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Abstract—There are a lot of nanomaterials and related
chemical substances synthesized in the laboratory every year,
which makes the test of their performance has become a
hard work. The theory of nanoscience from the perspective
of graph theory provides an excellent idea, characteristics of
the nanomaterials can be obtained by calculating topological
indices in their corresponding molecular graphs, and have
attracted the attention of scholars in the field of nanoscience. In
this paper, we learn the characteristics of nanostructures from
mathematical point of view. Some important nanomaterials are
selected and their multiplicative atom-bond connectivity indices
are determined by edge set divided trick. These theoretical
results can be considered as a guideline in nanoengineering.

Index Terms—theoretical nanoscience, multiplicative atom-
bond connectivity index, nanotubes, nanotori dendrimer, nanos-
tar.

I. I NTRODUCTION

OVER the years, the theoretical nanoscience has at-
tracted more and more attention of scholars, the com-

putational results are applied to nanoscience, biological, and
pharmaceutical science fields. One of the important research
branch of theoretical nanoscience can be stated as follows:
the nanostructures related molecular structure is expressed
by graphs, by calculating the topological index we can
get the properties of the corresponding nanostructures. This
technology can obtain effective results in the absence of
experimental conditions, which is interested by the scholars
from developing countries and regions. Gradually, as the
development computing tricks, it has become an important
branch in the field of theoretical nanoscience, and concerned
by scientists from various fields (see Balaban [1], Munteanu
et al. [2], Buscema et al. [3], Gao et al. [5], [4], Sirimulla
et al. [6], Bodlaj and Batagelj [7], Nadeem and Shaker [8],
Nistor and Troitsky [9], Arockiaraj et al. [10], Khakpoor and
Keshe [11], and Ivanciuc [12] for more details).

We only consider simple nanostructure related molecular
graph (each vertex represents as an atom and each edge
expresses as a chemical bond) in our paper. LetG be a
molecular graph with vertex setV (G) and edge setE(G).
For each vertexv, the degreed(v) of v is the number of
vertices adjacent tov. A topological index can be regarded as
a real functionf : G → R which maps each molecular graph
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to a real number. In the past four decades, inspired by appli-
cations from the chemical engineering, many degree-based,
spectral-based or distance-based indices were introduced,
such as Zagreb index, atom-bond connectivity index, Wiener
index, Harary index, Szeged index, PI index, eccentric con-
nectivity index, harmonic index, Zagreb index and so on.
Moreover, there are several advancements on distance-based,
spectral-based, degree-based indices of special nanomaterial
molecular structures which can be referred to Ramane and
Jummannaver [13], Zhao and Wu [14], Sardar [15], Gao and
Wang [16], [17], Gao et al. [18], [47], [48], Gao and Siddiqui
[21], Abdo et al. [22], Basavanagoud [23], Sunilkumar et al.
[24], and Guirao and de Bustos [25].

Estrada and Torres [26] introduced a new topological index
called the atom-bond connectivity index (in short, theABC
index) which reflect the properties of alkanes. The atom-bond
connectivity index of a molecular graphG can be stated as

ABC(G) =
∑

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
.

Dehghan-Zadeh et al. [27] determined the first and second
maximum values of the atom-bond connectivity index of
tetracyclic graphs withn vertex. Ashrafi and Dehghan-Zadeh
[28] studied the first and the second maximum values of
the ABC index of cactus graphs with fixed vertex number.
Goubko et al. [29] raised a counterexample for the previous
conclusion. Husin et al. [30] researched theABC index of
two families of nanostar dendrimers. Dehghan-Zadeh and
Ashrafi [31] derived theABC index of quasi-tree graphs.
Dimitrov [32] proposed an efficient computation approach
of trees with the smallest atom-bond connectivity index. The
structural characters of trees with a minimalABC index were
considered [35], [33], [34], [36], [37].

As a variant of the ABC index, the first multiplicative
atom-bond connectivity index is formulated by

ABCΠ(G) =
∏

uv∈E(G)

√
d(u) + d(v)− 2

d(u)d(v)
,

which was defined in Kulli [38]. In Kulli’s work, he deter-
mined the first multiplicative atom-bond connectivity index
of V C5C7[p, q] andHC5C7[p, q] nanotubes.

Furthermore, Kulli [39] introduced the fourth multiplica-
tive atom-bond connectivity index which can be represented
as

ABC4Π(G) =
∏

uv∈E(G)

√
S(u) + S(v)− 2

S(u)S(v)
,

whereS(v) =
∑

uv∈E(G) d(u) for eachv ∈ V (G).
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Fig. 1. Web graphWn, m.

Fig. 2. The structure ofCn,m.

A. Examples on computing of first multiplicative atom-bond
connectivity index

Now, we present some of the examples about the calculat-
ing process of the first multiplicative atom bond connectivity
index.

Example 1. Wn = K1 ∨ Cn−1 is called wheel
graph. By simple computation, we haveABCΠ1(Wn) =
( 2
3 )n−1(

√
n

3(n−1) )
n−1.

Example 2.Let n andm be two positive integers. The web
graphW (n, m) is constructed from the Cartesian product of
cycle Cn and pathPm (see Figure 1 as an example).

By analyzing the structure of web graphW (n, m), if m =
2, it easy to get

ABCΠ1(W (n, m)) = (

√
3 + 3− 2

3 · 3
)3n = (

2
3
)3n.

If m ≥ 2, then the first multiplicative atom bond connectivity
index of web graphW (n, m) is

ABCΠ1(W (n, m))

= (

√
3 + 3− 2

3 · 3
)2n(

√
4 + 4− 2

4 · 4
)n(2m−5)

×(

√
3 + 4− 2

3 · 4
)2n

= (
2
3
)2n(

√
6

4
)n(2m−5)(

√
5
12

)2n.

In the following three examples, we show the value of
ABCΠ1 index for three kinds of vertex gluing graphs.

Example 3. Let Cn,m be a graph constructed from two
cyclesCn and Cm with one common vertex (see Figure 2
as an example).

Using the definition of the first multiplicative atom bond
connectivity index, we get

ABCΠ1(Cn,m)

= (

√
2 + 2− 2

2 · 2
)m+n−4(

√
2 + 4− 2

2 · 4
)4 = (

√
1
2
)n+m.

Fig. 3. The structure ofWn,m.

Fig. 4. The structure ofK(n, m).

Example 4. Let Wn,m be a graph constructed from two
wheel graphsWn and Wm with one common vertex (see
Figure 3 as an instance).

According to its graph structure analysis, we obtain

ABCΠ1(Wn,m)

= (

√
3 + 3− 2

3 · 3
)m+n−6(

√
6 + 3− 2

6 · 3
)4

×(

√
(n− 1) + 3− 2

(n− 1) · 3
)n−2(

√
(m− 1) + 3− 2

(m− 1) · 3
)m−2

×

√
(n− 1) + 6− 2

(n− 1) · 6

√
(m− 1) + 6− 2

(m− 1) · 6

= (
2
3
)m+n−6(

√
7
18

)4(
√

n

3(n− 1)
)n−2

×(
√

m

3(m− 1)
)m−2

√
n + 3

6(n− 1)

√
m + 3

6(m− 1)
.

Example 5.Let K(n, m) be a graph constructed from two
complete graphsKn andKm with one common vertex (see
Figure 4 as an instance).
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By means of simple calculation, we yield

ABCΠ1(K(n, m))

= (

√
(n− 1) + (n− 1)− 2

(n− 1) · (n− 1)
)

(n−1)(n−2)
2

×(

√
(m− 1) + (m− 1)− 2

(m− 1) · (m− 1)
)

(m−1)(m−2)
2

×(

√
(m− 1) + (m + n− 2)− 2

(m− 1) · (m + n− 2)
)m−1

×(

√
(n− 1) + (m + n− 2)− 2

(n− 1) · (m + n− 2)
)n−1

= (
√

2n− 4
n− 1

)
(n−1)(n−2)

2 (
√

2m− 4
m− 1

)
(m−1)(m−2)

2

×(

√
2m + n− 5

(m− 1)(m + n− 2)
)m−1

×(

√
2n + m− 5

(n− 1)(m + n− 2)
)n−1.

B. Organization of the rest paper

So far, there have been numerous theoretical results about
ABC index, but on the degree-based multiplication of ABC
index is also very small. As a variable of the original ABC
index, degree-based multiplication ABC indices have a broad
application prospect, it is worthy of further study. This
motivates us to calculate some important chemical molecular
structure of ABC multiplication index.

The rest of paper is organized as follows: first, we deter-
mine the fourth multiplication ABC index of V-phenylenic
nanotubes and nanotori; then, the first multiplication ABC
index of TUC4C8[p, q] and otherC4C8 net are considered;
next, the first multiplication ABC index ofNS1[n] and
two classes of dendrimer nanostars (D1[n] and D3[n]) are
computed; at last, the first multiplication ABC index of
carbon nanoconesCm[n] are calculated.

II. M AIN RESULTS AND PROOFS

In this section, we present the main results and their detail
proofs. The trick to get these conclusions is followed by edge
set dividing technology.

A. Fourth multiplication ABC index of V-phenylenic nan-
otubes and nanotori

The aim of this section is to determine the fourth multi-
plication ABC index of V-phenylenic nanotube and nanotori.
The novel phenylenic and naphthylenic lattices consist of a
square net embedded on the toroidal surface. As polycyclic
conjugated molecules, phenylenes are composed of square
and hexagons in which each 4-membered ring is adjacent to
two 6-membered cycles, and no two 6-membered rings are
adjacent mutually. We denote V-phenylenic nanotube and V-
phenylenic nanotorus asV PHX[m,n] and V PHY [m,n],
respectively. The representation of these two kinds of nanos-
tructures are manifested in Figure 5 and Figure 6, respec-
tively.

Foregone results on V-phenylenic nanotubes and nanotori
can refer to Yousefi-Azari et al. [40], Alamian et al. [41],

Fig. 5. The structure of V-phenylenic nanotubeV PHX[m, n].

Fig. 6. The structure of V-phenylenic nanotorusV PHY [m, n].

Ashrafi et al. [42], Bahrami and Yazdani [43], Ghorbani et
al. [44], Moradi and Baba-Rahim [45], Farahani [46] and
Gao et al. [47], [48], [49] and [50]. The main computing
conclusion is formulated as follows.
Theorem 1Let n andm be two positive integers. The fourth
multiplication ABC index of V-phenylenic nanotubes and
nanotori are

ABC4Π(V PHX[m,n]) = (
1
2
)4m(

7
32

)m(
5
24

)m(
4
9
)9mn−9m

and
ABC4Π(V PHY [m,n]) = (

4
9
)9mn.

Proof. The proof is followed by edge set dividing approach in
which the edge set is separated into several subsets according
to the value ofS(u) andS(v).

By analysis the molecular structure of V-phenylenic nan-
otubesV PHX[m,n], we see that its edge set can be divided
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into the following four parts:
• e = (u, v): S(u) = 6 and S(v) = 8, and there are4m
such edges;
• e = (u, v): S(u) = S(v) = 8, and there are2m such
edges;
• e = (u, v): S(u) = 8 and S(v) = 9, and there are2m
such edges;
• e = (u, v): S(u) = S(v) = 9, and there are9mn − 9m
such edges.

In light of the definition of the fourth multiplication ABC
index, we have

ABC4Π(V PHX[m,n])

=
∏

uv∈E(V PHX[m,n])

√
Su + Sv − 2

SuSv

= (

√
6 + 8− 2

6× 8
)4m(

√
8 + 8− 2

8× 8
)2m(

√
8 + 9− 2

8× 9
)2m

×(

√
9 + 9− 2

9× 9
)9mn−9m

= (
1
2
)4m(

√
7
32

)2m(

√
5
24

)2m(
4
9
)9mn−9m.

For V-phenylenic nanotoriV PHY [m,n], this is a 3-
regular molecular graph withd(v) = 3 for each v ∈
V (V PHY [m,n]), and thusS(v) = 9 for vertexv. In view
of the definition of the fourth multiplication ABC index, we
get

ABC4Π(V PHY [m,n]) = (

√
9 + 9− 2

9× 9
)9mn = (

4
9
)9mn.

Hence, we obtain the desired results. 2

B. The first multiplication ABC index of nanostructures

The aim of this section is to yield the first multiplication
ABC index of TUC4C8[p, q], where q is the number of
rows andp is the number of columns. Then we determine
this topological index for its nanotubes. At last, the first
multiplication ABC index ofTUC4C8[p, q] (can be seen in
Figure 7) is yielded. In this subsection, we always assume
p, q ∈ N.

Theorem 2 Let G = TUC4C8[p, q] be the two dimen-
sional molecular lattice structure depicted in Figure 7. Then,

ABC1Π(G) = (
1
2
)3p+3q−2(

2
3
)12pq−8(p+q)+4.

Proof. By analysis its structure, its edge set can be divided
into three subsets:
• e = (u, v): d(u) = d(v) = 2, and there are2p + 2q + 4
such edges;
• e = (u, v): d(u) = 2 and d(v) = 3, and there are4p +
4q − 8 such edges;
• e = (u, v): d(u) = d(v) = 3, and there are12pq − 8(p +
q) + 4 such edges.

In term of the definition of the first multiplication ABC

Fig. 7. The structure of 2-D LatticeC4C8[4, 4].

Fig. 8. The structure of 2-D graph ofC4C8[4, 4] nanotube.

index, we infer

ABC1Π(G) =
∏

uv∈E(G)

√
du + dv − 2

dudv

= (

√
2 + 2− 2

2× 2
)2p+2q+4(

√
2 + 3− 2

2× 3
)4p+4q−8

×(

√
3 + 3− 2

3× 3
)12pq−8(p+q)+4

= (

√
1
2
)2p+2q+4(

√
1
2
)4p+4q−8(

2
3
)12pq−8(p+q)+4.

Hence, the formula in the theorem is correct. 2

Theorem 3 Let G be the two dimensionalC4C8[p, q]
nanotube described in Figure 8. Then,

ABC1Π(G) = (
1
2
)3p(

2
3
)12pq−8p.
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Fig. 9. The structure of 2-D graph ofC4C8[4, 4] nanotorus.

Proof. Similarly, its edge set can be divided into three
subsets:
• e = (u, v): d(u) = d(v) = 2, and there are2p such edges;
• e = (u, v): d(u) = 2 andd(v) = 3, and there are4p such
edges;
• e = (u, v): d(u) = d(v) = 3, and there are12pq − 8p
such edges.

By virtue of the definition of the first multiplication ABC
index, we deduce

ABC1Π(G) = (

√
2 + 2− 2

2× 2
)2p(

√
2 + 3− 2

2× 3
)4p

×(

√
3 + 3− 2

3× 3
)12pq−8p

= (

√
1
2
)2p(

√
1
2
)4p(

2
3
)12pq−8p.

Therefore, we verify the expected conclusion. 2

Theorem 4 Let G be the two dimensionalC4C8[p, q]
nanotori described in Figure 9. Then,

ABC1Π(G) = (
2
3
)12pq.

Proof. Since C4C8[p, q] nanotori is a 3-regular molecular
graph with12pq edges. We directly get the result 2

C. The first multiplication ABC index ofNS1[n]

In this part, we raise the first multiplication ABC index of
an infinite class ofNS1[n] (as examples, the basic structures
of NS1[n] can be seen in Figure 10, Figure 11 and Figure
12).

Theorem 5Let n ∈ N be the step number of growth. The
first multiplication ABC index ofNS1[n] is given by

ABC1Π(NS1[n]) =
√

3
2

(

√
1
2
)27·2

n−9(

√
5
12

)3.

Proof. By analysisE(NS1[n]), we have four separate sub-
sets listed as follows:
• e = (u, v): d(u) = 1 and d(v) = 4, and there one edge

Fig. 10. The molecular structure ofNS1[1].

Fig. 11. The molecular structure ofNS1[2].

Fig. 12. The molecular structure ofNS1[3].

in this subset;
• e = (u, v): d(u) = d(v) = 2, and there are9 ·2n +3 such
edges;
• e = (u, v): d(u) = 2 and d(v) = 3, and there are

IAENG International Journal of Applied Mathematics, 47:4, IJAM_47_4_04

(Advance online publication: 17 November 2017)

 
______________________________________________________________________________________ 



18 · 2n − 12 such edges;
• e = (u, v): d(u) = 3 and d(v) = 4, and there are three
such edges.

Hence, using the definition of the first multiplication ABC
index, we derive

ABC1Π(NS1[n]) =
∏

uv∈E(NS1[n])

√
du + dv − 2

dudv

= (

√
1 + 4− 2

1× 4
)(

√
2 + 2− 2

2× 2
)9·2

n+3

×(

√
2 + 3− 2

2× 3
)18·2

n−12(

√
3 + 4− 2

3× 4
)3

=
√

3
2

(

√
1
2
)27·2

n−9(

√
5
12

)3.

The proof is completed. 2

D. The first multiplication ABC index of dendrimer nanos-
tars D1[n] and D3[n]

Here, we discuss the first multiplication ABC index of
dendrimer nanostarsD1[n] and D3[n], where these two
molecular structures are widely appeared in the chemical
compounds, drugs, and nanomaterials.

Theorem 6 Let n ∈ N be the number of steps of
growth, then the first multiplication ABC index of dendrimer
nanostarsD1[n] is stated as

ABC1Π(D1[n]) =

√
2
3
(
1
2
)9·2

n−6.

Proof. Its edge set can be divided into three subsets:
• e = (u, v): d(u) = 1 and d(v) = 3, and there one edge
in this subset;
• e = (u, v): d(u) = d(v) = 2, and there are6 ·2n−2 such
edges;
• e = (u, v): d(u) = 2 and d(v) = 3, and there are12 ·
2n − 10 such edges.

Hence, according to the definition of the first multiplica-
tion ABC index, we get

ABC1Π(D1[n]) =
∏

uv∈E(D1[n])

√
du + dv − 2

dudv

= (

√
1 + 3− 2

1× 3
)(

√
2 + 2− 2

2× 2
)6·2

n−2

×(

√
2 + 3− 2

2× 3
)12·2

n−10

=

√
2
3
(

√
1
2
)18·2

n−12.

The desired result is obtained. 2

As an instance, the molecular structure ofD3[3] is pre-
sented in Figure 13.

Theorem 7 Let n ∈ N be the number of steps of
growth, then the first multiplication ABC index of dendrimer
nanostarsD3[n] is stated as

ABC1Π(D3[n]) = (

√
2
3
)3·2

n

(
1
2
)18·2

n−9(
2
3
)9·2

n−6.

Proof. The setE(NS3[n]) can be divided into following four
parts:
• e = (u, v): d(u) = 1 andd(v) = 3, and there3 · 2n edges

Fig. 13. The example ofD3[n]: n = 3.

in this subset;
• e = (u, v): d(u) = d(v) = 2, and there are12 · 2n − 6
such edges;
• e = (u, v): d(u) = 2 and d(v) = 3, and there are24 ·
2n − 12 such edges;
• e = (u, v): d(u) = d(v) = 3, and there are9 ·2n−6 such
edges.

Hence, using the definition of the first multiplication ABC
index, we derive

ABC1Π(D3[n]) =
∏

uv∈E(D3[n])

√
du + dv − 2

dudv

= (

√
1 + 3− 2

1× 3
)3·2

n

(

√
2 + 2− 2

2× 2
)12·2

n−6

×(

√
2 + 3− 2

2× 3
)24·2

n−12(

√
3 + 3− 2

3× 3
)9·2

n−6

= (

√
2
3
)3·2

n

(

√
1
2
)36·2

n−18(
2
3
)9·2

n−6.

We complete the proof. 2

E. The first multiplication ABC index of carbon nanocones

Now, we compute the first multiplication ABC index of
carbon nanoconesCNCm[n] = Cm[n] (see Figure 14 as an
example of carbon nanocone).

Theorem 8Let m ≥ 3 andn ≥ 1 be two positive integers,
then the first multiplication ABC index of carbon nanocones
Cm[n] can be expressed as

ABC1Π(Cm[n]) = (

√
1
2
)2mn+m(

2
3
)

m(3n2+n)
2 .

Proof. By analysis the molecular structure of carbon
nanoconesCm[n], we found that its edge set can be divided
into three parts:
• e = (u, v): d(u) = d(v) = 2, and there arem such edges;
• e = (u, v): d(u) = 2 and d(v) = 3, and there are2mn
such edges;
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Fig. 14. The example of carbon nanoconeCm[n].

• e = (u, v): d(u) = d(v) = 3, and there arem(3n2+n)
2

such edges.
Then, by means of the definition of the first multiplication

ABC index, we derive

ABC1Π(Cm[n]) =
∏

uv∈E(Cm[n])

√
du + dv − 2

dudv

= (

√
2 + 2− 2

2× 2
)m(

√
2 + 3− 2

2× 3
)2mn

×(

√
3 + 3− 2

3× 3
)

m(3n2+n)
2

= (

√
1
2
)2mn+m(

2
3
)

m(3n2+n)
2 .

Hence, we check the desired result. 2

F. The fifth multiplication ABC index ofNAn
m nanotubes

The eccentricityec(u) of vertex u ∈ V (G) is defined as
the maximum distance betweenu and any other vertex inG.
Gao et al. [51] introduced the fifth multiplicative atom bond
connectivity index which was stated as

ABCΠ5(G) =
∏

uv∈E(G)

√
ec(u) + ec(v)− 2

ec(u)ec(v)
.

The structure of ofNAn
m nanotubes was discussed by

Bac et al. [52] as follows: consider them× n quadrilateral
sectionPn

m with m ≥ 2 hexagons on the top and bottom
sides andn ≥ 2 hexagons on the lateral sides cut from the
regular hexagonal latticeL. If we identify two lateral sides
of Pn

m such that we identify the verticesuj
0 and uj

m, for
j = 0, 1, 2, · · · , n, then theNAn

m nanotubes are obtained.
The detailed structure ofNAn

m nanotubes nanotube can refer
to Figure 15. In this part, we studyNAn

m nanotube with
n = m and it’s fifth multiplication ABC index is determined.

Theorem 9 The fifth multiplication ABC index ofNAn
m

nanotubes can be expressed as follows:

Fig. 15. The structure ofNAn
m nanotubes nanotube.

• If n ≡ 0(mod2), then

ABC5Π(NAn
m) =

n
2∏

i=1

2n−1∏
p= 3n

2

(
√

2p− 1
p2 + p

)6i−3

×
∏
p=n

(
√

4p− 1
4p2 + 2p

)3n
∏
p=n

4p

(2p− 1)2

×
∏

i= n
2 +3

5n
2 −1∏

p=2n+1

(
√

2p− 1
p2 + p

)(
n
2−1)(6i−16)

×
∏

i=3n+6,j∈{0,··· , n
2−1}

3n−1∏
p= 5n

2

(
√

2p− 1
p2 + p

)6n−i.

• If n ≡ 1(mod4), then

ABC5Π(NAn
m)

=
√

2p− 2
p

5n−1
2 ,p≡0(mod2)∏

p= 3n+1
2

(
√

2p− 2
p2

)n−1

×

n−3
2 ,i≡1(mod2)∏

i=1

2n−2,p≡0(mod2)∏
p= 3n+1

2

(
√

2p− 1
p2 + p

)4i

×

n−1
2 ,i≡0(mod2)∏

i=2

2n−1,p≡1(mod2)∏
p= 3n+3

2

(
√

2p− 1
p2 + p

)8i−2

×

5n−1
2 ,p≡0(mod2)∏

p=2n

(
√

2p− 1
p2 + p

)
(n+3)(n+1)

2

×

5n−3
2 ,p≡1(mod2)∏

p=2n+1

(
√

2p− 1
p2 + p

)n(n−1)

×

n−1
4∏

i=1

3n−2,p≡1(mod2)∏
p= 5n+1

2

(
√

2p− 1
p2 + p

)16i
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×

n−3
2 ,i≡1(mod2)∏

i=1

3n−1,p≡0(mod2)∏
p= 5n+3

2

(
√

2p− 1
p2 + p

)4i.

• If n ≡ 3(mod4), then

ABC5Π(NAn
m)

=

5n+1
2 ,p≡0(mod2)∏

p= 3n+3
2

(
√

2p− 2
p2

)n+1

×

n+1
4∏

i=1

2n−1,p≡1(mod2)∏
p= 3n+1

2

(
√

2p− 1
p2 + p

)16i−10

×

n+1
4∏

i=1

2n,p≡0(mod2)∏
p= 3n+3

2

(
√

2p− 1
p2 + p

)8i

×

5n−1
2 ,p≡1(mod2)∏

p=2n+1

(
√

2p− 1
p2 + p

)n(n+1)

×

5n−3
2 ,p≡0(mod2)∏

p=2n+2

(
√

2p− 1
p2 + p

)
(n+1)(n−3)

2

×

n−3
4 ,n6=3∏
i=1

3n−2,p≡0(mod2)∏
p= 5n+3

2 ,n6=3

(
√

2p− 1
p2 + p

)16i

×

n+1
4 ,n6=3∏
i=1

3n−1,p≡0(mod2)∏
p= 5n+1

2

(
√

2p− 1
p2 + p

)8i−4.

Proof. The whole proof can be divided into three parts
according to the value ofn.

Case 1.n ≡ 0(mod2).
In this case, the edge set ofNAn

m nanotubes can be
divided into five parts according to the value ofec(u) and
ec(v):
• ec(u) = p and ec(v) = p + 1 where
p ∈ {2n − n

2 , · · · , 2n − 1}, and there are6i − 3 such
edges withi ∈ {1, · · · , n

2 };
• ec(u) = 2p andec(v) = 2p + 1 wherep = n ≡ 0(mod2),
and there are3n such edges withn ≡ 0(mod2);
• ec(u) = ec(v) = 2p + 1 wherep = n ≡ 0(mod2), and
there are2 such edges;
• ec(u) = p and ec(v) = p + 1 where
p ∈ {2n + 1, · · · , 5n

2 − 1}, and there are(n
2 − 1)(3n + 2)

such edges;
• ec(u) = p andec(v) = p+1 wherep ∈ { 5n

2 , · · · , 3n−1},
and there are6n − i such edges withi = 3n + 6j and
j ∈ {0, · · · , n

2 − 1}.

In terms of the definition of the fifth multiplication ABC
index, we have

ABC5Π(NAn
m)

=
∏

uv∈E(NAn
m)

√
ec(u) + ec(v)− 2

ec(u)ec(v)

=

n
2∏

i=1

2n−1∏
p= 3n

2

(
√

2p− 1
p2 + p

)6i−3

×
∏
p=n

(
√

4p− 1
4p2 + 2p

)3n
∏
p=n

4p

(2p− 1)2

×
∏

i= n
2 +3

5n
2 −1∏

p=2n+1

(
√

2p− 1
p2 + p

)(
n
2−1)(6i−16)

×
∏

i=3n+6,j∈{0,··· , n
2−1}

3n−1∏
p= 5n

2

(
√

2p− 1
p2 + p

)6n−i.

Case 2.n ≡ 1(mod4).
In this case, the edge set ofNAn

m nanotubes can be
divided into eight parts according to the value ofec(u) and
ec(v):
• ec(u) = ec(v) = p wherep = n ≡ 0(mod2), and there
only one such edge;
• ec(u) = ec(v) = p where 3n+1

2 < p ≤ 5n−1
2 and

p ≡ 0(mod2), and theren− 1 such edges;
• ec(u) = p andec(v) = p + 1 where 3n+1

2 ≤ p ≤ 2n− 2
and p ≡ 0(mod2), and there are4i such edges with
i ∈ {1, · · · , n−3

2 } and i ≡ 1(mod2);
• ec(u) = p andec(v) = p + 1 where 3n+3

2 ≤ p ≤ 2n− 1
and p ≡ 0(mod2), and there are8i − 2 such edges with
i ∈ {2, · · · , n−1

2 } and i ≡ 0(mod2);
• ec(u) = p andec(v) = p + 1 where2n ≤ p ≤ 5n−1

2 and
p ≡ 0(mod2), and there are(n+3)(n+1)

2 such edges;
• ec(u) = p andec(v) = p + 1 where2n + 1 ≤ p ≤ 5n−3

2
andp ≡ 1(mod2), and there aren2 − n such edges;
• ec(u) = p andec(v) = p + 1 where 5n+1

2 ≤ p ≤ 3n− 2
and p ≡ 1(mod2), and there are16i such edges with
i ∈ {1, · · · , n−1

4 };
• ec(u) = p andec(v) = p + 1 where 5n+3

2 ≤ p ≤ 3n− 1
and p ≡ 0(mod2), and there are4i such edges with
i ∈ {1, · · · , n−3

2 } and i ≡ 1(mod2).
In view of the definition of the fifth multiplication ABC

index, we get

ABC5Π(NAn
m)

=
∏

uv∈E(NAn
m)

√
ec(u) + ec(v)− 2

ec(u)ec(v)

=
√

2p− 2
p

5n−1
2 ,p≡0(mod2)∏

p= 3n+1
2

(
√

2p− 2
p2

)n−1

×

n−3
2 ,i≡1(mod2)∏

i=1

2n−2,p≡0(mod2)∏
p= 3n+1

2

(
√

2p− 1
p2 + p

)4i

×

n−1
2 ,i≡0(mod2)∏

i=2

2n−1,p≡1(mod2)∏
p= 3n+3

2

(
√

2p− 1
p2 + p

)8i−2

×

5n−1
2 ,p≡0(mod2)∏

p=2n

(
√

2p− 1
p2 + p

)
(n+3)(n+1)

2

×

5n−3
2 ,p≡1(mod2)∏

p=2n+1

(
√

2p− 1
p2 + p

)n(n−1)

×

n−1
4∏

i=1

3n−2,p≡1(mod2)∏
p= 5n+1

2

(
√

2p− 1
p2 + p

)16i
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×

n−3
2 ,i≡1(mod2)∏

i=1

3n−1,p≡0(mod2)∏
p= 5n+3

2

(
√

2p− 1
p2 + p

)4i.

Case 3.n ≡ 3(mod4).
In this case, the edge set ofNAn

m nanotubes can be
divided into seven parts according to the value ofec(u) and
ec(v):
• ec(u) = ec(v) = p wherep ∈ { 3n+3

2 , · · · , 5n+1
5 }, and

theren + 1 such edge;
• ec(u) = p andec(v) = p + 1 where 3n+1

2 ≤ p ≤ 2n− 1
and p ≡ 1(mod2), and there are16i − 10 such edges with
i ∈ {1, · · · , n+1

4 };
• ec(u) = p and ec(v) = p + 1 where 3n+3

2 ≤ p ≤ 2n
and p ≡ 0(mod2), and there are8i such edges with
i ∈ {1, · · · , n+1

4 };
• ec(u) = p andec(v) = p + 1 where2n + 1 ≤ p ≤ 5n−1

2
andp ≡ 1(mod2), and there aren(n + 1) such edges;
• ec(u) = p andec(v) = p + 1 where2n + 2 ≤ p ≤ 5n−3

2 ,
p ≡ 0(mod2) andn 6= 3, and there are(n+1)(n−3)

2 such
edges withn 6= 3;
• ec(u) = p andec(v) = p + 1 where 5n+3

2 ≤ p ≤ 3n− 2,
p ≡ 1(mod2) andn 6= 3, and there are16i such edges with
i ∈ {1, · · · , n−3

4 } andn 6= 3;
• ec(u) = p andec(v) = p + 1 where 5n+1

2 ≤ p ≤ 3n− 1,
p ≡ 0(mod2), and there are8i − 4 such edges with
i ∈ {1, · · · , n+1

4 }.
In light of the definition of the fifth multiplication ABC

index, we infer

ABC5Π(NAn
m)

=
∏

uv∈E(NAn
m)

√
ec(u) + ec(v)− 2

ec(u)ec(v)

=

5n+1
2 ,p≡0(mod2)∏

p= 3n+3
2

(
√

2p− 2
p2

)n+1

×

n+1
4∏

i=1

2n−1,p≡1(mod2)∏
p= 3n+1

2

(
√

2p− 1
p2 + p

)16i−10

×

n+1
4∏

i=1

2n,p≡0(mod2)∏
p= 3n+3

2

(
√

2p− 1
p2 + p

)8i

×

5n−1
2 ,p≡1(mod2)∏

p=2n+1

(
√

2p− 1
p2 + p

)n(n+1)

×

5n−3
2 ,p≡0(mod2)∏

p=2n+2

(
√

2p− 1
p2 + p

)
(n+1)(n−3)

2

×

n−3
4 ,n6=3∏
i=1

3n−2,p≡0(mod2)∏
p= 5n+3

2 ,n6=3

(
√

2p− 1
p2 + p

)16i

×

n+1
4 ,n6=3∏
i=1

3n−1,p≡0(mod2)∏
p= 5n+1

2

(
√

2p− 1
p2 + p

)8i−4.

From what we have discussed in above three cases, we
deduce the desired result. 2

III. C ONCLUSION

In this paper, we study the degree-based indices multi-
plication ABC of several common appeared nanostructures.
The exact computational formulas are presented by means
of edge set dividing approach. These theoretical results in
nanoscience, biology, pharmacy and other fields have a wide
application prospect.
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