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Abstract—The polynomial Fourier transform (PFT) is a 

useful mathematical tool for many areas, including applied 

mathematics, engineering and signal processing. Some 

properties and applications for this transform are already 

known, but an existence of the PFT’s convolution theorem is 

still unknown. The purpose of this paper is to introduce a 

convolution theorem for the PFT, which has the elegance and 

simplicity comparable to that of the Fourier Transform (FT). 

The classical result in the FT domain is shown to be a special 

case of our achieved theorem. 

 
Index Terms—Convolution theorem, Fourier transform, 

Minkowski’s inequality, polynomial Fourier transform, 

Young's inequality 

 

I. INTRODUCTION 

HE Fourier transform (FT) plays an important part in the 

theory of applied mathematics, engineering, signal 

processing and optics [1]–[5]. In the classical signal 

processing, the FT has developed into a powerful tool for 

frequency domain-based signal representation. The 

convolution of the FT, which has been widely used in the 

theory of linear time-invariant (LTI) systems, is a 

fundamental and important property in frequency 

domain-based filter design [1]–[3], [5], [6]. It is a 

mathematical operation on two functions, and can be 

expressed by the integral of the pointwise multiplication of 

the first function and a translated version of the second 

function. In addition to the conventional FT convolution, 

convolution theorems of many other types of transformations 

are currently derived [5], [7]–[16]. These results have found 

many applications in the fields of computer vision, natural 

language processing, image and signal processing, statistics 

and engineering. 

It is well-known that the FT is not suitable to deal with 

time-varying signals that contain frequencies changing with 

time. To describe such kind of signals the fractional Fourier 

transform (FrFT) [9], [10], [17]–[19] and local polynomial 

Fourier transform (LPFT) [20]–[26] which is a generalization  
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of the short-time Fourier transform (STFT) [21], [27] was 

proposed. A review on recent developments and applications 

of the LPFT are referred to [21] and references therein. 

The polynomial Fourier Transform (PFT) introduces 

polynomial parameters including the first-order derivative 

and other higher-order derivatives of the instantaneous fre-

quency (IF) of the analyzed signal [21], [25], [26], [28]. The 

kernel of the PFT uses extra parameters to approximate the 

phase of the signal into a polynomial form. With these 

parameters (polynomial coefficients) the PFT can describe 

the time-varying frequencies with a better accuracy, and 

therefore the resolution of signal representation in the 

time-frequency domain can be significantly improved. The 

PFT has been developed under different names [18], [20], 

[29], [30], and its properties including uncertainty principle 

were published by Li et al. in [22]. But an existence of the 

PFT’s convolution theorem is still missing; therefore, the 

purpose of this paper has been to show convolution theorem 

for the PFT. This theorem is a generalization of the 

conventional convolution in the FT domain. The PFT has 

found many applications, for example, in the ISAR image 

autofocusing [23], in SAR imaging of moving targets [28], 

and in reconstruction of compressive sensing signals [25]. 

Moreover, Zhou et al. shows SAR accelerating moving target 

parameter estimation and imaging based on three-order PFT 

[26]. 

This paper is organized as follows: After a review of the 

PFT and the convolution theory in Section II, a new 

convolution theorem for the PFT with its properties are 

derived in Section III and the conclusion is written in the 

Section IV. 

 

II. PRELIMINARIES 

In this section, we provide a brief review of the PFT and 

convolution theory that will be needed later. The PFT 

relationships with other well-known transforms, such as FT, 

FrFT, linear canonical transform (LCT) [7], [8], [11]–[15], 

[31], [32] and offset linear canonical transform (OLCT) [16], 

[32], [33] are investigated. Also some fundamental properties 

of the convolution are given. 

 

A. The PFT and Discrete-time PFT 

Definition 1. The form of the PFT of a signal f  is as 

follows [21], [28]  
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M is the order of the polynomial function, 

  1, ... ,1,  Mndd nn
n  are the polynomial 

coefficients, and    is the instantaneous frequency of the 

signal. 

Remark. Difference between PFT and LPFT is the added 

window function  tW  of the LPFT 
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Below we obtain the discrete-time PFT, which will be 

helpful for interested researchers for utilizing the sampling 

theorem of band-limited signals in the PFT domain in future.  

Firstly, the uniform sampled signal is defined as below 
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where  ts  is the uniform impulse train and T  is the 

sampling period. Using the definition of the PFT, we have  
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Equation (2) shows how to obtain the PFT of a discrete time 

signal  .nTf  We refer to it as the discrete-time PFT.  

 

B. The PFT Relationships with Other Transforms 

Definition 2. For ,1M  the FT can be expressed in terms 

of the first-order PFT as follows 
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Definition 3. For   csc,2 uM   and   cot1   in 

(1), the FrFT can be expressed in terms of the second-order 

PFT as 
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Definition 4. For u
b

M
1

,2    and 
b

a
1  in (1), the 

LCT can be expressed in terms of the second-order PFT as 

follows 
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Definition 5. For  0

1
,2 uu

b
M    and 

b

a
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(1), the OLCT can be expressed in terms of the second-order 

PFT as 
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From Definition 2 we can see that the PFT is a 

generalization of the FT. By choosing M  we can derive 

FrFT, LCT and OLCT through PFT, as shown in Definitions 

3, 4 and 5, respectively. 

 

C. The Convolution Theory 

Convolution is a fundamental mathematical operation on 

two functions. The output of any continuous time LTI system 

is found via the convolution of the input signal with the 

system impulse response [1]–[3], [5], [7]–[16]. 

In the general framework of convolution theory, it is 

known that to every integral transformation ,Τ  one can, at 

least theoretically, associate with it a convolution operation, 

,  such that [12], [16] 
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The convolution of the FT is defined as the integral of the 

product of the two functions after one is reversed and shifted. 

As such, it is a particular kind of integral transform 
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The convolution theorem of the FT for the signals  tf  

and  tg  with their FTs,  fFT  and  ,gFT  respectively 

is defined as [1]–[3], [5], [13], [14], [16] 
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where “ ” denotes the convolution operation. 

The powerful result of this theorem is that the convolution 

of two signals  tf  and  tg  results in a simple 

multiplication of their FTs in the FT domain. 

Convolution is similar to cross-correlation. If  g  is a 

symmetrical function    , gg   convolution is 

equivalent to correlation. 
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For all gf ,  and h  in Lebesgue space  ,1 L  the 

following properties are valid [1]: 

Property 1. (Commutativity) 

 

.fggf 

  

Property 2. (Associativity) 
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Property 3. (Distributivity) 
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The above properties are fundamental properties of the 

convolution. 

 

III. CONVOLUTION THEOREM FOR THE PFT 

In this section, we give the definition and theorem of the 

newly defined convolution of the PFT. Then we obtain some 

fundamental properties and basic inequalities of this 

convolution. We also show that the convolution theorem in 

the FT domain can be seen as a special case of our achieved 

result. 

 

A. New Definition of Convolution for the PFT 

Let us first define a weight function  ,tW  by 
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Definition 6. Let us denote the convolution operation by 

“  ”, and the convolution of any two functions in time 

domain is 
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If the weight function  ,tW  is changed to   ,1, tW  

the Equation (3) reduces to the conventional convolution in 

FT domain, and if     ,, batietW    the Equation (3) is a 

conventional convolution in LCT domain [13], [14]. 

 

B. Properties of Convolution for the PFT 

In this subsection we give commutativity, associativity, 

and distributivity properties of the PFT with its detailed 

proofs. 

 For all hgf ,,  in Lebesgue space  ,1 L  the following 

properties are valid: 

Property 4. (Commutativity) 
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Proof. A simple calculation gives 
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This finishes the proof.  

 

Property 5. (Associativity) 
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Proof. By using Definition 6 and Property 2 of convolution 

the Property 5 may be written as 
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Similar to the above changes, we let 
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Then we have 

 

     
     .,

,

hgfhgfe

hgfehgf

vi

vi

M

M









 

 

The proof of Property 5 is completed. 

Property 6. (Distributivity) 
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Proof. To prove Property 6 we use the change 
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Thanks to (4) and (5), we obtain the proof of first part of 

Property 6 as follows 
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The second part of Property 6 can be proven in a similar 

way; so it is omitted. 

 

C. Basic Convolution Inequalities 

As pointed out by Grafakos in [1], the most fundamental 

inequalities involving convolutions are the Minkowski’s 

inequality and Young’s inequality. 

Theorem 1. (Minkowski’s inequality) Let ,1  p  for 

  pLf  and   1Lg  we have 
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Proof. We may assume that ,1  p  since the cases 

1p  and p  are simple. Clearly, we have 
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With (7) and (8), we derive 
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Taking pL  norms of both sides of (9) and using Fubini’s 

theorem, we have 

 

 
  

     

     

     

     

   

   
.

~

1

1

11

'

1

1

'

1

1

'

1

1

'

1






















































































































































































































































































 

 

 



p

p

LL

p
p

p
p

pp

p
p

p

p
pp

p

p

p

p

p
p

L

fg

dttfdg

dttfdgdg

ddttfgdg

ddttfgdg

dtdgdtfg

dttfgfg











 

 

The proof is completed.  

Minkowski’s inequality (6) is only a special case of 

Young’s inequality in which the function g  can be in any 

space  rL  for .1  r  

Theorem 2. (Young’s inequality) Let  rqp ,,1  

satisfy 
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Using Hölder’s inequality, we get 
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Taking qL  norms of both sides of (10) and using Fubini’s 

theorem, we derive 
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then, we get the following result 
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which completes the proof. 

 

D. The Convolution Theorem for the PFT 

The following theorem introduces a new convolution 

structure for the PFT.  

Theorem 3. The  gfPFT   is PFT of gf   and fPFT  

and gPFT  denote the PFT of f  and ,g  respectively. Then 

 

     . gfgf PFTPFTPFT                   (11) 

Proof. The weight function  ,tW  can be rewritten in the 

following form 
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After using the formula (11), it becomes as follows 
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Formula (12) can be expressed as 
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By making a integral transform 
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here its Jacobi determinant can be calculated as 
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We get 
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Further 
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or 

 

       .*  gf

PFT

PFTPFTtgtf   

 

The proof is completed.  

The result of this theorem is that the convolution of signals 

f  and g  in the time domain results in a simple 

multiplication of their PFTs in the PFT domain. The 

convolution theorem of the PFT is a generalization of that of 

the FT. The convolution theorem provides a filtering 

perspective to how a LTI system operates on an input signal, 

so that this theorem can be useful in practical analog filtering 

in PFT domain. 

 

IV. CONCLUSION 

The most fundamental and important property of the FT is 
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convolution. Convolution is mathematical operation which 

has widely been used in the theory of LTI systems. In this 

paper, we have proposed an expression for the PFT of 

convolution integral, from which the convolution theorem 

for PFT was obtained. The derived theorem is a 

generalization of convolution theorem of FT. Our results can 

be applied in parameter estimation [26], [34], [35] and in 

filter design [6], [7] in the PFT domain, including two 

research directions: a) Designing of multiplicative filters 

through the product in the PFT domain, and b) Designing of 

multiplicative filters through the new convolution in the time 

domain. The reconstruction of band-limited signals [8] in the 

PFT domain is one of the potential applications of the PFT’s 

convolution theorem, which will be shown in our future 

works.  
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