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Abstract—This paper addresses the global asymptotic sta-
bilization for a class of high-order nonholonomic systems
with time-varying delays. By employing input-state-scaling,
and adding a power integrator techniques, and by choosing
an appropriate Lyapunov-Krasoviskii functional, a state feed-
back controller is constructed. Based on switching strategy
to eliminate the phenomenon of uncontrollability, the pro-
posed controller ensures that the closed-loop system is globally
asymptotically regulated at the origin. A simulation example
is provided to demonstrate the effectiveness of the proposed
scheme.

Index Terms—high-order nonholonomic systems, time-
varying delays, state feedback, adding a power integrator
nonholonomic systems, global asymptotic stabilization.

I. INTRODUCTION

In this paper, we consider the following high-order non-
holonomic systems with time-varying delays

ẋ0(t) = d0(t)u
p0

0 (t) + f0(t, x0(t))
ẋi(t) = di(t)x

pi

i+1(t)u
qi
0 (t)

+fi(t, x0(t), x(t), x(t− d(t)))
i = 1, · · · , n− 1

ẋn(t) = dn(t)u
pn

1 (t)
+fn(t, x0(t), x(t), x(t− d(t)))

(1)

where x0 ∈ R and x = (x1, · · · , xn)
T ∈ Rn are system

states, u0 and u1 are control inputs, respectively; pi ≥ 1, i =
0, 1, · · · , n are odd integers, and qk ≥ 1, k = 1, 2, · · · , n− 1
are integers; di(t) are disturbed virtual control coefficients;
f0 and fi, i = 1, · · · , n are unknown continuous functions
with f0(t, 0) = 0 and fi(t, 0, 0, 0) = 0; d(t) : R+ → [0, d] is
the time-varying delay satisfying ḋ(t) ≤ η < 1 for a known
constant η;

As an important class of nonlinear systems, nonholonomic
systems have attracted a great deal of attention over the past
decades because they can be used to model numerous me-
chanical systems, such as mobile robots, car-like vehicle and
under-actuated satellites, see, e.g., [1-4] and the references
therein. However, from Brockett necessary condition [5], it
is well known that no smooth (or even continuous) time-
invariant static state feedback exists for the stabilization of
nonholonomic systems. To overcome this difficulty, with the
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effort of many researchers a number of intelligent approaches
have been proposed, which can mainly be classified into
discontinuous time-invariant stabilization[6,7], smooth time-
varying stabilization[8,9] and hybrid stabilization[10], see the
recent survey paper [11] for more details. Using these valid
approaches, the robust issue of nonholonomic systems has
been extensively studied [12-16]. More meaningly, the high-
order nonholonomic systems in power chained form, which
can be viewed as the extension of the classical nonholonomic
systems, have been achieved investigation[17-19].

However, the aforementioned results do not consider the
effect of time delay. As a matter of fact, time-delay is
actually widespread in state, input and output due to sen-
sors, calculation, information processing or transport, and
its emergence is often a significant cause of instability
and serious deterioration in the system performance [20].
Therefore, how extending these methods to the systems with
time delays is naturally regarded as an interesting research
topic. Recently, [21] and [22] investigated the state-feedback
stabilization problem for delayed nonholonomic systems
with different structures. However, the control design for
high-order delayed nonholonomic system (1) is extremely
challenging because on the one hand, some intrinsic features
of system (1), such as its Jacobian linearization being neither
controllable nor feedback linearizable, lead to the existing
design tools being hardly applicable, and on the other hand,
the existence of time-delay effect will make the common as-
sumption on the high-order systems nonlinearities infeasible
and what conditions should be imposed on system (1) remain
unanswered. To the best of the authors’ knowledge, there are
few results on the high-order delayed nonholonomic system
(1).

Motivated the above observation, in this paper we focus
our attention on solving the problem of global asymptotic
stabilization by state feedback for high-order nonholonomic
system (1) with time-varying delays. The contribution of
this paper is highlighted as follows. First, motivated by
the work in [23] and flexibly using the methods of adding
a power integrator, a recursive design procedure for the
time-delay independent state-feedback controller is given.
Then, by employed an appropriate Lyapunov- Krasovskii
functional, we show that the controller designed guarantees
global asymptotic regulation of the resulting closed-loop
system.

The rest of this paper is organized as follows. In Section
II, preliminary knowledge and the problem formulation are
given. Section III presents the input-state-scaling technique
and the recursive design procedure, while Section V provides
the switching control strategy and the main result. Section 5
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gives a simulation example to illustrate the theoretical finding
of this paper. Finally, concluding remarks are proposed in
Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

The control objective is to construct robust control laws
of the form

u0 = µ0(x0), u1 = µ(x0, x) (2)

such that all signals of the closed-loop system are bounded.
Furthermore, global asymptotic regulation of the states are
achieved, i.e. lim

t→∞
(|x0(t)|+ |x(t)|) = 0.

In order to achieve the above control objective, throughout
the paper, the following assumptions regarding system (1) are
imposed.

Assumption 1. For i = 0, 1, · · · , n, there are positive
constants ci1 and ci2 such that

ci1 ≤ di(t) ≤ ci2

Assumption 2. For f0, there is a positive constant c03
such that

|f0(t, x0(t))| ≤ c03|x0|

For i = 1, · · · , n, there are F functions ai such that
|fi(·)| ≤ ai(x0(t))

(
|xi(t)|+ |xi(t− d(t))|

)
+ai(x0(t))

i−1∑
j=1

(
|xj(t)|

1
pj ···pi−1 + |xj(t− d(t))|

1
pj ···pi−1

)
To make the paper self-contained, we recall that a con-

tinuously differential function f : Rm → R is called a F
function if it is nonnegative and monotone-nondecreasing on
[0,+∞). It is worthwhile to point out that there exist many
functions such as f1(x) ≡ c > 0 and f2(x) = xm,where
m ≥ 0 being F functions. Furthermore, it can be showed
that if f and g are F functions, then f + g, f · g and f ◦ g
are also F functions.

Remark 1. Assumption 1 is common and similar to
the ones usually imposed on the nonholonomic systems
[12,13,19]. It is worth pointing out that Assumption 2 is
somewhat stringent, and when ai(x0(t)) = a (a is a positive
constant) and d(t) = 0, it is the same as that in [24].
Particularly, pi = 1,i = 1, · · · , n the assumption is equivalent
to that in [20,25].

The following two lemmas can be found in [19,25], which
serve as the basis of the key tools for the adding a power
integrator technique.

Lemma 1. For x ∈ R, y ∈ R, and p ≥ 1 is a constant,
the following inequalities hold:

|x+ y|p ≤ 2p−1|xp + yp|

(|x|+ |y|)1/p ≤ |x|1/p + |y|1/p ≤ 2(p−1)/p(|x|+ |y|)1/p

If p ≥ 1 is odd, then

|x− y|p ≤ 2p−1|xp − yp|

|x1/p − y1/p| ≤ 2(p−1)/p|x− y|1/p

Lemma 2. Let c, d be positive real numbers and π(x, y) >
0 be a real-valued function. Then,

|x|c|y|d ≤ cπ(x, y)|x|c+d

c+ d
+

dπ−c/d(x, y)|y|c+d

c+ d

III. ROBUST CONTROLLER DESIGN

In this section, we focus on designing robust controller
provided that x0(t0) ̸= 0. The case where the initial condi-
tion x0(t0) = 0 will be treated in Section IV. The inherently
triangular structure of system (1) suggests that we should
design the control inputs u0 and u1 in two separate stages.

A. Design u0 for x0-subsystem

For x0−subsystem, the control u0 can be chosen as

up0

0 (t) = −λ0x0(t) (3)

where λ0 is a positive design constant and satisfies λ0 >
1 + (c03/c01).

As a result, the following lemma can be established by
considering the Lyapunov function candidate V0 = x2

0/2 and
by applying directly the Gronwall-Bellman inequality[10].

Lemma 3. For any initial t0 ≥ 0 and any initial condition
x0(t0) ∈ R, the corresponding solution x0(t) exists for each
t ≥ t0 and satisfies

x0(t0) ≥ 0 ⇒ x0(t0)e
−(λ0c02+c03)(t−t0)

≤ x0(t) ≤ x0(t0)e
−(λ0c01−c03)(t−t0)

(4)

x0(t0) < 0 ⇒ x0(t0)e
−(λ0c01−c03)(t−t0)

≤ x0(t) ≤ x0(t0)e
−(λ0c02+c03)(t−t0)

(5)

Remark 2. From Lemma 3, we can see that x0(t) can
be zero only at t = t0, when x(t0) = 0 or t = ∞.
Consequently, it is concluded that x0 does not cross zero
for all t ∈ (t0,∞) provided that x0(t0) ̸= 0. Furthermore,
from (3), it follows that the u0 exists, does not cross zero for
all t ∈ (t0,∞) independent of the x-subsystem and satisfies
limt→∞ u0(t) = 0 provided that x0(t0) ̸= 0.

B. Input-state-scaling transformation

From the above analysis, we can see the x0-state in (1) can
be globally exponentially regulated to zero via u0(t) in (3)
as t → ∞. It is troublesome in controlling the x-subsystem
via the control input u1(t) because, in the limit (i.e. u0(t) =
0), the x-subsystem is uncontrollable. This problem can be
avoided by utilizing the following discontinuous input-state-
scaling transformation

zi(t) =


xi(t)

uri
0 (t)

, t ≥ t0

xi(t), t0 − d ≤ t < t0

i = 1, · · · , n (6)

where ri = qi + piri+1, 1 ≤ i ≤ n− 1 and rn = 0.
Remark 3. Note that (6) is a modified version of input-

state-scaling transformation[18,19], and is used to deal with
time delay terms. Because of the particular choice (6), for
i = 1, · · · , n, zi(t− d(t)) are well-defined.

Under the new z-coordinates, the x-subsystem is trans-
formed into żi(t) = di(t)z

pi

i+1(t) + gi(t, x0(t), x(t), x(t− d(t)))
i = 1, · · · , n− 1

żn(t) = dn(t)u
pn

1 (t) + gn(t, x0(t), x(t), x(t− d(t)))
(7)

where

gi(·) =
fi(t, x0(t), x(t), x(t− d(t)))

uri
0 (t)

+rizi(t)
up0

0 (t) + f0(t, x0(t))

p0x0(t)

(8)
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In order to obtain the estimation for the nonlinear function
gi, the following lemma can be derived by the assumption
before.

Lemma 4. For i = 1, · · · , n, there exist F functions ϕi

such that

|gi(·)| ≤ ϕi(x0(t))
(
|zi(t)|+ |zi(t− d(t))|

)
+ϕi(x0(t))

i−1∑
j=1

(
|zj(t)|

1
pj ···pi−1

+|zj(t− d(t))|
1

pj ···pi−1

) (9)

Proof. In view of (3)-(6), (8)and Assumption 2, we get

|gi(t, x0(t), x(t), x(t− d(t)))|

≤ ai

( |xi(t)|
|uri

0 (t)|
+

|xi(t− d(t))|
|uri

0 (t)|

)
+
ri(λ0 + c03)

p0
|zi(t)|

+ai

i−1∑
j=1

( |xj(t)|
1

pj ···pi−1

|uri
0 (t)|

+
|xj(t− d(t))|

1
pj ···pi−1

|uri
0 (t)|

)
≤

(
ai +

ri(λ0 + c03)

p0

)
|zi(t)|

+
(
ai
|uri

0 (t− d(t))|
|uri

0 (t)|

)
|zi(t− d(t))|

+ai

i−1∑
j=1

(
|zj(t)|

1
pj ···pi−1 |u0(t)|

rj
pj ···pi−1

−ri

+|zj(t− d(t))|
1

pj ···pi−1
|u0(t− d(t))|

rj
pj ···pi−1

|uri
0 (t)|

)
≤ bi1|zi(t)|+ bi2|zi(t− d(t))|

+bi3

i−1∑
j=1

|zj(t)|
1

pj ···pi−1

+bi4

i−1∑
j=1

|zj(t− d(t))|
1

pj ···pi−1

≤ ϕi

(
|zi(t)|+ |zi(t− d(t))|

)
+ϕi

i−1∑
j=1

(
|zj(t)|

1
pj ···pi−1 + |zj(t− d(t))|

1
pj ···pi−1

)
(10)

where ϕi = max{bi1, bi2, bi3, bi4}, bi1 =

ai + (ri(λ0 + c03)/p0), bi2 = aiexp
{
rid(λ0c01 −

c03)/p0

}
, bi3 = ai|λ0x0(t)|(r1+···+ri−1−ri)/p0 and

bi4 = ai|λ0x0(t)|(r1+···+ri−1−ri)/p0 × max
{
1,

exp{rid(r1 + · · · + ri−1 − ri)(λ0c01 − c03)/p0}
}

are
F functions. Thus, the inequality (9) follows.

C. Design u1 for x-subsystem

In this subsection, we proceed to design the control input
u1 by using adding a power integrator technique. To simplify
the deduction procedure, we sometimes denote χ(t) by χ, for
any variable χ(t).

Step 1. Introduce the Lyapunov-Krasoviskii functional
V1 = n

2x
2
0 + 1

2z
2
1 + n

1−η

∫ t

t−d(t)
z21(s)ds. With the help of

(7) and (9), it can be verified that

V̇1 ≤ −nx2
0 + d1z1z

p1

2

+ϕ1(x0)|z1|
(
|z1|+ |z1(t− d(t))|

)
+

n

1− η
z21 − n(1− ḋ(t))

1− η
z21(t− d(t))

≤ −nx2
0 + d1z1z

p1

2

+z21

( n

1− η
+ ϕ1(x0) +

1

4
ϕ2
1(x0)

)
−(n− 1)z21(t− d(t))

(11)

Obviously, the first virtual controller

z∗p1

2 = − 1

c01

(
n+

n

1− η
+ ϕ1(x0) +

1

4
ϕ2
1(x0)

)
z1

:= −α1(x0)z1
(12)

leads to

V̇1 ≤ −n(x2
0 + z21)− (n− 1)z21(t− d(t))

+d1z1(z
p1

2 − z∗p1

2 )
(13)

Step i (i = 2, · · · , n). Suppose at step i − 1, there is a
positive-definite and proper Lyapunov functional Vi−1, and
a set of virtual controllers z∗1 , · · · , z∗i defined by defined by
(14) shown at the top of the next page, with α1(x0) > 0,
· · ·, αi−1(x0) > 0, being F function, such that

V̇i−1 ≤ −(n− i+ 2)
i−1∑
k=0

ξ2k

−(n− i+ 1)
i−1∑
k=1

ξ2k(t− d(t))

+di−1ξ
2− 1

p1···pi−2

i−1 (z
pi−1

i − z
∗pi−1

i )

(15)

here we let ξ0 = x0 for the simplicity of expression.
We intend to establish a similar property for (z1, · · · , zi)-

subsystem. Consider the following Lyapunov-Krasoviskii
functional candidate

Vi = Vi−1 +Wi +
n− i+ 1

1− η

∫ t

t−d(t)

ξ2i (s)ds (16)

where

Wi(z1, · · · , zi)

=

∫ zi

z∗
i

(sp1···pi−1 − z
∗p1···pi−1

i )
(2− 1

p1···pi−1
)
ds (17)

For Wi, some useful properties are given by the following
proposition whose proof can be found in [25] and hence
omitted here.

Proposition 1. Wi(z1, · · · , zi) is C1. Moreover

∂Wi

∂zi
= ξ

2− 1
p1···pi−1

i

∂Wi

∂y
= −

(
2− 1

p1 · · · pi−1

)∂z∗p1···pi−1

i

∂y

×
∫ zi

z∗
i

(sp1···pi−1 − z
∗p1···pi−1

i )
(1− 1

p1···pi−1
)
ds

(18)

where y is an argument of Wi except zi.
Proposition 2. There is a positive constant m such that∣∣∣∂Wi

∂y

∣∣∣ ≤ m|ξi|
∣∣∣∂z∗p1···pi−1

i

∂y

∣∣∣ (19)

Using Proposition 1, it is deduced from (16) that
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z∗1 = 0 ξ1 = z1 − z∗1
z∗p1

2 = −α1(x0)ξ1 ξ2 = zp1

2 − z∗
p1

2
...

...
z
∗p1···pi−1

i = −αi−1(x0)ξi−1 ξi = z
p1···pi−1

i − z
∗p1···pi−1

i

(14)

V̇i ≤ −(n− i+ 2)
i−1∑
k=0

ξ2k

−(n− i+ 1)
i−1∑
k=1

ξ2k(t− d(t))

+di−1ξ
2− 1

p1···pi−2

i−1 (z
pi−1

i − z
∗pi−1

i )

+diξ
2− 1

p1···pi−1

i (zpi

i+1 − z∗pi

i+1)

+diξ
2− 1

p1···pi−1

i z∗pi

i+1 + ξ
2− 1

p1···pi−1

i gi

+
i−1∑
j=1

∂Wi

∂zj
(djz

pj

j+1 + gj)

+
∂Wi

∂x0
(d0u

p0

0 + f0) +
n− i+ 1

1− η
ξ2i

− (n− i+ 1)(1− ḋ(t))

1− η
ξ2i (t− d(t))

(20)

Similarly, to give the explicit form of z∗i+1, we should
estimate each term on the righthand side of (20). First, from
(14), Assumption 1 and Lemma 2, it follows that∣∣∣di−1ξ

2− 1
p1···pi−2

i−1 (z
pi−1

i − z∗
pi−1

i )
∣∣∣

≤ ci−1,2

∣∣∣ξi−1

∣∣∣2− 1
p1···pi−2 2

1− 1
p1···pi−2

×
∣∣∣zp1···pi−1

i − z
∗p1···pi−1

i

∣∣∣ 1
p1···pi−2

= 2
1− 1

p1···pi−2 ci−1,2

∣∣∣ξi−1

∣∣∣2− 1
p1···pi−2

∣∣∣ξi∣∣∣ 1
p1···pi−2

≤ 1

4
ξ2i−1 + li1ξ

2
i

(21)
where li1 is a positive constant.

From (9) and (14), there are F functions ρk(x0), k =
1, · · · , i such that

|gk| ≤ ϕk

(
|zk(t)|+ |zk(t− d(t))|

)
+ϕk

k−1∑
j=1

(
|zj(t)|

1
pj ···pk−1

+|zj(t− d(t))|
1

pj ···pk−1

)
≤ ϕk

(
|ξk(t)|

1
p1···pk−1 + |ξk(t− d(t))|

1
p1···pk−1

)
+ϕk

k−1∑
j=1

(
1 + a

1
p1···pk−1

j

)
|ξj(t)|

1
p1···pk−1

+ϕk

k−1∑
j=1

(
1 + a

1
p1···pk−1

j

)
|ξj(t− d(t))|

1
p1···pk−1

≤ ρk

k∑
j=1

(
|ξj(t)|

1
p1···pk−1

+|ξj(t− d(t))|
1

p1···pk−1

)
(22)

and hence by Lemma 2∣∣∣ξ2− 1
p1···pi−1

i gi

∣∣∣
≤

∣∣∣ξ2− 1
p1···pi−1

i

∣∣∣ρj i∑
j=1

(
|ξj(t)|

1
p1···pi−1

+|ξj(t− d(t))|
1

p1···pi−1

)
≤ 1

4

i−1∑
j=1

ξ2j +
1

2

i∑
j=1

ξ2j (t− d(t)) + li2ξ
2
i

(23)

where li2(x0) is a F function.
For the seventh term, noting that

z
∗p1···pi−1

i = −αi−1ξi−1

= −
i−1∑
k=1

( i−1∏
h=k

αh

)
z
p1···pk−1

k

(24)

By this, (14), Proposition 2 and Lemma 2, we obtain

∣∣∣ i−1∑
j=1

∂Wi

∂zj
(djz

pj

j+1 + gj)
∣∣∣

≤
i−1∑
j=1

m|ξi|
∣∣∣∂z∗p1···pi−1

i

∂zj

∣∣∣(cj2|zpj

j+1|+ |gj |)

≤
i−1∑
j=1

mp1 · · · pj−1|ξi|
( i−1∏

h=j

αj

)
|zp1···pj−1−1

j |

×(cj2|z
pj

j+1|+ |gj |)

≤
i−1∑
j=1

mp1 · · · pj−1|ξi|
( i−1∏

h=j

αj

)
×|ξj + αj−1ξj−1|

1− 1
p1···pj−1

×
[
cj2

∣∣∣ξj+1 + αjξj

∣∣∣ 1
p1···pj−1

+ρj

j∑
k=1

(
|ξk(t)|

1
p1···pj−1

+|ξk(t− d(t))|
1

p1···pj−1

)]
≤ 1

4

i−1∑
j=1

ξ2j +
1

2

i∑
j=1

ξ2j (t− d(t)) + li3ξ
2
i

(25)

where li3(x0) is a F function.
According to Proposition 2 and Lemma 2, we easily get∣∣∣∂Wi

∂x0
(d0u

p0

0 + f0)
∣∣∣

≤ m|ξi|
∣∣∣∂z∗p1···pi−1

i

∂x0

∣∣∣(c02λ0 + c03)|x0|
≤ x2

0 + li4ξ
2
i

(26)

where li4(x0) is a F function.
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Substituting (21), (23), (25)and (26) into (20) yields

V̇i ≤ −(n− i+ 1)
i−1∑
k=0

ξ2k − (n− i)
i∑

k=1

ξ2k(t− d(t))

+diξ
2− 1

p1···pi−1

i z∗pi

i+1 +
( 4∑

j=1

lij +
n− i+ 1

1− η

)
ξ2i

+diξ
2− 1

p1···pi−1

i (zpi

i+1 − z∗pi

i+1)
(27)

Now, it easy to see that the virtual controller

z∗p1···pi

i+1 = −
(
n− i+ 1 +

4∑
j=1

lij +
n− i+ 1

1− η

)
ξi

:= −αi(x0)ξi

(28)

renders

V̇i ≤ −(n− i+ 1)
i∑

k=0

ξ2k − (n− i)
i∑

k=1

ξ2k(t− d(t))

+diξ
2− 1

p1···pi−1

i (zpi

i+1 − z∗pi

i+1)
(29)

As i = n, the last step, we can construct explicitly a
change of coordinates (ξ1, · · · , ξn), a positive-definite and
proper Lyapunov-Krasoviskii functional Vn(ξ1, · · · , ξn) and
a state feedback controller z∗n+1 of form (28) such that

V̇n ≤ −
n∑

k=0

ξ2k + dnξ
2− 1

p1···pn−1
n (upn

1 − z∗pn

n+1) (30)

Therefore, by choosing the actual control u1 as

u1 = z∗n+1 = −
(
αn(x0)ξn

) 1
p1···pn (31)

we get

V̇n ≤ −
n∑

k=0

ξ2k (32)

Thus far the controller design procedure for x0(t0) ̸= 0 has
been completed.

IV. SWITCHING CONTROLLER AND MAIN RESULT

In the preceding section, we have given controller design
for x0(t0) ̸= 0. Now, we discuss how to select the control
laws u0 and u1 when the initial x0(t0) = 0. Without loss of
generality, we can assume that t0 = 0. In the absence of the
disturbances, most of the commonly used control strategies
use constant control u0 = u∗

0 ̸= 0 in time interval [0, ts). In
this paper, we also use this method when x0(0) = 0, with
u0 chosen as follows:

u0 = u∗
0, u∗

0 > 0. (33)

Since f0(t, x0(t)) in this paper satisfies the linear growth
condition, the x0-state does not escape and x0(ts) ̸= 0, for
any given finite time ts > 0. Thus, input-state-scaling for the
control design can be carried out.

During the time period [0, ts), using u0 defined in (33),
new control law u1 = u∗

1(x0, x) can be obtained by the con-
trol procedure described above to the original x−subsystem
in (1). Then we can conclude that the x−state of (1) cannot
blow up during the time period [0, ts). Since x(ts) ̸= 0 at
ts, we can switch the control inputs u0 and u1 to (3) and
(31), respectively.

We are now ready to state the main theorem of this paper.
Theorem 1. Under Assumptions 1-2, if the proposed

control design procedure together with the above switching
control strategy is applied to system (1), then, for any initial
conditions in the state space (x0, x) ∈ Rn+1 , the closed-
loop system is globally asymptotically regulated at origin .

Proof. According to the above analysis, it suffices to prove
the statement in the case where x0(0) ̸= 0.

Since we have already proven that x0 can be globally
exponentially regulated to zero as t → ∞ in Section 3.1,
we just need to show that limt→∞ x(t) = 0. In this case,
choose the Lyapunov functional

V = Vn =
n

2
x2
0 +

1

2

n∑
k=1

ξ2i

+
n∑

k=1

n− i+ 1

1− η

∫ t

t−d(t)

ξ2i (s)ds

(34)

from (32), we obtain

V̇ ≤ −(x2
0 + ξ21 + · · ·+ ξ2n) (35)

Then by Lyapunov-Krasovskii stability theorem [20], we
have limt→∞ ξ(t) = 0. This together with the definitions
of z∗i ’s and the input-state-scaling transformation(6) directly
concludes that limt→∞ x(t) = 0. This completes the proof
of Theorem 1.

Remark 4. From the above design procedure, we can see
that the upper bound of the change rate of time delays have
important impact on the control effort. To keep the control
effort within the certain range, the upper bound of the change
rate of time delays cannot be arbitrarily close to 1, which
should be considered in practical engineering design.

Remark 5. It should be mentioned that the control law
u1 may exhibit extremely large value when x0(t0) ̸= 0 is
sufficiently small. This is unacceptable from a practical point
of view. It is therefore recommended to apply (33) in order
to enlarge the initial value of x0 before we appeal to the
converging controllers (3) and (31).

V. SIMULATION EXAMPLE

To verify the proposed controller, we consider the follow-
ing low-dimensional system ẋ0(t) = (1.5 + 0.5 cos t)u0(t)

ẋ1(t) = x3
2(t)u0(t) + sinx0(t)x1(t− d(t))

ẋ2(t) = u3
1(t)

(36)

where d(t) = 1
2 (1 + sin t). It is very easy to verify that

Assumptions 1-2 holds. Hence the controller proposed in this
paper is applicable.

If x(0) = 0, controls u0 and u1 are set as in Section 4 in
interval [0, ts), such that x(ts) ̸= 0, then we can adopt the
controls developed below. Therefore, without loss of gener-
ality, we assume that x(0) ̸= 0. Noting that ḋ(t) = 1

2 cos t ≤
1
2 < 1, we define the control law u0(t) = −λ0x0(t) and
introduce the state scaling transformation

z1(t) =


x1(t)

u0(t)
, t ≥ 0

x1(t), −1 ≤ t < 0
, z2(t) = x2(t) (37)
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In new z−coordinates, the (x1, x2)−subsystem of (36) is
rewritten as

żi(t) = z3i+1(t)
+g1(t, x0(t), x(t), x(t− d(t)))

ż2(t) = u3
1(t)

+g2(t, x0(t), x(t), x(t− d(t)))

(38)

where

gi(t, x0(t), x(t), x(t− d(t)))

=
fi(t, x0(t), x(t), x(t− d(t)))

uri
0 (t)

+rizi(t)
up0

0 (t) + f0(t, x0(t))

p0x0(t)

(39)

Similar to (10), it is very easy to verify that Lemma 4 is
satisfied with ϕ1 = 1 + eλ0 and ϕ2 = 1

Obviously, the (z1, z2)− subsystem of (48) with nonlinear
parameter ε. Define γ1 = −1.5g0, Θ = 1+ε2, this subsystem
satisfies Lemma 4, i.e. |g0(1 − 0.5ε2)z1| ≤ |z1|γ1Θ. Now
consider V1 = x2

0 + 1
2z

2
1 + 4

∫ t

t−d(t)
z21(s)ds. A simple

calculation yields

V̇1 ≤ −2x2
0 + z1z

3
2

+z21

(
4 + ϕ1 +

1

4
ϕ2
1

)
− z21(t− d(t))

(40)

Hence, the virtual controller

z∗32 = −
(
6 + ϕ1 +

1

4
ϕ2
1

)
z1

:= −α1z1
(41)

renders

V̇1 ≤ −(x2
0 + z21)− z21(t− d(t)) + z1(z

3
2 − z∗32 ) (42)

Next, define ξ2 = z32 − z∗32 and construct Lypunov
Lyapunov-Krasoviskii functional

V2 = V2 +W2 + 2

∫ t

t−d(t)

ξ2i (s)ds (43)

where

W2 =

∫ z2

z∗
2

(s3 − z∗32 )
5
3 ds (44)

Clearly

V̇2 ≤ −(x2
0 + z21)− z21(t− d(t))

+z1(z
3
2 − z∗32 ) + ξ

5
3
2 u

3
1 + ξ

5
3
2 g2

+
∂W2

∂z1
(z32 + g1) +

∂W2

∂x0
d0u0

+2ξ21 − ξ21(t− d(t))

(45)

By Lemma 2, we have

z1(z
3
2 − z∗32 ) ≤ 1

4
z21 + l21ξ

2
2 (46)

ξ
5
3
2 g2 ≤ 1

4
z21 + l22ξ

2
2 (47)

∂W2

∂z1
(z32 + g1) ≤

1

4
z21 + ξ21(t− d(t)) + l23ξ

2
2 (48)

∂W2

∂x0
d0u0 ≤2

1 +l24ξ
2
2 (49)

where l2j , j = 1, 2, 3, 4 are known F functions

It is easy to verify that the controller

u1(t) = −
(
3 +

4∑
j=1

lij

) 1
9

(50)

renders
V̇2 ≤ −x2

0 − z21 − ξ22 (51)

thus achieving global stability with asymptotic state regula-
tion.

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

 

 
x

0

(a) State x0

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time(s)

 

 
x

1

(b) State x1

0  2 4 6 8 10
−5

−4

−3

−2

−1

0

1

Time(s)

 

 
x

2

(c) State x2

Fig. 1. The responses of system states.

In the simulation, by choosing design parameter as λ0 = 1,
the responses of the closed-loop system for initial conditions
(x0(0), x1(0), x2(0)) = (1,−1, 1) are shown in Figs. 1 and
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Fig. 2. The responses of control inputs.

2. From the figures, we can see that under the constructed
controller, the solution process of the closed-loop system
asymptotically converges to zero.

VI. CONCLUSION

In this paper, a state-feedback stabilization controller in-
dependent of time-delays is presented for a class of high-
order nonholonomic systems with time-varying delays. It
should be mentioned that the stabilization approaches in
literature may fail be applied for the existence of time
delays. In order to overcome the difficulty, a novel Lyapunov-
Krasovskii functional is introduced to deal with time delays.
The controller design is developed by using input-state-
scaling and adding a power integrator techniques. Based
on switching control strategy, global asymptotic regulation
of the closed-loop system is achieved. It should be noted
that the proposed controller can only work well when the
whole state vector is measurable. Therefore, a natural and
more interesting problem is how to design output feedback
stabilization controller for the systems studied in the paper
if only partial state vector are measurable, which are now
under our further investigation.
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