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Reliability of a Stress-Strength Model with
Inverse Weibull Distribution

Chunping Li, Huibing Hao

Abstract—This paper deals with the estimation of stress
strength model R=P(X<Y) when X and Y are two independent
inverse Weibull distributions with different parameters. The
maximum likelihood estimator and the Bayesian estimate of R
are proposed, and the corresponding confidence intervals are
obtained. Monte Carlo simulations are performed to compare
the different proposed methods.

Index Terms—Maximum likelihood estimator, approximate
confidence interval, bootstrap confidence interval

I. INTRODUCTION

HE problem of making inference about the stress strength

model R=P(Y<X) has received a considerable attention.
For example, in areliability study, let X be the strength of a
component and Y be the stress applied to the component, then
R can be considered as a measure of the component
performance. The component fails if and only if at any time
the applied stress is greater than its strength. Because R
represents a relation between the stress and strength of a
component, it is popularly known as the stress-strength
model.

Up to now, the stress-strength model R=P(Y<X) has been
intensively studied. Various different lifetime distributions
are considered to estimate R, such as normal distribution,
exponential distribution, Weibull distribution, Burr type X
distribution, Laplace distribution, beta distribution, gamma
distribution et a. Kotz et a. (2003) collected these choices
and presented a review of all methods on a book in the last
decades. Mokhlis (2005) studied Burr type 111 distribution.
Saracoglu et a. (2007) studied Gompertz distribution. Kundu
et al. (2005, 2006, 2009) studied generalized exponential and
three parameter Weibull. Ragab et a. [8-9] studied Burr type
X and three parameter generalized exponential. Rezagi et al.
(2010) studied generalized Pareto distribution.

In this article, we focus on the estimation of R=P(Y<X),
where X and Y follow the two parametersinverse Weibull (1W)
distribution. First, the maximum likelihood estimator and its
asymptotic distribution are obtained. Based on the asymptotic
distribution, the confidenceinterval of R can also be obtained.
Then, the Bayesian estimate and corresponding confidence
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interval is obtained. At last, Monte Carlo simulations are
performed to compare the different proposed methods.

Il. INVERSEWEIBULL DISTRIBUTIONS

Dueto the convenient structure of its distribution function,
the Weibull distribution was used very effectively in
analyzing various lifetime data. We know that the hazard
function of Weibull is decreasing or increasing depending on
the shape parameter. When the data has a non-monotone
hazard function, the Weibull distribution cannot be used, and
the inverse Weibull (W) distribution may be an appropriate
model (see Kundu D. and Howlader H (2010)).

If a random variable Z has a Weibull distribution with a
probability density function (pdf) as

f(z2)=al 2'exp(-1 ), z>0
then, the random variable T=1/Z has an IW distribution with
the pdf as

f(t)=alt ®Pexp(-1t2),t>0
where A>0 and o>0 are scade and shape parameter
respectively. For convenience, we denote the inverse Weibull
distribution as IW(a,, 4).

In addition, the IW distribution plays some important roles
in other areas, such as describing the degradation phenomena
of mechanical components, describing the context of a load
strength relationship for a component and providing the good
fit to survival data. Recently, many authors has been studied
this distribution, such as Kundu et a.(2010) Calabria et
al.(1994), Murthy et al.(2004), and Gusmao et al. (2009).

1. RELIABILITY MODEL
Inthisarticle, wewill consider the reliability R when X and
Y are independent but not identically IW distributed random
variables. Let X bethe strength of acomponent with astress,
and suppose X~IW(a, 41) and Y~IW(a, /,), respectively,
f.(x)=al ) exp(-1,%), x>0
and

fY(y) =al 2ya_1exp(' I 2ya) ,2>0
where 4; and 4, are unknown parameters, and o is a known
common parameter.
Therefore, the stress-strength structural reliability model
can be expressed as follow
R=P(Y < X)

N - (a+1) -a
=0 al x @ expl- (1, +1,)x* Jox

=L (1)
+|

l 1 2
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From the expression of R, if we get the estimator of the 1, and
Ao, then we can get the estimator of R.

IV. POINT ESTIMATION OFR

A. Maximum likelihood estimation of R

To compute the MLE of R, suppose X;, X,,..., X, is a
random sample from IW(e, 1), and Yy, Ya,..., Yy isarandom
samplefrom IW(a, 4,). Based on the observations X and Y, the
log-likelihood function will be

L( I ,,a)=nlna +ninl ;- (& +])a Inx -1 la X

i=1 i=1
@ +])é_|nyj -1 zé y;* (2)
j=1 j=1

The MLE’s of 4;, 4, and o can be obtained by solve the
following equations

+mina +minl , -

=T A =0 3
0, 1, e.lxl (©)
qL m & .

—_ = - 2 =0

w, 1, cj';':tly, 4
&_n m gln Iny, +

1 3 a1 % - a ,

|1é Xi'alnXi+|2é y;*Iny, =0 ()

i=1 i=1
From (3) and (4), we can get
- n
I 1 = 61 . (6)
ax’
i=1
and
- m
I 2 = g] . (7)
avy’

j=1
Then & can be obtained as a solution of the non-linear

equation as follow

n
o]

g(a)—T- alnx - a_lnyJ

i=1 j1

1a X Inx +1° 2a y*Iny, =0 (9

=1
Here, d& can be obtained from the non-linear equation

h(a) =a
where
n+m
h@a)=— 7 3 9)
alnx+alny, Lax®inx-1,ay Iny
i=1 i=1 i=1

From the non-linear equation (9), we can find that & is a
fixed point solution and it can be acquired by using aiterative
scheme as follow

h(a (j)) =a (. (10)

wherea ; isthejth iterate of & .

Theiteration procedure should be stopped when|am is

()
sufficiently small. If we obtaind , then|,and |, can be
obtained from eguation (6) and equation (7), the MLE of R
can be easily obtained as
R=_ 11

I 1

(11)
2
B. Bayesestimator of R

In this subsection, the Bayes estimation of R under the
squared error loss can be obtained. It isassumed that 4, 1, and
o have independent gamma prior with 1;~GA(ay,b;) and
A~GA(ax,b,) and a~GA(as,bs). Based on the above
assumptions, we can get the likelihood function as

2 m
I(data|a,| l,| 2) =a™m l“| zmcz) )q(a+1) C:) y] (a+1)

’ eXIOe 1a X uexr)er lza y, G
i=1 e i=1 u
Therefore, we can get thejoint density of the data, 14, A,and

a as

|(date,a,l,1,) =I(datefa,l ;I ))p(I Jp (I )p (@)
where p (¥ isthe prior distribution.

So thejoint posterior density of 1, A,and a giventhe datais
I(a,l 1!| Zldata)z ¥ ¥ ¥ I(dataa’l 17' 2)
(‘9 (‘9 (‘gl(data,a,l vl y)dadl dl,

HGA (n+a,h +s) GA (m+a,,b, +s)

"GA (n+m+a,b+s+s)" W@) (12
where
s=alnx . s=alny, . s=8x* . 5,=ay," .
i=1 j= i=1 j=1

W(a)=(b+s ) "*)(b, +s,) (™
Because equation (12) cannot be obtained analyticaly,
therefore, we considered Markov Chain Monte Carlo
(MCMC) Method to compute the Bayes estimates. For more
details about the MCMC methods, see Upadhyaya et al.*®,
From equation (12), the posterior pdfs of 1; .4, and o are
obtained as follows

I, |l,,a,data~Gamma(n+a,b +s))
I,|l,,a,data~Gamma(m+a,,b, +s,)
and

fa (a || 1,| 2,data) u an+m+33—1e(rx_ tga)(ﬂ)x (a+1) 8 y] (a+)
i=1 =

Unfortunately, the posterior pdf « is unknown, but its plots
show that it is similar to normal distribution. So the
Metropolis-Hastings method can be used.

Therefore, the following MCMC procedure is proposed to
compute Bayes estimators of R as follows:

Step 1: Start with initial guess@©@,1,?,1 ), and set t =1.
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Step 2: Using Metropolis-Hastings, generate a® from f,
with the N(@“® 1) proposal distribution.
Step 3: Generate | (V) from GA(n+a,,b, +s,) . ad

Generatel " from GA(m+a,,b, +s,) -

Step 4: Compute R" from equation (11).
Step5: Sett=t+1.
Step 6: Repeat steps 2-5, M times.

Note that in step 2, we use the Metropolis-Hastings
agorithm with g~ N(a “ 1) proposa distribution as
following:

a Lex=a®?,
Generate Y from the proposal distribution(] .

b.
c. Let p(x,y) =minfL[f, (Y)a()I/[f. (Ya(W)]} -
d. Accept Y with probability p(X,Y) or accept X with
probability 1- p(X,y).
Now the approximate posterior mean and posterior

variance of R become

. 14
E(R|data) =& RY,

t=1
M
V(R|data) =$é (RY - E(R|data))?
t=1
and
MSE(R| data) = E(R| data) +V(R| data)
respectively.

The credible interval of R can be obtained by using
numerical integration method. The importance sampling
method proposed by Chen et al. (1999) can be used to
compute the approximate highest posterior density (HPD)
interval. It is not pursued here.

V. INTERVAL ESTIMATION OFR

A. Approximate confidence interval
In this section, the asymptotic distributions of q=(,,1",,4)

and R can be obtained. Based on the asymptotic distribution

of R, the asymptotic confidence interval of R can be
obtained.
Let us denote the expected Fisher information matrix of

a=(,1,a) a J@)=E(1@)). where I@)=(;), 45 IS the
observed information matrix, and I =- T°L/fI 11 , .
It iseasy to get that

Ill:n/ll2 ’ |22=rn/|22

n
— —_ R ya
c =l E-ax Inx
i=1

m
o - —_ —_
ls =15 =-ay;" Iny, ' I, =15 =0 '

=1

Iz =(n+m)/a’+1,.8 x*(Inx)*+1,4 y.*(ny,)’
i=1 j=1

n
Theorem 1. AsN® ¥ M®¥ and — ® p, then
m

(- 1 )M, - 1,)/n@- a)]® N,(OU (I 1 ,,a))

where U (l 1 ,,

J@) =E(@)-
Proof: By using the asymptotic normality of MLE and the
central limit theorem, the proof is complete.

a)=J(q) is the Fisher information matrix

n
Theorem2 AsN® ¥ and M® ¥ and— ® p, then
m

Jn(R- R ® N(0,B)
where
B=(R IR Ry, @R IR IRy,

M, 1, 1, i, 1, M,
Proof : By using Theorem 1 and Delta method, the proof is
complete.

Using Theorem?2, we can obtain the asymptotic confidence
interval of Ris

?- Zl—g/ZVé/rL Ii+zi—g/2\/é/ g

It is clear that the asymptotic confidence interval do not
perform very well for small sample sizes. So, the bootstrap
confidence interval main for small sample sizes is proposed,
which might be computationally for large samples.

B. Bootstrap confidence interval

In this section, a percentile bootstrap method (see Efron
(1982)) is used to obtain the confidence intervals of R as
follows:

Step1: Generate random samples X,%,L.%, and Y, Y,,L. Y,
from IW@,l,) and IW(@,l ,) , then compute maximum
likelihood estimators |”,,1”, and & .

Step2: Generate a bootstrap sample X,X,L,X, from IW@, ")
and similarly generate a bootstrap sample ¥, y,,L Y, from
IW(aA,IAZ) . Based on these bootstrap samples compute
bootstrap estimate of R using equation (11), say R .

Step3: Repeat step2 N boots.
Step4: Let H()=P(R £x) be the cumulative distribution

function of &'. Define R, ,(x) =H *(X)for a givenX. The
approximate100(1- g)%bootstrap confidence interval of Ris

(Row (9/2), e (1- 9/2))

VI. SIMULATION RESULTS

In this section, we give some Monte Carlo simulation
results to compare the performance of the different methods
under the different sample sizes and different parameter
values. We mainly compare the performances of the MLE and
the Bayes estimates under the squared error loss function in
terms of biases, and mean squares errors (MSE). We aso
compare different confidence intervals, namely the
confidence intervals obtained by using asymptotic
distributions of the MLE, and the bootstrap confidence
intervals in terms of the average confidence lengths, and
coverage percentages.

In order to obtain the simulation results, we assume that the
sample sizes (n, m) = (5, 5), (10, 10), (15, 15), (20, 20), (25,
25) and (30, 30). From the simulation samples, we compute
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the estimate of « by using theiterative algorithm equation (10).

We have used the initial estimate to be 1(a=1) and the
iterative process stops when the difference between the two
consecutiveiterates are less than 10°°. Once we estimate a, we
can get the estimation of A, and A, by using equation (6) and
equation (7). Finaly, by using equation (11), we can obtain
the MLE of R.

Wereport the average biases and mean square error (M SE)
of R over 1000 replications. We aso report the average
biases and M SE of the MLE and Bayes estimators over 1000

TABLEI
BIASOF THE MLE AND BAY ESESTIMATION

(n, m (5,5 (10,10) (15,15) (20,20) (25,25) (30, 30)
M=05 MLE 00122 00060 00013  0.0066  0.0019 0.0006
2,=05 Bayes  -0.0582 -0.0608 -0.0648 -0.0677 -0.0693  -0.0697
M=05 MLE 0.0065  0.0044 00046 00045 00042  -0.0024
2%=10 Bayes 00110 00035 -0.0018 -0.0023 -0.0104  -0.0011
M=05 MLE 0.0133 00102 00072 00015 -0.0002  -0.0003
a=15 Bayes -00331 -00591 -0.0598 -0.0588 -0.0574  -0.0618

TABLEII
MSE oF THE MLE AND BAY ES ESTIMATION
(n, m (55) (10,100 (15,150 (20,20) (25,25) (30, 30)

n=05  MLE 00267 00128 00082  0.0059  0.0045 0.0037

2,=05 Bayes 00414 00269 00197 00158  0.0133 0.0128

n=05  MLE 00347 00151 00095  0.0063  0.0053 0.0044

2,=10 Bayes 00376 00223 00189 00112  0.008L 0.0078

n=05  MLE 00329 00139 00084 00062  0.0049 0.0041

a=15 Bayes 00358 0028 00161 00125 00112 0.0103

TABLEIII

AVERAGE CONFIDENCE LENGTHS FOR DIFFERENT ESTIMATION

(nm (55  (10,10) (15,15 (20,20) (25,25 (30, 30)
%=05  MLE 05680 03966 03263 02866 02500  0.2308
%»=05 Bayes 05000 03835 03190 02795 02504 02295
M=05 MLE 06234 04525 03674 03171 02804  0.2559
W=10 Bayes 05538 04204 03480 03040 02732 02498
M=05 MLE 05950 04225 03542 03039 02748 02521
a,=15 Bayes 05369 04065 03382 02952 02652 02421
TABLE IV
COVERAGE PERCENTAGES FOR DIFFERENT ESTIMATION

(nm (55 (10,10) (15,15) (20,20) (25,25 (30, 30)
%=05 MLE 083 0.90 0.01 0.93 0.93 0.94
%=05 Bayes 084 0.90 0.92 0.94 0.95 0.95
u=05 MLE 087 0.93 0.92 0.94 0.96 095
W=10 Bayes 089 0.94 091 0.95 0.94 0.95
M=05 MLE 086 0.86 0.90 0.95 0.92 0.94
w,=15 Baes 087 0.88 091 0.93 0.94 0.95

replications. The results are reported in Table | and Tablell.

We compute the 95% confidence intervals based on the
asymptotic distributions of the MLE. We compute Bootstrap
confidence intervals. We also obtain the average confidence
credible lengths, and the corresponding coverage percentages.
Theresultsare reported in Table 11 and Table 1V.

From the above simulation study results, we can get the
following conclusions:

(i) Even for small sample sizes, the performance of the
MLE and Bayes estimator are quite satisfactory in terms of
biases and MSE. Interestingly, the MSE of the MLE are
smaller than the M SE of the Bayes estimators in most of the
cases. It is observed that when Mand Nincrease, then MSE
and biases decrease for all the estimators.

(if) The confidence intervals based on the MLE do not
work very well when the sample size is very small, but
when M and N greater than 20, the results work quite well.
Non-parametric bootstrap methods work quite well, it is
observed that bootstrap confidence intervals perform better
than the asymptotic confidence intervals, at least for small
sizes.

(iii) The coverage probability of confidence intervals is
dlightly below when sample sizes are small.

VIlI. CONCLUSION

In this paper, we have addressed the problem of
estimating R for the inverse Weibull distributions with
different shape parameters. Firstly, the maximum likelihood
estimator is obtained. Even for small sample sizes, we found
that the maximum likelihood estimator works quite well. By
using the asymptotic distribution, the asymptotic confidence
interval isobtained. Itisclear that the asymptotic confidence
interval do not perform very well for small sample sizes. So,
the bootstrap confidence interval main for smal sample
sizes is proposed. Based on the simulation results, we
recommend using the non-parametric Bootstrap percentile
method, when the sample size is very small. Further more,
we obtain the Bayes estimate of R under the square error loss
function. It is observed that their performances are quite
similar, and the performances of the MLE are marginally
better than Bayes estimator.
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