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Abstract—This paper proposes a trajectory tracking control
for non-holonomic systems using dynamic feedback lineariza-
tion based on piecewise multi-linear (PML) models. The approx-
imated model is fully parametric. Input-output (I/O) dynamic
feedback linearization is applied to stabilize PML control
system. Although the controller is simpler than the conventional
I/O feedback linearization controller, the control performance
based on PML model is the same as the conventional one.
The proposed methods are applied to a tricycle robot and
a quadrotor helicopter. Examples are shown to confirm the
feasibility of our proposals by computer simulations.

Index Terms—piecewise model, tracking trajectory control,
dynamic feedback linearization, non-holonomic system, tricycle
robot and quadrotor helicopter.

I. INTRODUCTION

NOn-holonomic system has been intensively studied in
control engineering by many researchers. But it is very

difficult to control these systems because these systems can-
not be asymptotically stabilized to an equilibrium point with
smooth time-invariant state feedback control [1]. Therefore
the non-holonomic system control is one of the challenging
problems. In control engineering, a car robot dynamics, a
linked robot arm model, hovercraft dynamics and helicopter
dynamics are the typical non-holonomic systems.

This paper deals with a tracking trajectory control of a
tricycle robot and a quadrotor helicopter using dynamic feed-
back linearization based on piecewise multi-linear (PML)
models.

Wheeled mobile robots are completely controllable. How-
ever they cannot be stabilized to a desired position using time
invariant continuous feedback control [2]. The wheeled mo-
bile robot control systems have a non-holonomic constraint.
Non-holonomic systems are much more difficult to control
than holonomic ones. Many methods have been studied for
the tracking control of wheeled robots. The experimental
approaches were proposed in (e.g. [3], [4]). The backstepping
control methods were proposed in (e.g. [5], [6]). The sliding
mode control methods were proposed in (e.g., [7], [8]),
and also the dynamic feedback linearization methods were
in (e.g., [9], [10], [11]). For non-holonomic robots, it is
never possible to achieve exact linearization via static state
feedback [12]. It was shown that the dynamic feedback
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linearization is an efficient design tool to solve the trajectory
tracking and the setpoint regulation problem in [9], [10].

First reported quadrotor helicopter Gyroplane No.1 was
built in 1907 by the Breguet Brothers [13]. A full-scale
quadrotor helicopter was built by De Bothezat in 1921 [14].
Many methods have been applied to quadrotor helicopter
control. A visual feedback based on feedback linearization
and backstepping-like control were used in [15]. Dynamics
feedback linearization method was applied by [16]. Sliding
mode control methods were applied by [17], [18], [19], [13].
[17] and [19] designed the controller with the super twisting
control algorithm based on sliding model control. [13] pro-
posed a sliding mode controller to stabilize a cascaded under-
actuated system of helicopter. [20] applied a fuzzy controller
and [21] proposed a reinforcement learning method to the
quadrotor helicopter.

In this paper, we consider PML models as the piecewise
approximation models of the tricycle robot and quadrotor
dynamics. The models are built on hyper cubes partitioned
in state space and are found to be bilinear (bi-affine) [22],
so the models have simple nonlinearity. The model has
the following features: 1) The PML model is derived from
fuzzy if-then rules with singleton consequents. 2) It has a
general approximation capability for nonlinear systems. 3) It
is a piecewise nonlinear model and second simplest after
the piecewise linear (PL) model. 4) It is continuous and
fully parametric. The stabilizing conditions are represented
by bilinear matrix inequalities (BMIs) [23], therefore, it
takes long computing time to obtain a stabilizing controller.
To overcome these difficulties, we have derived stabilizing
conditions [24], [25], [26] based on feedback linearization,
where [24] and [26] apply input-output linearization and [25]
applies full-state linearization.

We propose a dynamic feedback linearization for PML
control system and design the tracking controllers to a
tricycle robot and a quadrotor. The control systems have
the following features: 1) Only partial knowledge of vertices
in piecewise regions is necessary, not overall knowledge of
an objective plant. 2) These control systems are applicable
to a wider class of nonlinear systems than conventional
I/O linearization. 3) Although the controller is simpler than
the conventional I/O feedback linearization controller, the
tracking performance based on PML model is the same as
the conventional one.

This paper is organized as follows. Section II introduces
the canonical form of PML models. Section III presents
dynamic feedback linearizations of the car-like robot and the
quadrotor helicopter. Sections IV and V propose trajectory
tracking controller designs using dynamic feedback lineariza-
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tion based on PML models of the tricycle robot and the
quadrotor helicopter. Section VI shows examples demonstrat-
ing the feasibility of the proposed methods. Finally, section
VII summarizes conclusions.

II. CANONICAL FORMS OF PIECEWISE BILINEAR
MODELS

A. Open-Loop Systems

In this section, we introduce PML models suggested in
[22]. We deal with the two-dimensional case without loss of
generality. Define vector d(σ, τ) and rectangle Rστ in two-
dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))

T ,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)]. (1)

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+ 1), d2(τ) < d2(τ + 1) and d(0, 0) ≡ (d1(0), d2(0))T .
Superscript T denotes a transpose operation.

For x ∈ Rστ , the PML system is expressed as
ẋ =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)fo(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)d(i, j),

(2)

where fo(i, j) is the vertex of nonlinear system ẋ = fo(x),
ωσ1 (x1) = (d1(σ + 1)− x1)/(d1(σ + 1)− d1(σ)),

ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1)− d1(σ)),

ωτ2 (x2) = (d2(τ + 1)− x2)/(d2(τ + 1)− d2(τ)),

ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1)− d2(τ)),

(3)

and ωi1(x1), ωj2(x2) ∈ [0, 1]. In the above, we assume
f(0, 0) = 0 and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.

A key point in the system is that state variable x is also
expressed by a convex combination of d(i, j) for ωi1(x1)
and ωj2(x2), just as in the case of ẋ. As seen in equation (3),
x is located inside Rστ which is a rectangle: a hypercube
in general. That is, the expression of x is polytopic with
four vertices d(i, j). The model of ẋ = f(x) is built on a
rectangle including x in state space, it is also polytopic with
four vertices f(i, j). We call this form of the canonical model
(2) parametric expression.

B. Closed-Loop Systems

We consider a two-dimensional nonlinear control system.{
ẋ =fo(x) + go(x)u(x),

y =ho(x).
(4)

The PML model (5) is constructed from a nonlinear system
(4). {

ẋ =f(x) + g(x)u(x),

y =h(x),
(5)

where 

f(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)fo(i, j),

g(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)go(i, j),

h(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)ho(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ωj2(x2)d(i, j),

(6)

and fo(i, j), go(i, j), ho(i, j) and d(i, j) are vertices of the
nonlinear system (4). The modeling procedure in region Rστ
is as follows:

1) Assign vertices d(i, j) for x1 = d1(σ), d1(σ+1), x2 =
d2(τ), d2(τ + 1) of state vector x, then partition state
space into piecewise regions (see Fig. 1).

2) Compute vertices fo(i, j), go(i, j) and ho(i, j) in equa-
tion (6) by substituting values of x1 = d1(σ), d1(σ+1)
and x2 = d2(τ), d2(τ + 1) into original nonlinear
functions fo(x), go(x) and ho(x) in the system (4).
Fig. 1 shows the expression of f(x) and x ∈ Rστ .

d1(σ)

d1(σ + 1)

d2(τ)

d2(τ + 1)

f1(σ + 1, τ)

f1(σ, τ)

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1
1

ωσ1

ωτ+1
2

ωτ2

f1(x)

Fig. 1. Piecewise region (f1(x) =
∑σ+1

i=σ

∑τ+1

j=τ
ωi1ω

j
2f1(i, j), x ∈

Rστ )

The overall PML model is obtained automatically when all
vertices are assigned. Note that f(x), g(x) and h(x) in the
PML model coincide with those in the original system at
vertices of all regions.

III. DYNAMIC FEEDBACK LINEARIZATIONS OF
NON-HOLONOMIC SYSTEMS

A. Tricycle Robot Model

We consider a tricycle robot model.
ẋ
ẏ

θ̇

ψ̇

 =


cos θ
sin θ

1
L tanψ

0

u1 +


0
0
0
1

u2, (7)
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where x and y are the position coordinates of the center of
the rear wheel axis, θ is the angle between the center line of
the car and the x axis, ψ is the steering angle with respect
to the car. The control inputs are represented as

u1 =vs cosψ

u2 =ψ̇,

where vs is the driving speed. Fig 2 shows the kinematic
model of tricycle robot. The steering angle ψ is constrained

x

y

(x, y)

θ

ψ

L

0

Fig. 2. Kinematic model of tricycle robot

by

‖ψ‖ ≤M, 0 < M < π/2.

The constraint [11] is represented as

ψ = M tanhw,

where w is an auxiliary variable. Thus we get

ψ̇ =Msech2wµ2 = u2,

ẇ =µ2

We substitute the equations of ψ and w into the tricycle robot
model. The model is obtained as

ẋ
ẏ

θ̇
ẇ

 =


cos θ
sin θ

1
L tan(M tanhw)

0

u1 +


0
0
0
1

µ2 (8)

In this case, we consider η = (x, y)T as the output, the time
derivative of η is calculated as

η̇ =

(
ẋ
ẏ

)
=

(
cos θ 0
sin θ 0

)(
u1
µ2

)
.

The linearized system of (8) at any points (x, y, θ, w) is
clearly not controllable and the only u1 affects η̇. To proceed,
we need to add some integrators of the input u1. Using
dynamic compensators as

u̇1 =ν1, ν̇1 = µ1,

the tricycle robot model (8) can be dynamic feedback lin-
earizable. The extended model is obtained as

ẋ
ẏ

θ̇
ẇ
u̇1

ν̇1

 =


u1 cos θ
u1 sin θ

u1
1
L
tan(M tanhw)

0
ν1
0

+


0
0
0
0
0
1

µ1 +


0
0
0
1
0
0

µ2 (9)

The time derivative of η̇ is calculated as

η̈ =

(
L2
fh1

L2
fh2

)
=

(
ν1 cos θ − u21 1

L tan(M tanhw) sin θ
ν1 sin θ + u21

1
L tan(M tanhw) cos θ

)
,

where (h1, h2) = (x, y). Since the controller (µ1, µ2) doesn’t
appear in the equation η̇, we continue to calculate the time
derivative of η̈. Then we get

η(3) =L3
fh+ LgL

2
fhµ

=

(
L3
fh1

L3
fh2

)
+

(
Lg1L

2
fh1 Lg2L

2
fh1

Lg1L
2
fh2 Lg2L

2
fh2

)(
µ1

µ2

)
. (10)

Equation (10) shows clearly that the system is input-output
linearizable because state feedback control

µ = −(LgL
2
fh)−1L3

fh+ (LgL
2
fh)−1v

reduces the input-output map to y(3) = v.
The matrix LgL2

fh multiplying the modified input (µ1, µ2)
is non-singular if u1 6= 0. Since the modified input is
obtained as (µ1, µ2), the integrator with respect to the input v
is added to the original input (u1, u2). Finally, the stabilizing
controller of the tricycle robot system (7) is presented as a
dynamic feedback controller:{

u̇1 =ν1, ν̇1 = µ1,

u2 =Msech2wµ2

(11)

B. Quadrotor Helicopter Model

We consider a quadrotor helicopter model [16]. ẋ =fo(x) +

4∑
i=1

goi(x)uoi

y =ho(x),

(12)

where x =
(
x0, y0, z0, ψ, θ, φ, v1, v2, v3, p, q, r

)T
,

ho(x) =
(
x0, y0, z0, ψ

)T
, uo = (uo1 , uo2 , uo3 , uo4)T ,

fo(x) =



v1
v2
v3

q sinφ sec θ + r cosφ sec θ
q cosφ− r sinφ

p+ q sin θ tan θ + r cosφ tan θ
Ax/m
Ay/m

Az/m+ g
Iy−Iz
Ix

qr +Ap/Ix
Iz−Ix
Iy

rp+Aq/Iy
Ix−Iy
Iz

pq +Ar/Iz



, go1 =



0
0
0
0
0
0
G1

G2

G3

0
0
0



,

G1 =− 1

m
(cosφ cosψ sin θ + sinφ sinψ) ,

G2 =− 1

m
(cosφ sin θ sinψ − cosψ sin θ) ,

G3 =− 1

m
cos θ cosφ,
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go2 =



0
0
0
0
0
0
0
0
0

d/Ix
0
0



, go3 =



0
0
0
0
0
0
0
0
0
0

d/Iy
0



, go4 =



0
0
0
0
0
0
0
0
0
0
0

1/Iz



.

x0, y0 and z0 are the three coordinates of the absolute

�����������

��	
������

����������

����������

����

�����

��	��

x

y

z

Fig. 3. Dynamic model of quadrotor

position of the quadrotor helicopter. ψ, θ and φ are the
three Euler’s angles of the attitude. These angles are yaw
angle (−π < ψ < π), pitch angle (−π/2 < θ < π/2) and
roll angle (−π/2 < φ < π/2) respectively. v1, v2 and v3
are the absolute velocities of the quadrotor helicopter with
respect to an earth fixed inertial reference frame. p, q and r
are the angular velocities expressed with respect to a body
reference frame. (Ax, Ay , Az) and (Ap, Aq , Ar) are the
resulting aerodynamics forces and moments acting on the
quadrotor helicopter. Ix, Iy and Iz are the moment of inertia
with respect to the axes. m is the mass, g is the gravity
constant and d is the distance from the center of mass to
the rotors. u1 is the resulting thrust of the four rotors. u2 is
the difference of thrust between the left rotor and the right
rotor. u3 is the difference of thrust between the front rotor
and the back rotor. u4 is the difference of torque between the
two clockwise turning rotors and the two counter-clockwise
turning rotors.

We design a static state feedback controller [16] of the
quadrotor helicopter model.

uo = αo(x) + βo(x)vo (13)

where α(x) = −A−1o (x)Bo(x), β(x) = A−1o (x),

Ao(x) =


G1 0 0 0
G2 0 0 0
G3 0 0 0
0 0 d(sinφ sec θ)/Iy cosφ sec θ/Iz

 ,

Bo(x) =
(
L2
fo
ho1(x), L2

fo
ho2(x), L2

fo
ho3(x), L2

fo
ho4(x)

)T
,

vo is a controller of the linearized system with respect to
(12). The linearized system of (12) for all x is clearly not
controllable since Ao(x) is singular. To proceed, we need to
add some integrators of the input uo1 .

Using dynamic compensators with respect to u1 as

ζ =uo1 , ξ = ζ̇, µe1 = ξ̇,

the quadrotor helicopter model (12) can be dynamic feedback
linearizable. The other control inputs are also represented as

µe2 =uo2 , µe3 = uo3 , µe4 = uo4 .

Then the extended model is obtained as ẋ =fe(x) +
4∑
i=1

geiµei ,

y =ho(x),

(14)

where x =
(
x0, y0, z0, ψ, θ, φ, v1, v2, v3, p, q, r, ζ, ξ

)T
,

fe(x) =



v1
v2
v3

q sinφ sec θ + r cosφ sec θ
q cosφ− r sinφ

p+ q sin θ tan θ + r cosφ tan θ
Ax/m+G1ζ
Ay/m+G2ζ

Az/m+ g +G3ζ
Iy−Iz
Ix

qr +Ap/Ix
Iz−Ix
Iy

rp+Aq/Iy
Ix−Iy
Iz

pq +Ar/Iz
ξ
0



,

ge1 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

)T
,

ge2 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, d/Ix, 0, 0, 0, 0

)T
,

ge3 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, d/Iy, 0, 0, 0

)T
,

ge4 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/Iz, 0, 0

)T
.

We apply the I/O feedback linearization to the extended
system (14). Then the controller is obtained as

µe =αe(x) + βe(x)ve

where αe(x) = −A−1e (x)Be(x), βe(x) = A−1e (x),

Ae(x) =


a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
0 0 a43 a44

 , Be(x) =


L4
fe
ho1(x)

L4
fe
ho2(x)

L4
fe
ho3(x)

L2
fe
ho4(x)

 ,

aij =LgojL
3
fehoi(x), i = 1, 2, 3, j = 1, 2, 3,

a4k =LgokLfeho4(x), k = 3, 4.

The coordinate is obtained as

ze =
(
ze1 , ze2 , ze3 , ze4

)T
,
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where

ze1 =
(
ho1 , Lfeho1(x), L2

fe
ho1(x), L3

fe
ho1(x)

)T
,

ze2 =
(
ho2 , Lfeho2(x), L2

fe
ho2(x), L3

fe
ho2(x)

)T
,

ze3 =
(
ho3 , Lfeho3(x), L2

fe
ho3(x), L3

fe
ho3(x)

)T
,

ze4 =
(
ho4 , Lfeho4(x)

)T
.

The I/O linearized system is formulated as

że =Aze +Bve (15)

where

A =


A1 0 0 0
0 A1 0 0
0 0 A1 0
0 0 0 A2

 , B =


B1 0 0 0
0 B1 0 0
0 0 B1 0
0 0 0 B2

 ,

C =


C1 0 0 0
0 C1 0 0
0 0 C1 0
0 0 0 C2

 , A1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

A2 =

(
0 1
0 0

)
, B1 =

(
0 0 0 1

)T
, B2 =

(
0 1

)T
,

C1 =
(
1 0 0 0

)
, C2 =

(
1 0

)
.

Stabilization linear controller ve = −Fze of the linearized
system (15) is designed so that transfer function C(sI −
A)−1B is Hurwitz.

IV. PML MODEL AND TRAJECTORY TRACKING
CONTROLLER DESIGN OF THE TRICYCLE ROBOT MODEL

A. PML Model of the Tricycle Robot Model
We construct PML model [27] of the tricycle robot

system (9). The state spaces of θ and w in the tri-
cycle robot model (9) are divided by the 13 ver-
tices x3 ∈ {−π,−5π/6, . . . , π} and the 13 vertices
x4 ∈ {−3.0,−2.5, . . . , 3.0}. The state variable is x =
(x1, x2, x3, x4, x5, x6)T = (x, y, θ, w, u1, v1)T .

ẋ=



σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))x5

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))x5

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x5

0
x6
0


+


0
0
0
0
0
1

µ1 +


0
0
0
1
0
0

µ2.

(16)

We can construct PML models with respect to f1(x), f2(x)
and f3(x). The PML model structures are independent of
the vertex positions x5 and x6 since x5 and x6 are the linear
terms. This paper constructs the PML models with respect
to the nonlinear terms of x3 and x4.

Note that trigonometric functions of the tricycle robot (9)
are smooth functions and are of class C∞. The PML models
are not of class C∞. In the tricycle robot control, we have to
calculate the third derivatives of the output y. Therefore the
derivative PML models lose some dynamics. In this paper
we propose the derivative PML models of the trigonometric
functions.

B. Stabilizing Control Using Dynamic Feedback Lineariza-
tion Based on PML Model

We define the output as η = (x1, x2)T in the same manner
as the previous section, the time derivative of η is calculated
as

η̇ =

(
Lfph1
Lfph2

)
=

(
ẋ1
ẋ2

)
=

σ3+1∑
i3=σ3

wi33 (x3)

(
f1(d3(i3))x5
f2(d3(i3))x5

)

where the vertices are f1(d3(i3)) = cos d3(i3) and
f2(d3(i3)) = sin d3(i3). The time derivative of η doesn’t
contain the control inputs (µ1, µ2). We calculate the time
derivative of η̇. We get

η̈1 =L2
fph1 =

σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))x6

+

σ3+1∑
i3=σ3

wi33 (x3)f ′1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x25,

η̈2 =L2
fph2 =

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))x6

+

σ3+1∑
i3=σ3

wi33 (x3)f ′2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x25,

where f3(d4(i4)) = tan(M tanh d4(i4))/L. We continue to
calculate the time derivative of η̈. We get

η
(3)
1 =L3

fph1 + Lg1L
2
fph1µ1 + Lg2L

2
fph1µ2

=x35

σ3+1∑
i3=σ3

wi33 (x3)f
′′

1 (d3(i3))

(
σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi33 (x3)f
′

1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi33 (x3)f ′1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f ′3(d4(i4))µ2,

η
(3)
2 =L3

fph2 + Lg1L
2
fph2µ1 + Lg2L

2
fph2µ2

=x35

σ3+1∑
i3=σ3

wi33 (x3)f
′′

2 (d3(i3))

(
σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi33 (x3)f
′

2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi33 (x3)f ′2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f ′3(d4(i4))µ2.
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The vertices f
′′

1 (d3(i3)), f
′′

2 (d3(i3)) and The controller of
(16) is designed as

(µ1, µ2)T =− (LgL
2
fph)−1L3

fph+ (LgL
2
fph)−1v

=−
(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1(
L3
fp
h1

L3
fp
h2

)
+

(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1
v

where v is the linear controller of the linear system (17).{
ż =Az +Bu,

y =Cz,
(17)

where z = (h1, Lfph1, L
2
fp
h1, h2, Lfph2, L

2
fp
h2)T ∈ <6,

A=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B=


0 0
0 0
1 0
0 0
0 0
0 1

 , C=


1 0
0 0
0 0
0 1
0 0
0 0



T

.

If x5 6= 0, there exists a controller (µ1, µ2)T of the tricycle
robot model (16) since det(LgL

2
fp
h) 6= 0.

In this case, the state space of the tricycle robot model is
divided into 13×13 vertices. Therefore the system has 12×12
local PML models. Note that all the linearized systems of
these PML models are the same as the linear system (17).

In the same manner of (11), the dynamic feedback lin-
earizing controller of the PML system is designed as

ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fph+ LgL
2
fhv.

(18)

The stabilizing linear controller v = −Fz of the linearized
system (17) is designed so that the transfer function C(sI −
A)−1B is Hurwitz.

Note that the dynamic controller (18) based on PML
model is simpler than the conventional one (11). Since the
nonlinear terms of controller (18) contain not the original
nonlinear terms (e.g., sinx3, cosx3, tan(M tanhx4)) but
the piecewise approximation models.

C. Trajectory Tracking Controller Based on PML System

We propose a tracking control [28] to the tricycle robot
model (7). Consider the following reference signal model{

ẋr =fr,

ηr =hr.

The controller is designed to make the error signal e =
(e1, e2)T = η − ηr → 0 as t → ∞. The time derivative
of e is obtained as

ė =η̇ − η̇r =

(
Lfphp1
Lfphp2

)
−
(
Lfrhr1
Lfrhr2

)
.

Furthermore the time derivative of ė is calculated as

ë =η̈ − η̈r =

(
L2
fp
hp1

L2
fp
hp2

)
−
(
L2
fr
hr1

L2
fr
hr2

)

Since the controller µ doesn’t appear in the equation ë, we
calculate the time derivative of ë.

e(3) =η(3) − η(3)r

=

(
L3
fp
hp1

L3
fp
hp2

)
+ LgL

2
fph

(
µ1

µ2

)
−
(
L3
fr
hr1

L3
fr
hr2

)

The tracking controller is designed as


ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fph− L
3
frhr + LgL

2
fphv.

(19)

The linearized system (17) and controller v = −Fz
are obtained in the same manners as the previous sub-
section. The coordinate transformation vector is z =
(e1, ė1, ë1, e2, ė2, ë2)T .

Note that the dynamic controller (19) based on PML model
is simpler than the conventional one on the same reason of
the previous subsection.

V. PML MODEL AND TRAJECTORY TRACKING
CONTROLLER DESIGN OF THE QUADROTOR HELICOPTER

A. PML Model of the Quadrotor Helicopter

We construct PML model [29] of the quadrotor helicopter
system (14). The state spaces of ψ, θ and φ in the quadrotor
helicopter model (14) are divided by the following vertices.

x4 =ψ ∈ {−π,−5π/6,−2π/3, . . . , π},
x5 =θ ∈ {−5π/12,−δ1,−δ1/2, 0, δ1/2, δ1, 5π/12},
x6 =φ ∈ {−5π/12,−δ2,−δ2/2, 0, δ2/2, δ2, 5π/12}.

where δ1 = δ2 = π/200. We construct the following PML
model of the quadrotor helicopter model (14).

 ẋ =f(x) +
4∑
i=1

giµi,

y =h(x)

(20)

where

f(x) =
(
x7, x8, x9, f4, f5, f6, f7, f8, f9, f10, f11, f12, x14, 0

)T
,

g1 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

)T
,

g2 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, d

Ix
, 0, 0, 0, 0

)T
,

g3 =
(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, d
Iy
, 0, 0, 0

)T
,

g4 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

Iz
0, 0

)T
,
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h(x) =
(
h1, h2, h3, h4

)T
=
(
x1, x2, x3, x4

)T
,

f4 =x11

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f41(i5, i6)

+ x12

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f42(i5, i6),

f5 =x11

σ6+1∑
i6=σ6

ωi66 (x6)f51(i6)− x12
σ6+1∑
i6=σ6

ωi66 (x6)f52(i6),

f6 =x10 + x11

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f61(i5, i6)

+ x12

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f62(i5, i6),

f7 =Ax/m+ x13

σ4+1∑
i4=σ4

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi44 (x4)ωi55 (x5)

× ωi66 (x6)f7(i4, i5, i6),

f8 =Ay/m+ x13

σ4+1∑
i4=σ4

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi44 (x4)ωi55 (x5)

× ωi66 (x6)f8(i4, i5, i6),

f9 =Az/m+ x13

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f9(i5, i6),

f10 =
Iy − Iz
Ix

x11x12 +
Ap
Ix
, f11 =

Iz − Ix
Iy

x12x10 +
Aq
Iy
,

f12 =
Ix − Iy
Iz

x10x11 +
Ar
Iz
.

In this paper, we construct the PML models with respect
to trigonometric functions. Hence the state spaces of x4,
x5 and x6 are divided into some vertices. For example, the
vertices f41(i5, i6) and f42(i5, i6) are given by substituting
the vertices x5 and x6 for the nonlinear terms sinx6 secx5(=
sinφ sec θ) and cosx6 secx5(= cosφ sec θ). Table I shows
the vertices of PML model f41(i5, i6). In contrast, nonlinear
terms of f10, f11 and f12 are not transformed into the PML
models. Since the nonlinear terms of f10, f11 and f12 are
multi-linear functions.

B. Stabilizing Control Using Dynamic Feedback Lineariza-
tion Based on PML Model

The stabilizing conditions of PML system are represented
by BMIs [23], therefore, it takes long computing time to
obtain a stabilizing controller. In this paper, feedback lin-
earization method is used for the controller design. Using
the feedback linearization method as the controller designs,
it is easy to design the continuous piecewise nonlinear
controller for PML control system and the controller designs
drastically reduce the time that it takes to find an optimal
solution of the stabilizing condition by computer simulation.
Therefore PML modeling and feedback linearizations could
be a powerful combination for the analysis and synthesis of
nonlinear control systems.

We define the output as η = (η1, η2, η3, η4)T =

(x1, x2, x3, x4)T , the time derivative of η is calculated as

η̇ =


Lfh1
Lfh2
Lfh3
Lfh4

 =


ẋ1
ẋ2
ẋ3
ẋ4

 =


x7
x8
x9
f4

 .

The time derivative of η doesn’t contain the control inputs
(u1, u2, u3, u4). We calculate the time derivative of η̇. We
get

η̈1 =L2
fh1 = f7, η̈2 = L2

fh2 = f8, η̈3 = L2
fh3 = f9,

η̈4 =L2
fh4 =

∂f4
∂x5

f5 +
∂f4
∂x6

f6 +
∂f4
∂x11

f11 +
∂f4
∂x12

f12

+
∂f4
∂x11

d/Iyµ3 +
∂f4
∂x12

1/Izµ4,

where

∂f4
∂x5

=x11

σ6∑
i6=σ6

ωi66 (x6) (f41(σ5 + 1, i6)− f41(σ5, i6)) /∆5

+x12

σ6∑
i6=σ6

ωi66 (x6) (f42(σ5 + 1, i6)− f42(σ5, i6)) /∆5,

∂f4
∂x6

=x11

σ5∑
i5=σ5

ωi55 (x5) (f41(i5, σ6 + 1)− f41(i5, σ6)) /∆6

+x12

σ5∑
i5=σ5

ωi55 (x5) (f42(i5, σ6 + 1)− f42(i5, σ6)) /∆6,

∂f4
∂x11

=

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f41(i5, i6),

∂f4
∂x12

=

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f42(i5, i6),

∆5 =d5(σ5 + 1)− d5(σ5), ∆6 = d6(σ6 + 1)− d6(σ6).

We continue to calculate the time derivatives of η̈1, η̈2 and
η̈3. We get

η
(3)
1 =L3

fh1 =
∂f7
∂x4

f4 +
∂f7
∂x5

f5 +
∂f7
∂x6

f6 +
∂f7
∂x13

f13,

η
(3)
2 =L3

fh2 =
∂f8
∂x4

f4 +
∂f8
∂x5

f5 +
∂f8
∂x6

f6 +
∂f8
∂x13

f13,

η
(3)
3 =L3

fh3 =
∂f9
∂x5

f5 +
∂f9
∂x6

f6 +
∂f9
∂x13

f13,

where

∂fj
∂x4

=x13

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)

× (fj(σ4 + 1, i5, i6)− fj(σ4, i5, i6)) /∆4,

∂fj
∂x5

=x13

σ4+1∑
i4=σ4

σ6+1∑
i6=σ6

ωi44 (x4)ωi66 (x6)

× (fj(i4, σ5 + 1, i6)− fj(i4, σ5, i6)) /∆5,
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TABLE I
VERTICES OF PML MODEL f41(i5, i6)

f41 x6 = −5π/12 x6 = −δ2 x6 = −δ2/2 x6 = 0 x6 = δ2/2 x6 = δ2 x6 = 5π/12

x5 = −5π/12 −3.7321 −0.0607 −0.0303 0 0.0303 0.0607 3.7321
x5 = −δ1 −0.9660 −0.0157 −0.0079 0 0.0079 0.0157 0.9660
x5 = −δ1/2 −0.9660 −0.0157 −0.0079 0 0.0079 0.0157 0.9660
x5 = 0 −0.9659 −0.0157 −0.0079 0 0.0079 0.0157 0.9659

x5 = δ1/2 −0.9660 −0.0157 −0.0079 0 0.0079 0.0157 0.9660
x5 = δ1 −0.9660 −0.0157 −0.0079 0 0.0079 0.0157 0.9660

x5 = 5π/12 −3.7321 −0.0607 −0.0303 0 0.0303 0.0607 3.7321

∂fj
∂x6

=x13

σ4+1∑
i4=σ4

σ5+1∑
i5=σ5

ωi44 (x4)ωi55 (x5)

× (fj(i4, i5, σ6)− fj(i4, i5, σ6 + 1)) /∆6,

∂fj
∂x13

=

σ4+1∑
i4=σ4

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

× ωi44 (x4)ωi55 (x5)ωi66 (x6)fj(i4, i5, i6),

∂f9
∂x5

=x13

σ6+1∑
i6=σ6

ωi66 (x6) (f9(σ5 + 1, i6)− f9(σ5, i6)) /∆5,

∂f9
∂x6

=x13

σ5+1∑
i5=σ5

ωi55 (x5) (f9(i5, σ6)− f9(i5, σ6 + 1)) /∆6,

∂f9
∂x13

=

σ5+1∑
i5=σ5

σ6+1∑
i6=σ6

ωi55 (x5)ωi66 (x6)f9(i5, i6),

j = 7, 8. Since L3
fh1, L3

fh2 and L3
fh3 are independent of

the controller u, we continue to calculate the time derivatives
of η(3)1 , η(3)2 and η(3)3 .

η
(4)
1 =L4

fh1 + Lg1L
3
fh1µ1 + Lg2L

3
fh1µ2 + Lg3L

3
fh1µ3,

η
(4)
2 =L4

fh2 + Lg1L
3
fh2µ1 + Lg2L

3
fh2µ2 + Lg3L

3
fh2µ3,

η
(4)
3 =L4

fh3 + Lg1L
3
fh3µ1 + Lg2L

3
fh3µ2 + Lg3L

3
fh3µ3.

The details of the Lie derivatives are omitted due to lack of
space. The controller of (20) is designed as

µ = α(x) + β(x)v

where α(x) = −A−1qr (x)Bqr(x), β(x) = A−1qr (x),

Aqr(x) =


Lg1L

3
fh1 Lg2L

3
fh1 Lg3L

3
fh1 0

Lg1L
3
fh2 Lg2L

3
fh2 Lg3L

3
fh2 0

Lg1L
3
fh3 Lg2L

3
fh3 Lg3L

3
fh3 0

0 0 Lg3Lfh4 Lg4Lfh4

 ,

Bqr(x) =
(
L4
fh1, L

4
fh2, L

4
fh3, L

2
fh4
)T
,

v = −Fz is the linear controller of the linear system (21).

{
ż =Az +Bu,

y =Cz,
(21)

where

z =
(
z1, z2, z3, z4

)T ∈ <14,

z1 =
(
h1, Lfh1, L

2
fh1, L

3
fh1
)T
,

z2 =
(
h2, Lfh2, L

2
fh2, L

3
fh2,

)T
,

z3 =
(
h3, Lfh3, L

2
fh3, L

3
fh3
)T
,

z4 =
(
h4, Lfh4

)T
,

A =blockdiag(A1, A2, A3, A4),

B =
(
BT1 BT2 BT3 BT4

)T
,

C =blockdiag(C1, C2, C3, C4),

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A1 = A2 = A3, A4 =

(
0 1
0 0

)
,

B1 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , B2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 ,

B3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , B4 =

(
0 0 0 0
0 0 0 1

)
,

C1 =
(
1 0 0 0

)
, C1 = C2 = C3, C4 =

(
1 0

)
.

In this case, the state space of the quadrotor helicopter robot
model is divided into 13×7×7 vertices. Therefore the system
has 12×6×6 local PML models. Note that all the linearized
systems of these PML models are the same as the linear
system (21).

The dynamic feedback linearizing controller of the PML
system (20) is designed as{

ü1 =µ1,

ui =µi, i = 2, 3, 4
(22)

The stabilizing linear controller v = −Fz of the linearized
system (21) is designed so that the transfer function C(sI −
A)−1B is Hurwitz.

Note that the dynamic controller (22) based on PML model
is simpler than the conventional one. Since the nonlinear
terms of controller (22) contain not the original nonlinear
terms (e.g., sinφ, cosφ, sec θ) but the piecewise approxima-
tion models.

C. Trajectory Tracking Controller Based on PML System

We propose a trajectory tracking control to the quadrotor
helicopter robot model (12). Consider the following reference
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signal model {
ẋr =fr,

ηr =hr.

The controller is designed to make the error signal e =
(e1, e2, e3, e4)T = η−ηr → 0 as t→∞. The time derivative
of e is obtained as

ė =η̇ − η̇r =


Lfh1
Lfh2
Lfh3
Lfh4

−

Lfrhr1
Lfrhr2
Lfrhr1
Lfrhr2

 .

Furthermore the time derivative of ė is calculated as

ë =


L2
fh1

L2
fh2

L2
fh3

L2
fh4 + Lg3Lfh4u3 + Lg4Lfh4u4

−

L2
fr
hr1

L2
fr
hr2

L2
fr
hr3

L2
fr
hr4

 .

Since the controller u doesn’t appear in the equations ë1, ë2
and ë3 we calculate the time derivative of ëi (i = 1, 2, 3).e

(3)
1

e
(3)
2

e
(3)
3

 =

L3
fh1

L3
fh2

L3
fh3

−
L3

fr
hr1

L3
fr
hr2

L3
fr
hr3


We continue to calculate the time derivatives of e(3)i (i =
1, 2, 3).e

(4)
1

e
(4)
2

e
(4)
3

 =

L4
fh1

L4
fh2

L4
fh3

−
L4

fr
hr1

L4
fr
hr2

L4
fr
hr3


+

Lg1L3
fh1µ1 + Lg2L

3
fh1µ2 + Lg1L

3
fh1µ3

Lg1L
3
fh2µ1 + Lg2L

3
fh2µ2 + Lg1L

3
fh2µ3

Lg1L
3
fh3µ1 + Lg2L

3
fh3µ2 + Lg1L

3
fh3µ3


The tracking controller is designed as{

ü1 =µ1,

ui =µi, i = 2, 3, 4.
(23)

The linearized system (21) and controller v = −Fz
are obtained in the same manners as the previous sub-
section. The coordinate transformation vector is z =
(e1, ė1, ë1, e

(3)
1 , e2, ė2, ë2, e

(3)
2 , e3, ė3, ë3, e

(3)
3 , e4, ė4)T .

Note that the dynamic controller (23) based on PML model
is simpler than the conventional one on the same reason of
the previous subsection.

VI. SIMULATION RESULTS

We apply the trajectory tracking control to the tricycle
robot model (7) and the quadrotor helicopter model (12).
Although the controller is simpler than the conventional I/O
feedback linearization controller, the tracking performance
based on PML model is the same as the conventional one. In
addition, the controller is capable to use a nonlinear system
with chaotic behavior as the reference model.

A. Tricycle Model

In the following simulations, the tricycle length L is 1.0
[m] and the angle constrain M is π/3 [rad.].

1) Ellipse-shaped Reference Signal: Consider an ellipse
model as the reference trajectory.(

xr1
xr2

)
=

(
R1 cos θ + xr1(0)
R2 sin θ + xr2(0)

)
,

where R1 and R2 are the semiminor axes and
(xr1(0), xr2(0)) is the center of the ellipse. Fig. 4
shows the simulation result. The dotted line is the reference
signal and the solid line is the tricycle tracking trajectory.
The semiminor parameters R1 and R2 are 10 and 25.
The initial positions are set at (x(0), y(0)) = (5, 0) and
(xr(0), yr(0)) = (10, 0). Fig. 5 shows the control inputs u1
and ν1 of the tricycle. Fig. 6 shows the error signals of the
tricycle position (x, y).

2) Trajectory Tracking Control Using Some Ellipse-
shaped Reference Signals: Arbitrary tracking trajectory con-
trol can be realized using the ellipse-shaped tracking trajec-
tory method. The controller design procedure is as follows:

1) Assign passing points (px(i), py(i)), i = 1, . . . , n.
We consider the passing points: (0, 0), (10, 20),
(26, 30), (18, 50) and (2, 70)

2) Construct some ellipses trajectories to connect the
passing points smoothly.
From (0, 0) to (10, 20), the trajectory 1:(

xr1
xr2

)
=

(
10 cos θr + 10

20 sin θr

)
, (24)

where π/2 ≤ θr ≤ π.
From (10, 20) to (26, 30), the trajectory 2:(

xr1
xr2

)
=

(
16 cos θr + 10
10 sin θr + 30

)
, (25)

where −π/2 ≤ θr ≤ 0.
From (26, 30) to (18, 50), the trajectory 3:(

xr1
xr2

)
=

(
8 cos θr + 18
20 sin θr + 30

)
, (26)

where 0 ≤ θr ≤ π/2.
From (18, 50) to (2, 70), the trajectory 4:(

xr1
xr2

)
=

(
16 cos θr + 18
10 sin θr + 60

)
, (27)

where −π/2 ≤ θr ≤ −π/2.
3) Design the controllers (19) for the ellipse tracking

trajectories (24)-(27).
We show a tracking trajectory control example for the tricycle
robot system. Fig. 7 shows the reference signals (24)-(27)
and the tricycle tracking trajectory. The dotted line is the
reference signal and the solid line is the tricycle tracking
trajectory. Fig. 8 shows the control inputs u1 and ν1 of the
tricycle. Fig. 9 shows the error signals with respect to the
tricycle position (x, y).

B. Quadrotor Helicopter Model

1) Spiral descent reference trajectory: We consider two
tracking trajectories as the reference signals. Although the
controllers are simpler than the conventional I/O feedback
linearization controllers, the tracking performance based on
PML model is the same as the conventional one [16].
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Consider a spiral-shaped reference trajectory [16] as the
reference model.

xd1 =
1

2
cos

t

2
, xd2 =

1

2
sin

t

2
,

xd3 =− 1− t

10
, xd4 =

π

3
.

(28)

The feedback gain is calculated as

F =


F1 0 0 0
0 F1 0 0
0 0 F1 0
0 0 0 F2

 ,

F1 =
(
1.000, 3.078, 4.236, 3.078

)
,

F2 =
(
1.000, 1.732

)
.

The helicopter is initially in hover flight and the ini-
tial positions are set at (x1, x2, x3, x4) = (0, 0, 0, 0) and
(xr1 , xr2 , xr3 , xr4) = (1/2, 0, 1, π/3). In this simulation, the
parameters are given by m = 0.7, Ix = Iy = Iz = 1.242,
d = 0.3 and g = 9.81. Fig. 10 shows the trajectory
signals. The solid line is the state response (x1, x2, x3) of
the helicopter and the dotted line is the reference signal (28).

2) Spiral ascending reference trajectory: Consider a
spiral-shaped reference trajectory [16] as the reference
model. 

xd1 =
1

2
cos

t

2
, xd2 =

1

2
sin

t

2
,

xd3 =1 +
t

10
, xd4 =

π

3
.

(29)

The feedback gain is the same as the previous example.
The helicopter is initially in hover flight and the ini-
tial positions are set at (x1, x2, x3, x4) = (0, 0, 0, 0) and
(xr1 , xr2 , xr3 , xr4) = (1/2, 0, 1, π/3). In this simulation, the
parameters are given by m = 0.7, Ix = Iy = Iz = 1.242,
d = 0.3 and g = 9.81. Fig. 11 shows the trajectory
signals. The solid line is the state response (x1, x2, x3) of
the helicopter and the dotted line is the reference signal (29).

These results confirm the feasibility of the tracking con-
trol performance. Although the PML model (20) and the
controller (19) are simpler than the conventional dynamic
feedback linearization controller and model [16], the control
performance based on PML model is the same as the
conventional one [16].
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3) Trajectory Tracking Control Using Some Ellipse-
shaped Reference Signals: Arbitrary tracking trajectory con-
trol can be realized using the ellipse-shaped tracking trajec-
tory method. The controller design procedure is as follows:

1) Assign passing points (px(i), py(i), pz(i)), i =
1, . . . , n. We consider the passing points: (0, 0, 0),
(5, 0, 2), (4, 0, 3) and (0, 0, 0).

2) Construct these trajectories to connect the passing
points smoothly.
From (0, 0, 0) to (5, 0, 2), the trajectory 1 isxr1xr2

xr3

 =

5 sin θr cosϕr
sin θr sinϕr
2 cos θr + 2

 , (30)

where π/2 ≤ θr ≤ π and ϕ = 0.
From (5, 0, 2) to (4, 0, 3), the trajectory 2 isxr1xr2

xr3

 =

 1
2 cos t+ 9

2
1
2 sin t
2 + t

5π

 . (31)

From (4, 0, 3) to (0, 0, 0), the trajectory 3 isxr1xr2
xr3

 =

4 sin θr cosϕr + 4
sin θr sinϕr

3 cos θr

 , (32)

where −π/2 ≤ θr ≤ 0 and ϕr = 0.
3) Design the controllers (23) for the ellipse tracking

trajectories (30)-(32).
We show the simulation result for the quadrotor helicopter
system. Fig. 12 shows the reference signals (30)-(32) and the
quadrotor helicopter tracking trajectory. The dotted line is
the reference signal and the solid line is the tricycle tracking
trajectory.

VII. CONCLUSIONS

We have proposed the trajectory tracking controller de-
signs of a tricycle robot and a quadrotor as non-holonomic
systems based on PML models. The approximated model
are fully parametric. I/O dynamic feedback linearization is
applied to stabilize PML control system. PML modeling with
feedback linearization is a very powerful tool for analyzing
and synthesizing nonlinear control systems. We also have
designed the tracking controllers to the tricycle robot and
the quadrotor. Although the controllers are simpler than
the conventional I/O feedback linearization controller, the
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tracking performance based on PML model is the same as the
conventional one. The examples have been shown to confirm
the feasibility of our proposals by computer simulations.
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