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Abstract—This paper investigates the complex effects of
Anopheles Mosquito Model. The system of Anopheles mosquito
in random noise has not been investigated so far. The present
paper is a contribution in this unexplored area. Its been
noticed that the system has been found with boundedness. The
equilibrium points of the system are also found out. Global
stability properties of the model are investigated by constructing
Lyapunov function. Also we introduce the stochastic pertur-
bations and suggest the deterministic model is robust with
respect to stochastic perturbations. The analysis leads to the
equilibrium of the stochastic perturbation wherein the total
number of mosquito population and the biocontrollers remains
stationary. Finally, the numerical examples are given and the
diagrams are presented which support our results.

Index Terms—Anopheles, Stochastic, Equilibrium points,
Lyapunov.

I. INTRODUCTION

THE Mosquito is one of the species that give nuisance
to the public health of the world. It is very important to

understand the lifecycle of the dangerous mosquito species
in which can be controlled to manage the public health.

All mosquito pest will go through complete metamor-
phoses, from egg to larva, from larva to pupa, from pupa
to adult. The cycle begins when a female mosquito obtains a
blood meal from either a human-being or from other mammal
to supply the required nutrients to produce approximately
around two hundred and fifty eggs at a time [1]. She
then seeks an aquatic location usually on the surface of
stagnant water, or in a water filled in depression [2], or
on the edge of a container, where rainwater was collected
for the female mosquito to lay eggs [3]. Two days, after
the eggs will get hatch into larvae [4]. The larvae live and
feed on microorganisms in the water for seven to fourteen
days and develop into pupae, which will not feed for more
than fourteen days. The mosquito then emerges from the
pupa shell as a fully developed adult after four days. The
moment the body of the mosquito finishes moulting, it is
hypersensitive to carbon dioxide exhaled from mammals, it
has poor eyesight and very sensitive to mammal sweat scent
ever from a half mile distance [5]; This enables it to locate
a mammal to seek out for a blood meal by a suck on the
animal or human skin. As the mosquito punctures the skin
it injects its saliva into the flesh. If the mosquito is infected
with any kind of disease [6]–[10]. it is transferred into the
prey through the saliva.

There are about 2500 species of mosquitoes on the planet,
of which 300 are well known disease carriers. Different
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species carry different diseases that are local to the area
where they live. The disease Malaria is transmitted by the
female Anopheles mosquito which feeds on human blood (
[11]–[14]).

It is observed that as long as an environment is left
uncared for, it will definitely become a breeding ground
providing many mosquito hatcheries. When an environment
is occupied with millions of mosquitoes [15], no preventive
measures can cure or manage the mosquito pest [16]. The
dynamics of Anopheles mosquito life cycle breaks-up by
using backstepping control which was studied [17], [18] and
it has been recommended that in addition to managing the
environment and preventing it from becoming a breeding
zone, a permanent control measure should be employed.
This paper investigates the complex effects of Anopheles
mosquito model. The system of Anopheles mosquito with
random noise has not been investigated so far. The present
paper is a contribution in this unexplored area. Much work
has been done to control this species, but no work has
been done so far with stochastic perturbations. This paper is
organized as follows. In section 2, the system of differential
equation is modelled. This differential equation represents
the life cycle of Anopheles mosquito.In section 3, the bound-
edness and the local and global stability of the equilibrium
points are analysed. In section 4, projects about the stochastic
nature on this model. In section 5, present the diagrams and
in section 6, is devoted to the conclusion.

II. THE MATHEMATICAL MODEL

For modelling Anopheles mosquito life cycle, the follow-
ing assumptions are made.

1) The total population of Anopheles mosquito life cycle
consists of four forms, such as adult, egg, larva and
pupa.

2) In every stage, the natural death rate µ is considered
uniformly.

3) Let bN be the existing population, where b is natural
birth rate at adult stage.

4) x5 is the controller in egg stage at the rate α .
5) x6 is controller in larva stage at the rate γ .

Fig. 1 depicts the flow diagram of Anopheles mosquito life
cycle. The Mathematical Model of Anopheles mosquito life
cycle ( [18]) is given below:

dx1

dt = bN + ρx4 − (η + µ)x1
dx2

dt = µx1 + µx5 − ρx2 − µx2
dx3

dt = µx2 + µx6 − µx3 − βx3 − ρx2
dx4

dt = µx3 − µx4 − ρx4
dx5

dt = c− µx5
dx6

dt = d− µx6

(1)

where x1 is the number of adult mosquito at time t, x2 is the
number of eggs at time t, x4 is the number of pupa at time t,
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Fig. 1: Flow Diagram of Anopheles mosquito life cycle

x5 is the controller in egg stag at time t,x6 is the controller
in larva stage at the rate of α. b is the natural birth rate at
adult stage,c is the initial state population of x5, d is the
initial state population of x6, η is the rate of adult mosquito
ovisposit, ρ is the rate of pupa push to adult mosquito, µ is
the normal death at all the stages, β is the death of larva eat-
ups to larva and N is the total population. where x1, x2, x3

and x4 are number of adult mosquito, eggs, larva and pupa
at time t respectively, x5 and x6 are the controllers in the
stages of egg and larva at the rate of α and γ respectively.

III. THE MODIFIED MATHEMATICAL MODEL

The equation of the model can be written as
dx1

dt = bN + ρx4 − (η + µ)x1
dx2

dt = µ(x1 + x5)− (ρ+ µ)x2
dx3

dt = (µ− ρ)x2 + µx6 − (µ+ β)x3
dx4

dt = µx3 − (µ+ ρ)x4
dx5

dt = c− µx5
dx6

dt = d− µx6

(2)

Replacing
a = η + µ; r = ρ+ µ; q = µ+ β; s = µ− ρ.
The modified equation of (1) is

dx1

dt = bN + ρx4 − ax1
dx2

dt = µ(x1 + x5)− rx2
dx3

dt = sx2 + µx6 − qx3
dx4

dt = µx3 − rx4
dx5

dt = c− µx5
dx6

dt = d− µx6

(3)

IV. ANALYSIS OF THE DETERMINISTIC MODEL

A. Boundedness

Assume that, x1(0) > 0, x2(0) > 0, x3(0) > 0, x4(0) >
0, x5(0) > 0and x6(0) > 0, are positive initial conditions.
Let us consider the system (x1) with these positive initial
conditions for local existence, positiveness and boundedness
of the solutions. As the right hand sides of (3) are smooth

functions of(x1, x2, x3, x4, x5, x6) parameters. The local ex-
istence and uniqueness properties hold within the positive
quadrant .

The state space for the system (3) is positive quadrant
{(x1, x2, x3, x4, x5, x6) : x1 > 0, x2 > 0, x3 > 0, x4 >
0, x5 > 0, x6 > 0} which is an invariant set.

Theorem 1: The system (3) is dissipative.
Proof: Let xi(0) > 0, where i = 1, 2, 3, ..., 6 be any

solution of the system with positive initial conditions.
Now we define the function

M(t) = x1(t) + x2(t) + x3(t) + x4(t) + x5(t) + x6(t) (4)

Therefore, time derivative gives we get

Ṁ(t) = ẋ1(t) + ẋ2(t) + ẋ3(t) + ẋ4(t) + ẋ5(t) + ẋ6(t)
= bN + c+ d+ 2µx5 − [(a− µ)x1 + (r − s)x2

+(q − µ)x3 + (r − ρ)x4 + µx5]
(5)

dM

dt
≤ 2µx5 − ξ(x1 + x2 + x3 + x4 + x5 + x6) (6)

where ξ = min(2, a, r, q, 1, µ, s, ρ). Which gives

dM

dt
+ ξM ≤ 2x5 (7)

Since dM
dt ≤ x5,

dM

dt
≤ x5 (8)

by a standard comparison theorem we have,

lim
t→∞

sup x5(t) ≤ L

where L = max{x5(0), 1} , which gives

dM

dt
+ ξM ≤ L (9)

dM

dt
+ ξM = L(say) (10)

Now applying the theory of differential inequality (Birkoff
and Rota, 1982), we obtain

0 ≤ M ≤ L
ξ + W (x1(0),x2(0),x3(0),x4(0),x5(0),x6(0))

eξt
(11)

and for t → ∞ we get

0 ≤ M(x1, x2, x3, x4, x5, x6) ≤
L

ξ
(12)

Thus, all the solutions of the system (3) enter into the region
B where,

B = {(x1, x2, x3, x4, x5, x6) ∈ R6
+} with

0 ≤ M ≤ L
ξ + ϵ, for any ϵ > 0

(13)

which acquires the proof.

B. Equilibria and Local stability Analysis

The boundary and interior equilibrium point are discussed
below. Toward the end, equating the right hand side of (3) to
zero, the following six equilibrium points are obtained. The
boundary equilibrium states are

E1 = (
bN

a
, 0, 0), E2 = (0,

µ

r
x1, 0, 0, 0, 0)

E3 = (0, 0,
s

q
x2, 0, 0, 0), E4 = (0, 0, 0,

µ

r
x3, 0, 0)

IAENG International Journal of Applied Mathematics, 47:3, IJAM_47_3_11

(Advance online publication: 23 August 2017)

 
______________________________________________________________________________________ 



E5 = (0, 0, 0, 0,
c

µ
, 0), E6 = (0, 0, 0, 0, 0,

d

µ
)

and the interior equilibrium points are

E∗ = (x∗
1, x∗

2, x∗
3, x∗

4, x∗
5, x∗

6)

where,

x∗
1 =

qr2P

sµ
− dr

µ
− c

µ
, x∗

2 =
qrP

s
− d

s

x∗
3 =

r

P
, x∗

4 =
µ

P
, x∗

5 =
c

µ
, x∗

6 =
d

µ

and
P =

ard+ bNsµ+ acs

aqr2 − ρµ2

.

C. Global Stability Analysis

Theorem 2: The interior equilibrium point E∗ is globally
asymptotically stable if

ρ = −x1(x1−x∗
1)−bN

x4
; µ = −x2(

x2−x∗
2

x1+x5
);

s = −x3(x3−x∗
3)−µx5

x2
; µx3 + x4(x4 − x∗

4) = 0;

c = −x5(x5 − x∗
5); d = −x6(x6 − x∗

6)

(14)

Proof: Define the Lyapunov function

V (xi) =

6∑
i=1

li[(xi − x∗
i )− x∗

i ln(
xi

x∗
i

)] (15)

where i = 1, 2, 3, 4, 5, 6 are positive constants to be
chosen later.

It is observed V is a positive definite function in the region
except at E∗ where it is zero.

Solving the rate of change of V along the solutions of the
system (3), we get

V̇ =
6∑

i=1

li
ẋi

xi
(xi − x∗

i ) (16)

V̇ = l1(x1 − x∗
1)(

bN+ρx4

x1
+ l2(x2 − x∗

2)(
µ
x2
(x1 + x5))

+l3(x3 − x∗
3)(

sx2+µx5

x3
) + l4(x4 − x∗

4)(
µx3

x4
)

+l5(x5 − x∗
5)(

c
x5
) + l6(x6 − x∗

6)(
d
x6
)

(17)
Now choosing (14), we get

dV
dt = −l1(x1 − x∗

1)
2 − l2(x2 − x∗

2)
2 − l3(x3 − x∗

3)
2

−l4(x4 − x∗
4)

2 − l5(x5 − x∗
5)

2 − l6(x6 − x∗
6)

2

(18)
and hence V̇ is negative definite.

Therefore, by Laselle‘s invariance principle, E∗ is globally
asymptotically stable.

V. STOCHASTIC STABILITY ANALYSIS OF THE POSITIVE
EQUILIBRIUM

Stochastic perturbations were introduced in some of the
main parameters which were involved in this model.

In this paper, the stochastic perturbations of the variables
x1, x2, x3, x4, x5, x6 are allowed with around the positive
equilibrium E∗. In this case when it is feasible and locally
asymptotically stable. Local stability of E* is implied by
the existence condition of E∗. In Model (3), the stochastic

perturbations of the variables around their value at E∗ of
white noise type, which are proportional to the distances of
x1, x2, x3, x4, x5, x6 from values x∗

1, x∗
2, x∗

3, x∗
4, x∗

5, x∗
6

The equation (3) becomes

dx1 = [bN + ρx4 − ax1]dt+ σ1[x1 − x∗
1]dωt1

dx2 = [µ(x1 + x5)− rx2]dt+ σ2[x2 − x∗
2]dωt2

dx3 = [sx2 + µx6 − qx3]dt+ σ3[x3 − x∗
3]dωt3

dx4 = [µx3 − rx4]dt+ σ4[x4 − x∗
4]dωt4

dx5 = [c− µx5]dt+ σ5[x5 − x∗
5]dωt5

dx6 = [d− µx6]dt+ σ6[x6 − x∗
6]dωt6

(19)
where σi, i = 1, 2, 3, 4, 5, 6 are real constants,
ωti = ωi(t), i = 1, 2, 3, 4, 5, 6 are independent from
each other standard wiener process.The dynamical behavior
of model (3) is robust with respect to a kind of stochasticity
by investigating the asymptotic stability behavior of the
equilibrium E∗ .

This analysis mainly represents the dynamics of the system
around the interior equilibrium point E∗ . For this purpose,
we linearize the model using the following perturbation
method, that is the stochastic differential system of (19) can
be centred at its positive equilibrium E∗ by the change of
variables

ui = xi − x∗
i (20)

where i = 1, 2, 3, 4, 5, 6 are positive constants. The
linearized SDEs around E∗ take the form

du(t) = f(u(t))dt+ g(u(t))dw(t) (21)

where u(t) = [u1(t) u2(t) u3(t) u4(t) u5(t) u6(t)]
T and

f(u(t)) =


−a 0 0 ρ 0 0
µ −r 0 0 µ 0
0 s −q 0 0 µ
0 0 µ −r 0 0
0 0 0 0 −µ 0
0 0 0 0 0 −µ

u(t) (22)

g(u(t)) =


σ1u1 0 0 0 0 0
0 σ2u2 0 0 0 0
0 0 σ3u3 0 0 0
0 0 0 σ4u4 0 0
0 0 0 0 σ5u5 0
0 0 0 0 0 σ6u6


(23)

In (21) the positive equilibrium E∗ corresponds to the
trivial solution u(t) = 0. Let U be the set U = (t ≥ t0)×
R+. Hence V ∈ C0

2(U) is twice continuously differentiable
function with respect to u and a continuous functions with
respect to t. Now the Itö stochastic differential is defined as

LV (t) = ∂V (t,u)
∂t + fTu(t)∂V (t,u)

∂u +
1
2 trace[g

T (u(t))∂
2V (t,u)
∂u2 g(u(t))] (24)

where
∂V

∂u
= [

∂V

∂u1

∂V

∂u2

∂V

∂u3

∂V

∂u4

∂V

∂u5

∂V

∂u6
]T ,

∂2V (t, u)

∂u2
= col(

∂2V

∂uj∂ui
), i, j = 1, 2, 3, 4, 5, 6.
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Theorem 3: Suppose the function exists as V ∈ C0
2(U)

satisfying the inequalities

V (t, u) ≤ K2 | u |p and
LV (t, u) ≤ K3 | u |p,Ki > 0, p > 0

(25)

Then the trivial solution of (19) is globally asymptotically
stable.

Theorem 4: The zero solution of (19) is asymptotically
mean square stable when

σ1 >
√
2a, σ2, σ4 >

√
2r,

σ3, σ5, σ6 >
√
2q

(26)

Proof: Now consider the Lyapunov function

V (u) =
1

2
[w1u

2
1+w2u

2
2+w3u

2
3+w4u

2
4+w5u

2
5+w6u

2
6] (27)

where wi are real positive constants are to be chosen in the
following. It is easy to check that inequalities (25) hold with
p = 2 .

Now the Itö process (24) becomes

LV (t, u) = w1[−au1 + ρu4]u1 + w2[µu1 − ru2+
µu5]u2 + w3[su2 − qu3 + µu6]u3+
w4[µu3 − ru4]u4 + w5[−µu5]u5+
w6[−µu6]u6+
1
2 trace[g

T (u(t))∂
2V (t,u)
∂u2 g(u(t))]

(28)
here

∂2V

∂u2
=


w1 0 0 0 0 0
0 w2 0 0 0 0
0 0 w3 0 0 0
0 0 0 w4 0 0
0 0 0 0 w5 0
0 0 0 0 0 w6

 (29)

and

1
2
trace[gT (u(t)) ∂

2V (t,u)

∂u2 g(u(t))] = 1
2
[w1σ

2
1u

2
1 + w2σ

2
2u

2
2

+w3σ
2
3u

2
3 + w4σ

2
4u

2
4

+w5σ
2
5u

2
5 + w6σ

2
6u

2
6]

(30)
Use (30) in (28), we get

LV (t, u) = −w1[a− 1
2σ

2
1 ]u

2
1 − w2[r − 1

2σ
2
2 ]u

2
2

−w3[q − 1
2σ

2
3 ]u

2
3 − w4[r − 1

2σ
2
4 ]u

2
4

−w5[µ− 1
2σ

2
5 ]u

2
5 − w6[µ− 1

2σ
2
6 ]u

2
6

(31)
which is negative definite and it is asymptotically stable in
mean square.

VI. NUMERICAL SIMULATION AND DISCUSSION

In this paper the complex effects of Anopheles mosquito
model is analyzed and It is observed that the boundary
equilibrium point E∗ is feasible. If the death rate of the
mosquito population remains a certain threshold value then
the positive equilibrium is feasible.

Moreover all the solution converges to the positive equi-
librium. It is observed that the deterministic model is robust
with respect to the stochastic perturbations. It is to be noted
that when x∗

1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6 increases, the asymptotic

mean square ability property is achieved.

For the numerical simulations, the fourth order Runge
kutta method is used. The parameter values are taken as a =
0.2; b = 0.9; c = 2000; d = 5000; q = 0.9; r = 0.5; s =
0.6; ρ = 0.7; µ = 0.3 and the initial densities are taken as
x1 = 31759, x2 = 13982, x3 = 78366, x4 = 39877.

From this analysis, it is observed that the large value of
N compared to the biocontrollers x5and x6, the system take
a larger time to bring the mosquito population under short
run.

In Fig. 2, depicts the stabilization of stochastic Anopheles
mosquito model when the total population N = 100000000
and the biocontroller densities are x5 = 48346987 and x6 =
6838987.

In Fig. 3, depicts the stabilization of Biocontrollers when
the total population N = 100000000 and the biocontroller
densities are x5 = 48346987 and x6 = 6838987.

Fig. 4 depicts the stabilization of stochastic Anopheles
mosquito model when the total population N = 10000 and
the biocontroller densities are x5 = 48346987 and x6 =
6838987.

The analysis leads to the equilibrium of the stochastic per-
turbation where in the total number of mosquito population
and the bio-controllers remain stationary.

Fig. 5 depicts the stabilization of stochastic Anopheles
mosquito model when the total population N = 10000 and
the biocontroller densities are x5 = x6 = 10000.

VII. CONCLUSION

In this paper, the complex effects of Anopheles mosquito
model is investigated. The boundedness of the model has
been found and the equilibrium points of the system have
been identified. Global stability properties of the model
are investigated by using Lyapunov function.The stochastic
perturbations is introduced and suggested the deterministic
model is robust with respect to stochastic perturbations.
It is showed that the interior equilibrium point of the
Anopheles mosquito model is global asymptotically stable
by constructing suitable Lyapunov function. Moreover all the
solutions converge to the positive equilibrium. The stochastic
perturbations is introduced to the system by using stochastic
differential equations and Ito‘s process. It is showed that
the zero solution of this stochastic system is asymptotically
mean square stable through the construction of the Lyapunov
function. Finally, numerical examples are given and diagrams
are presented which support the results.
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