλλθ =  

and R̂  can be obtained. Based on the asymptotic distribution 
of R̂ , the asymptotic confidence interval of R can be 
obtained.  

Let us denote the expected Fisher information matrix of 
),,( 21 αλλθ =  as ))(()( θθ IEJ = , where 3,2,1,)()( == jiijII θ  is the 
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Theorem 1. As ∞→n , ∞→m  and p
m
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where 1 2( , , ) ( )U Jλ λ α θ=  is the Fisher information matrix 

))(()( θθ IEJ = . 
Proof: By using the asymptotic normality of MLE and the 
central limit theorem, the proof is complete. 

Theorem 2  As ∞→n  and ∞→m and p
m
n

→ , then 

),0()ˆ( BNRRn →−  
where 

1
1 2
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Proof : By using Theorem 1 and Delta method, the proof is 
complete. 

Using Theorem2, we can obtain the asymptotic confidence 
interval of R is 

1 2 1 2
ˆ ˆ ˆ ˆ,R z B n R z B nγ γ− −

 
− + 

 
 

It is clear that the asymptotic confidence interval do not 
perform very well for small sample sizes. So, the bootstrap 
confidence interval main for small sample sizes is proposed, 
which might be computationally for large samples. 

B. Bootstrap confidence interval 
In this section, a percentile bootstrap method (see Efron 

(1982)) is used to obtain the confidence intervals of R as 
follows: 
Step1: Generate random samples 1 2, , , nx x xL  and 1 2, , , my y yL  

from ),IW( 1λα  and ),IW( 2λα , then compute maximum 

likelihood estimators 
21
ˆ,ˆ λλ  and α̂ . 

Step2: Generate a bootstrap sample * * *
1 2, , , nx x xL  from )ˆ,ˆIW( 1λα  

and similarly generate a bootstrap sample * * *
1 2, , , my y yL  from 

)ˆ,ˆIW( 2λα . Based on these bootstrap samples compute 
bootstrap estimate of R using equation (11), say *R̂ .  
Step3:  Repeat step2 N boots. 
Step4: Let )ˆ()( * xRPxH ≤=  be the cumulative distribution 

function of *R̂ . Define )()(ˆ 1 xHxRBoot
−= for a given x . The 

approximate )%1(100 γ− bootstrap confidence interval of R is 

( )ˆ ˆ( 2), (1 2)Boot BootR Rγ γ−  

VI. SIMULATION RESULTS 
In this section, we give some Monte Carlo simulation 

results to compare the performance of the different methods 
under the different sample sizes and different parameter 
values. We mainly compare the performances of the MLE and 
the Bayes estimates under the squared error loss function in 
terms of biases, and mean squares errors (MSE). We also 
compare different confidence intervals, namely the 
confidence intervals obtained by using asymptotic 
distributions of the MLE, and the bootstrap confidence 
intervals in terms of the average confidence lengths, and 
coverage percentages. 

In order to obtain the simulation results, we assume that the 
sample sizes (n, m) = (5, 5), (10, 10), (15, 15), (20, 20), (25, 
25) and (30, 30). From the simulation samples, we compute 
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the estimate of α by using the iterative algorithm equation (10). 
We have used the initial estimate to be 1(α=1) and the 
iterative process stops when the difference between the two 
consecutive iterates are less than 10-6. Once we estimate α, we 
can get the estimation of λ1 and λ2 by using equation (6) and 
equation (7). Finally, by using equation (11), we can obtain 
the MLE of R. 

We report the average biases and mean square error (MSE) 
of R̂  over 1000 replications. We also report the average 
biases and MSE of the MLE and Bayes estimators over 1000 

replications. The results are reported in Table I and Table II. 

We compute the 95% confidence intervals based on the 
asymptotic distributions of the MLE. We compute Bootstrap 
confidence intervals. We also obtain the average confidence 
credible lengths, and the corresponding coverage percentages. 
The results are reported in Table III and Table IV.  

From the above simulation study results, we can get the 
following conclusions: 

(i) Even for small sample sizes, the performance of the 
MLE and Bayes estimator are quite satisfactory in terms of 
biases and MSE. Interestingly, the MSE of the MLE are 
smaller than the MSE of the Bayes estimators in most of the 
cases. It is observed that when m and n increase, then MSE 
and biases decrease for all the estimators. 

(ii) The confidence intervals based on the MLE do not 
work very well when the sample size is very small, but 
when m and n greater than 20, the results work quite well. 
Non-parametric bootstrap methods work quite well, it is 
observed that bootstrap confidence intervals perform better 
than the asymptotic confidence intervals, at least for small 
sizes. 

(iii) The coverage probability of confidence intervals is 
slightly below when sample sizes are small.  

 

VII. CONCLUSION 
In this paper, we have addressed the problem of 

estimating R for the inverse Weibull distributions with 
different shape parameters. Firstly, the maximum likelihood 
estimator is obtained. Even for small sample sizes, we found 
that the maximum likelihood estimator works quite well. By 
using the asymptotic distribution, the asymptotic confidence 
interval is obtained. It is clear that the asymptotic confidence 
interval do not perform very well for small sample sizes. So, 
the bootstrap confidence interval main for small sample 
sizes is proposed. Based on the simulation results, we 
recommend using the non-parametric Bootstrap percentile 
method, when the sample size is very small. Further more, 
we obtain the Bayes estimate of R under the square error loss 
function. It is observed that their performances are quite 
similar, and the performances of the MLE are marginally 
better than Bayes estimator. 
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