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Reduction of Sixth-Order Ordinary Differential
Equations to Laguerre Form by Fiber Preserving
Transformations

Supaporn Suksern *

Abstract— This paper is devoted to the study on
linearization of sixth-order ordinary differential equa-
tions by fiber preserving transformations. The nec-
essary and sufficient conditions for linearization are
obtained. The procedure for obtaining the linearizing
transformations and the coefficients of linear equation
are provided in explicit form. Examples demonstrat-
ing the procedure of using the linearization theorems
are presented.
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1 Introduction

Nonlinear problems are considered to be a core part in
many branches of sciences. The exact solutions to these
problems are most required. However, it is evidently hard
to analyze such problems directily. Precisely, in the non-
linear regime, many of the most basic questions remain
unanswered: existence and uniqueness of solutions are
not guaranteed; explicit formulae are difficult to come by;
linear superposition is no longer available; numerical ap-
proximations are not always sufficiently accurate; linear
superposition is no longer available; etc. One method to
avoid these difficulty is transforming them into the linear
differential equations, which is called the ”linearization”.

The linearization, that is, mapping a nonlinear differen-
tial equation into a linear differential equation, is an im-
portant tool in the theory of differential equations. The
problem of linearization of ordinary differential equations
attracted attention of mathematicians such as S. Lie and
E. Cartan. It was admitted that Lie [1] is the first per-
son who solved linearization problem for ordinary differ-
ential equations in 1883. He found the general form of
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all ordinary differential equations of second-order that
can be reduced to a linear equation by point transfor-
mations. He found the conditions for linearization. The
linearization criterion is written through relative invari-
ants of the equivalence group. Liouville [2] and Tresse [3]
attacked the equivalence problem for second-order ordi-
nary differential equations in terms of relative invariants
of the equivalence group of point transformations. There
are other approaches for solving the linearization prob-
lem of a second-order ordinary differential equation. For
example, one was developed by Cartan [4], the idea of his
approach was to associate with geometric structure.

For the third-order ordinary differential equations,
Bocharov, Sokolov and Svinolupov [5] considered the lin-
earization problem with respect to point transformations.
Grebot [6] studied the linearization by means of a re-
stricted class of point transformations, namely fiber pre-
serving transformation. However, the problem was not
completely solved. Complete criteria for linearization by
means of point transformations were obtained by Ibragi-
mov and Meleshko [7].

The linearization problem of third-order ordinary differ-
ential equations under point transformations were solved
by Ibragimov, Meleshko and Suksern [8]. They found
the necessary and sufficient conditions for a complete lin-
earization problem.

Later, Suksern and Pinyo [9] solved the linearization
problem of fifth-order ordinary differential equations by
means of fiber preserving transformations. It turns out
that not every differential equation of this order can be
transformed in that way. Giving a new transformation
still be needed and useful.

One of main problem in linearization is the complicate
calculations. Because of this task, there is no one try
to solve the linearization problems for sixth and higher
order yet.

By the helps of computer algebra system Reduce, we can
offer the necessary and sufficient conditions of this type
of linearization. Some examples are provided to illus-
trate the condition. Linearizing transformation and coef-
ficients of linear equation are obtained. A program used
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for checking the linearity is also produced.

2 Point Transformations

Definition 2.1 A transformation

= ‘P(‘T7y)»

where ¢ and v are sufficiently smooth functions is called
a point transformation. If ¢, = 0, a transformation (1)
is called a fiber preserving transformation.

Let us explain how a point transformation maps one func-
tion into another. Assume that yo(z) is a given function,
then the transformed function ug(¢) is defined by the fol-
lowing two steps. On the first step one has to solve with
respect to z the equation

t = p(z,90(2)).

Using the Inverse Function Theorem we find = = «(t) is
a solution of this equation. The transformed function is
determined by the formula

uo(t) = P(alt), yo(a(t)))-

Conversely, if one has the function ug(¢), then for finding
the function yo(z) one has to solve the ordinary differen-
tial equation

uo (¢(, yo(2)) = »(2, yo()).

3 Necessary Conditions

We begin with investigating the necessary conditions for
linearization. Recall that according to the Laguerre the-
orem, a linear sixth-order ordinary differential equation
has the form

u® + a(t)u” + B + () +wt)u=0. (2)

Here we consider the sixth-order ordinary differential
equations

Yy = f(z,y, 0,y y" y D, y®), (3)

which can be transformed to the linear equation (2) by
the fiber preserving transformation

t= (),
U= w(ray) (4)

So we arrive at the following theorem.

Theorem 3.1 Any sixth-order ordinary differential
equations linearizable by a fiber preserving transforma-

Y

tion has to be in the form

(6)
Bo)y(4) + Coy///z + ((D5y/ + D4)y”

G2y/2 +Gly/+GO)y” +H6y/6 +H5y/5

+ 4+ + + o+

Ay :(Gwyy)/wyv

Ap = = 3(5@aaty — 20atay)/ (Patly),

Bs :(151/’347;)/1/’117

Bs :(151/’1/1/1/)/1%:

B1 = = 15(5¢20yy — 20ayy) / (aty),

By :5(3(7%%351/’1/ = D0z PaPay + @id’my)
— 4uaapxthy) [ (P300y),

Co :(10"/}1/1/)/1/"?/7

Ds :(GOwyyy)/wya

Dy = — 30(5¢uathyy — 20uPayy)/(Paiby),

D3 :(zowyyyy)/ww

Dy = — 30(5¢uzyyy — 20cVayyy)/ (Pzby),

Dy =20(3(7034Yyy — 5PuePatiuyy + Patazyy)

- 4%mm¢yy)/(<ﬁi%)»
Do = — (30(14¢%, 1y — 1400a@utiuy
=+ 5<P37/)I$y)90zz - (‘Pi¢ya + Qszzzy)‘Pi

— 102120ty — 802ty )Paza P
+ 15@mm¢i¢y)/(¢iwy),
Eqo :(15¢yyy)/¢ya
Fy :(45wyyyy)/¢y7
Fy = = 45(5@0athyyy — 202Vayyy)/ (Paty),
Fo =15(3(T030yy — 5¢0aPaayy + Patoryy)
- 4@xmx¢m¢yy)/(9@iwy)»
G4 :(151/’yyyyy)/1/’ya
G3 = = 30(5¢wayyyy — 202Vayyyy)/ (Ptdy),
G2 = — 30(4¢uzaPatyyy — Qlﬂoizwyyy
+ 15000 Patayyy — 302 ¥aayyy)/ (P2%y),
G1 = = 3(30(14¢3, ¥y — 1400 Pathayy
+ 5<P9257/}T7yy)§0m - (‘Piwyya + 207/)”731;1/)99?;
+ 1590mm§0i¢yy — 10(21pz0yy
- SWzT/nyy)@xzx@z)/(Wi@by)a
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Go = — (6¢zzz20930y — 10500000 0rapathy
+ 450000003 Yoy — 00542050y
+ 840020003 Pty — 6300000 Pue P Pay
+ 120050005 amy — 94505,y
+ 126003 02 Yy — 63003, 90300y
+ 302001y + 150020 03 Yy
— O30y B — 3oL ayar
— 1505 Vsaaay)/ (©2ty),
Hg :(wyyyyyy)/wya
Hys = = 3(5¢0uaVyyyyy — 20Vzyyyyy) [ (Pxty)
Hy = = 5(4PaaPutyyyy — 21¢§zwyyyy
+ 15020 0eryyyy — 3<Pi1/’xmyyyy)/(%2cwy)a
H3 = — (150000003 %yy — 2100200 0saPayyy
+ 80000093 Yayyy + 42003, yyy
— 42002, 0o Vryyy + 15000002 Vrayyy
— Py — 2003 Vaayyy) (P30,
Hy =— (3((42()‘:0235 - ‘P?ca)wxyy - 5@i¢mmzyy)
- 7080§cm90r1/)yy + 3(90:;1/)?4@/0‘
+ 501/)%961/1/)4%9090320 + 30(28%0?:#/’111/
— 2102002 Vayy + 492 Vazyy) Prre) P
— (94505, + #5B8)Pyy + 63007, 07 ey
— 60rarea PPy + 15(Tratyy
- 3Wm¢zyy)¢zmz@i)/(¢i¢y)v
Hi = — (315(3¢%, ¢y — 600zputhay
+ 4599207/’my)30gx - (‘Pi"/fy’Y + QWi"/}ryﬁ
+ 30300y @ + 6Vppray )P0
+ ProararPaty — 3(Piy
+ 140%00y) 02005 + (Pay B + 630y
+ T5%saaay)PaaPs + 140(20z0 1y
- ‘wazy)Wim‘Pi = 3(Tpzatby
— 403 Yay) Pasazafs — 5(TPzzcPatly
— 4202 by + 420500 Vay
— 902 Vaay) Pazwaps — (210(603%, 1y
— 80020 Vy + 302 Vrry ) Pra

(27)
(28)
(29)

(30)

(31)

(32)

— (P2ya + 8000y )3) Pana) )/ (P28y), (33)

HO - (@mzxmzx@iwm - 21@zxmzw(pzw@g'¢'m

- 70¢ixz‘?iwzx - 1260801613690:;19021//1

+ 840@xzm‘ﬂigg‘ﬁi¢xz - QIOSszm(sz(Piwxzw

+ 945@im’(/1x - 9454Pix§0x"/}zm

+ 42003 .02 Va0 — 302, P00
— 10502, 03 V0000 + Poapiths
+ 3000 Ve + 15000 02 rarsn
— o3l wp — ey — O3 e

— ¥ hraea — 5.

(34)

Proof. Applying a fiber preserving transformation (4),
one obtains the following transformation of derivatives

u' (t)

u” (t)

u/// (t)

u® ()

ul® (t)

u®(t)

D,y _ Yy JFy/wy

= P(z,y,9),
Do P )
D,P P, +y'P,+y"Py
D, Pz

1
E[(‘Pﬂcwy)yu + (‘Pzwyy)ya + (2@z¢zy

x

_@zxwy)yl - @m% + @xwwz]

Qz,y,y'.y"),
DgcQ _ Qm + Z//Qy + y//Qy’ +y”IQy”
Do Pz

1
g[(wi%)y’” + (321byy )Yy

+3¢s (‘pmwxy - ‘Prrwy)y” + ]
R(x’ y’ y/7 yl/’ yl//)7

D.R

Dy

R, +yRy+y'Ry +y"Ryr + yD Ry

Pq
1

?[(wiwy)y(‘“ + (403%yy)y'y"
x

+2‘P92c (2901"‘/)1'14 - 3<szwy)ym + }
S(x,y, 9, y" vy,

D.S

Do

(Se 4+ 'Sy 4+ 4" Sy + " Sy Sy + y® Sy

+yS, )/ s

1 5
E[(‘Piwy)y( ) + (5<Pi1/)yy)y/y(4)

xT

+50% (Pathay — 202ty )y + ...]
Viz,y vy vy, y®),
D,V
D,
(Ve +9'Vy + 9"V + 4" Vipr + y DV
+y(5)Vy<4> + y(G)Vy(m)/gogE

1
W[Wi%)y(ﬁ) + 32050y, )y y®
+3§0i (2%%1/ - 5<Pm1/1y)y(5) + ],
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where

614y 3(5@azPy—20zVay
y® + (Syy (%)) )
(15(5iﬁrzwyy72‘pzwzyy)

Yy
+<<15wyy>y"+<15%y>y ol
+. )y (4)+(10¢uy) ///2+((((60¢wy))
+( 30(5%’1:1/1%*280:1/11”))) "y (20¢yyyy) /3+ )y///

(paiby)
15%y4, 3 459y, 2 4 45( woVyyyt--o)
HEREy™ + (™ + (R
+15(3(7%1%1,—5%1wzwzyy—s-gazwmyy) 4<pzmsoxwyy)) 12
(p21hy)
30(5§0:zwyyyy72¢zw1yyyy) )
(szy)

/

(15wyyyyy) /4 + (

+

30(4<Pmmtpmwuw 2102 Pyyyt-- ))y/2+ )

+

5(4 - o102 v (‘Pa:"by))
ParzzPePyyyy PrePyyyyt-- 14 _
(#25,) Wt =0

(
( (20,

+( 7azf'yyyyyl,l )ylﬁ + ( _3(5<Pzz'¢’yyyyy_2<Pzwzyyyyy) )y
(—

+

Denoting A;, B;,C;, D;, E;, F;,G; and H; as equations
(6)-(34), so we obtain the necessary form (5). These prove
the theorem.

4 Sufficient Conditions and Linearizing
Transformations

We have shown the previous section that every lineariz-
able sixth-order odinary differential equation belong to
the class of equation (5). In this section, we formulate
the main theorems containing sufficient conditions for lin-
earization as well as the methods for constructing the
linearizing transformations.

Theorem 4.1 Sufficient conditions for equation (5) to
be linearizable via a fiber preserving tranformation are
as follows:

Aoy =A1s, (35)
=(541)/2, (36)
Ay =(—5AT + 12B5)/30, (37)
A1r =(—5A0A; + 6B1)/30, (38)
Co :(5141)/37 (39)
D5 =4B>, (40)
Dy =28y, (41)
By, =(—2A1B> +9D3)/12, (42)
By, =(—2A¢B3 +3D3)/12, (43)
By, =(—2A1Bo +3D4)/12, (44)
Eo =B, (45)
D5 =(4F3)/9, (46)
Fy =(3D)/2, (47)
Fo =(3D1)/4, (48)

Fyy, =(—A1F> + 18G4)/6, (49)
Fyp =(—2A0F; +9G3)/12, (50)
Dy, =(—A1D1 +4G>)/6, (51)

D1y =(—150A40, Ao A1 + 180A0, By + 180Bo, A;
—25A3A; + 30428, +90A0A, By
—45A0D; — 1354, Dy — 72By By

+ 270G, )/2170,

(—A1G4+ 90Hg)/6,
(—AoG4 + 15H5) /6,
(—A1G2 + 36H,)/6,
(-
(

Ut
N}

G4y

ot
w

t
ot

A~ N~~~
Ut Ut
(=2} W~
= I I O =

A\Gy + 18H3)/6,
15040, A3 Ay — 18040, Ao By — 18040, A1 By
+270A0, D1 — 180By, Ag A1 + 216 By, By
+ 270D, Ay + 25A5A1 — 30A3 By — 12045 A1 By
+45A2D; + 180Ag A1 Dy + 10849 By By
— 904Gy + 72A, B — 3604,Go — 108ByD;
—162B; Dy + 2160H) /540,

)\ly :>\2y = )\dy = )\4y = )\Sy = )\Gya)\7y = >\8y =0,
(58)

(57)

where

A = — 3040, — 5AZ + 128y, (59)
Ao = — T2Bo, — 3\, — 1240By — 2A0\; + 54Dy, (60)
A3 = — 108By, — 184¢0By — 3Ap )\ + 81Dy — 5Xa, (61)
Ay =28350D0, + 210)a, + 210As, + 472540 Dy
+ 875A0\a + 175403 + 6308y )\
— 37800Go + 3\,
A5 =396900 Dy, + 21003, + 6615040 Dy
+ 12250 A0z + 2450403 + 88208\
— 529200G + 150A3 — 21\,
A =113400Dg, Ag — 226800G0, + Aaz + Ass
+ 18900A3 Dy + 350043\ + TO0AZA;
+ 252040 Bo A1 — 18900043Gy — 4200By o
— 840By\3 — 3780Dg\; + 567000H,
— 360\ g — 601 A3,
A7 =283500D¢, Ag — 567000G0, — 154,
+ 47250A2Dg + 8750 A2y + 1750 A2\
+ 630049 By, — 47250040Go — 105008y Az
—2100ByA3 — 9450Dg\; + 1417500 H;
— 107501 Ay — 25001 A3 — 6,
Mg =83349000D, A2 — 100018800 Dy, By
— 9525600D0, A1 — 166698000G o, Ao
— 3000564000 Hy,, -+ 500094000 H .,
+ 252)7, + 13891500 A3 Dy + 2572500 A3 Ao
+ 51450043 \3 + 1852200 A3 By A\
— 13891500043G — 16669800 A0 By Dy

(62)

(64)
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— 617400040 By — 1234800 A0 BoAs
— 4365900 A9 Do A1 + 500094000 A0 H
— 29400049\ Aa — 5880049\ 1 A3

— 5000940004, Hy — 2222640 B3\,

4 133358400B,Go — 211680By\?

+ 4630500 Dg Ao + 926100Dp A3

4 18257400G o\ 1 — 126073 — 147X\,
+ 3\ A5 + 171500A2 + 107800A2\3

+ 147003. (66)

Proof. For obtaining sufficient conditions, one has to
solve the compatibility problem. Considering the repre-
sentations of the coefficients A;, B;, C;, D;, E;, F;, G; and
H,; through the unknown functions ¢ and . We first
rewrite the expressions (6) and (7) for A; and Ag in the
following forms

Yyy = (¢yA1)/67

l/)a:y = (%(15%9@ + ‘PmAO))/(6<Pw)~

(67)
(68)
The mixed derivative (¢yy)z = (¢zy)y provides the con-
dition (35). From equations (8)-(10), one gets the con-

ditions (36)-(38). The relation (Aiz)y = (Aiy)e provides
the condition

By, = (12Bs, + 240B, — A, By) /6.
From equation (11), we have

(69)
Since ¢, = 0, then differentiating (69) with respect to v,
one arrives at the condition

By, = (30A0IA1 + 7230y + 5A8A1 — 6AoB1)/36.
The relation (Biz)y = (Biy)e provides the condition
B()yy = (_BOyAl + 3B2x:r + BQIAO)/g

From equations (12)-(16), one gets the conditions (39)-
(43). The relation (B;)y = (Bay). provides the condi-
tion

Dgy = (18D3I +3A0D3 — Ang)/G.
From equation (17), one gets the conditions (44). The
relation (Byy)y = Boyy provides the condition

Ds, =(60A0; B2 + 90Dy, + 1043 By — 1540 Do + 1541 Dy
— 24ByB5)/90.

The relation (Dsg), = (D2y)s, provides the condition

Diyy =(=5D1y A1 + 45Ds,, + 15Ds, Ag + 3By D3 — By Dy)/15.

One can determine « from equation (18). Since ¢ = ¢(z),
then o, = 0, which yields the condition

Do, =(150A0, Ag A1 — 180 A0, By — 180Bo, Ay
+ 270D, + 25A3A; — 30A2B; — 9045A; By
+45A0D; + T2ByB1)/810.

From equations (19)-(24), one finds the conditions (45)-
(50). The relation (Fby)y = (Fay)e provides the condition

Gy =(24G 4y + 440G — A1G3) /6.
From equation (25), one gets the conditions (51). The
relation (D), = (D1y), provides the condition
Gy =(—60A0, Ao By + 90 Aoy Dy + 72Bo, By + 270G,
— 10A3By + 1542 Dy + 36 AgBoBa — 304G
+454,Gy — 368y Do — 54B5Dy) /180.
From equation (26), one obtains the condition (52). One

can determine f from equation (27). Since ¢ = p(x),
then 8, = 0, which yields the conditiion

Goy = — (15040, A3 A; — 180 A0, Ao By — 180 A0, A1 By
+ 27040, D1 — 180By, Ag A1 + 216 By, By
+ 270D, A1 — 540G, + 25A5A1 — 30A3 By
— 12043 A, By + 45A2D; + 18040 A, Dy
+ 10849 By By — 90A0Gy + 72A, B2 — 108ByD;
— 1628, Dy)/2160.

Equations (28) and (29) provide the conditions (53) and
(54). The relation (Gay)y = (Gay), provides the condi-
tion
Hs, =(36Hes, +6AgHs — A1 Hs)/6.
From equation (30), one gets the condition (55). The
relation (Gay)y = (Gas)y provides the condition
Gryy =(6040, AgFy — 270A0, G5 — T2Bo, Fy — 270G, A,
+ 3240Hy, + 10AJF, — 45A3G3 — 36A¢ By F
+ 54040 H, 4 108 ByG3s — 54 B2 Gy + 54Dy F5) /810.
From equation (31), one gets the condition (56). The
relation (G1y)s = (G1a)y provides the condition
Hs, =(60A0, AgFy — 270A0uGs — T2Boy Fy + 3240Hy,
+ 1043 Fy — 45A2G3 — 36 Ag By Fy + 540A0 H,y
— 4054, Hs + 108ByG3 + 54D F) /2430.
From equation (32), one finds the condition (57). The
relation (G1z)y = (G1y). provides the condition
Hs, =(300A40, A3 By — 450 A0, Ag Dy — 360 A0, By B
+ 90049, G2 — 3608y, Ag B + 540 By, D2
+ 540 Do, B + 10800Hy, + 5045 By — 75A3 D,
— 24043 By By + 150A3Go + 270 A0 By D
+ 360A9B2Do — 1350A0H3z + 180041 Ho
+ 144 B3 By — 360BGo — 720B2G
— 405D D5)/8100.
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The relation (Hsy)y = (Hsy), provides the condition

Hayy =(90 A0z Ao Fy — 405A0,.G3 — 30 A0, AL Fy
+ 13540, A0Gs + T2A0, By Fy — 3240 A0, H,
— 108 Boys Fo — 162By,G'3 — 1620 Hyy A,
+ 4860 H 45, + 1620H4, Ag — 10A5Fy + 45A35Gl3
+48A2ByFy — 540A2H, — 162A0ByGs
— 54A0DoFy — 36 B3 Fy + 1620B Hy
— 324By Hy + 243Dy G5 + 108F,Gy) /4860.

One can determine ~ from equation (33). Since ¢ = p(z),
then ~, = 0, which yields the condition

Hy,, =(750A0, A3 Ay — 900 Ao, A3 By — 1800 Ao, Ag A1 By
+ 135040, Ao D1 + 1350 A0, A1 Dy + 1080 Ao, By By
— 2700A0,G1 — 900Bg, A2 A; + 1080Bg, A¢ By
+ 1080B, A1 By — 1620Bo, D1 + 1350D0, Ag A,
—1620Dg, By — 2700G 0, A1 4+ 16200H,

+ 125A5A; — 150A5B; — 75043 A1 By
+225A3D; + 1125A2 A, Dy + 720A3 By B,
— 450A2G 4+ 90049 A, B — 2250404,Gy
— 810A4¢ByD; — 1080A0B1 Dy + 2700 A Hy
— 1350A, By Dy — 432B2 B; + 1080B,G,
+2160B,Go + 1215D0D;)/40500.

One can determine w from equation (34). Since ¢ = p(z),
then w, = 0, which yields the derivative ¢,4450,. Form-
ing the mixed derivative (Vgzgras)y=Vsy)szzzs, One ob-
tains the condition

Hoyy =(1125A0,, A3 A1 — 1350 A0, A3 By
— 2700 Ag,0 Ao Ay By + 2025 Ao, Ag Dy
+ 2025 A0, A1 Dy + 1620 A0, Bo By
— 4050 A0, Gy — 1125A0, A A,
+ 1350 A0, A3 By + 450040, A3 A1 By
—2025A0, A2D; — 4725 A0, Ag A1 Dy
— 3780 A0, Ao By B + 405040, AgG1
— 2160 A0, A1 B2 + 5400 A0, A1 Gy
+ 3240A0, Bo D1 + 324040, B1 Dy
— 32400 A0, Hy — 1350 By A3 A4
+ 1620 By, Ag By + 162080, A1 By
— 2430Bg, D1 + 900 B, Aj Ay
— 1080 By, A2B; — 2700By, Ag A1 By
+ 16208y, Ag D1 + 2430By, A1 Dy
+ 1944 By, By By — 4860 B0, G
+2025D,, Ao Ay — 2430Dg,, By
— 675D, A2A; + 810Dg, Ao By

+ 1620Dg, A1 By — 2430 Dy, Dy

— 4050G 4z A1 — 1620G 0, By

— 60750 Ho, Ay + 24300 Hz,, + 8100Hz, Ag

— 250A5 A4, + 300A5B; + 1800A5A; By

— 450A3 Dy — 2475A3 A1 Dy — 1800A3 By By
+900A3G — 333042 A, B3 + 427543 A1 Gy

+ 2160A2 By D + 2430A3 B1 Dy — 5400A3 Ho
+6345A9A, BoDg — 10125A0 A, Hy + 2268 A0 B3 B,
— 324040 By G — 405040 B, Gy — 283549 Dy D,y
+10125A7 Hy + 972A, B3 — 62104, ByGy

— 2430A, Dj — 1458 B3 Dy — 34028y B, Dy

+ 1458080 Ho + 121508, Hy — 24300 B2 Hy
+4860Dy G + 5670D1Gy)/364500.

One can rewrite the expression of equation (69) as

where Ay is in the form of equation (59). Rewriting the
representation of the derivative ¥ ppp0e as

Gurzrze =(6751269000007, ¢,
— 3375634500000% 021 z0
+ 4500846000000%, 02 s 0
— 2143260000% , 02y A
+ 41674500002, 02 A1)
— 2250423000002, 0> Vv
+ 4286520000902, 0310 A1
+ 23814000002, 0% thx A3
+ 3969002, 03 \y1p
+ 4500846000004 02 b wran
— 214326000000, 01200 A1
+ 5953500002 Py e (—TA2 — 4X3)
+ 567000002 a5 + 132300002 Aet)
+ 28576800007 1z A1
+ 1587600002 Y000 (TA2 + 3A3)
+ 1134005105 (—60A3 — TAy — 2)5)
+ 1512¢5), A7 + 3000564000451, Ho
+ 03 As1)) /(300056400042 ), (71)

where Ao, A3, ..., A\g are in the form of equations (60)-(66).
The relations (Aoz)y = (Aoy)e, (Mz)y = (Ay)z, (Box)y
= (BOy)za (>‘2w)y = ()‘Zy)mv ()‘Bx)y = ()‘31/)907 ()‘51)@/ =
()‘5y)xy ()\4x)y = ()‘4y)a: and ()\7m)y = ()‘7u)x provide the
conditions (58).
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Finally, the representations for «, 3,7 and w become

o =X/ (54¢3), (72)
B =(=3150@s2 A2 — ©xa)/(378003), (73)
7 =(9450003, A2 + 6092200 M

+ 93 X6)/ (56700057, (74)
w =(—4167450000° Ny — 3969002 x4

— 1323090202 N6 — ©2g)/(3000564000¢2).  (75)

This completes the proof of Theorem 4.1.

Corollary 4.2 Provided that the sufficient conditions in
Theorem 4.1 are satisfied, the transformation (4) map-
ping equation (5) to a linear equation (2) is obtained by
solving the compatible system of equations (67), (68),
(70) and (71) for the functions ¢(x) and ¢ (z,y). Finally,
the coefficients «, 3, v and w of the resulting linear equa-
tion (2) are given by equations (72), (73), (74) and (75).

5 Illustration of the Linearization Theo-
rems

Example 5.1 Consider the nonlinear sixth-order ordi-

nary differential equation

24y 4+ 12y'y" % 4 240y y"" + 120y y D 4+ 12¢/y®) 2
+ 24y'y + 180y""% + 240y"y"" & + 30y"y D a? + 24y 2y
+ 20" + 4y 22y + 60y Dy + 249wy + 22y (24
+y)=0. (76)

It is an equation of the form (5) in Theorem 3.1 with the
coefficients

12 15 60
A1:77A0:73B3:7732:0731:77
Yy T Y Ty
30 10 120
By=—5,Co=—,D5=0,Dy=—, D3=0,
T Yy Yy

120
D2:O7D1:?7D0207E0:07F2:07
7y

90
Fl:07F0277G4:07G3:O7G2:07
7y
6 12
G1:77GO:77H6:0aH5:O7H4:07
y €T
12 12
Hy=0,Hy= —, H = —, Hy= 2, A\ =0,
Ty T 2

Ao =180, A3 = —378, Ay =0, A5 = 0, A\g = 0,
A7 = 0, Ag = 300056400.

One can check that these coefficients obey the conditions
in Theorem 4.1. Hence an equation (76) is linearizable
via a fiber preserving transformation. Applying Corollary
4.2, the linearizing transformation is found by solving the

following equations

¢yy :wy/ya (77)
Yy :1/1y(580mfv +49.)/(20.1), (78)
Pree =(30%:)/(2¢2), (79)

Vrzozoe =(4505.00 — 22504, 0e¥ue + 30005, 03 Yren
+ 3005, 030 — 15092, 03 Vrawa — 6007, 9500
+ 30020 Vs Vrszze + 3000aPithue — 4020y
+ oy — 2009)/(203). (80)

Consider equation (79), one can choose the particular
solution

Y =x.

So that system of equations (77), (78) and (80) are writ-
ten as

wyy :%v (81)
Yy =222, (52)
P z%y - (83)

Consider equations (81) and (82), we have

Y, =K%y, K = constant.

Hence,

Ka:2y2

V=

+ f(x).

Since one can use any particular solution, we set K =
2, f(z) = 0 and take 1 = 2%y%. One can readily verify
that this function solves equation (83) as well. Hence,
one obtains the linearizing transformation

(84)

From Corollary 4.2 the coefficients «, 3, v and w of the
resulting linear equation (2) are

a=0,=2,vy=0,w=1.

Hence, the nonlinear equation (76) can be mapped by
transformation (84) into the linear equation

uw® + 20" +u=0. (85)
The solution of equation (85) is

u(t) =e(Co + Cit) + €2 ((Ca + Cit) cos(?t)

+(Cy+ Cst) sin(?t)), (86)
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where Cy, C1, Cy, C3, Cy and C5 are arbitrary constants.
Substituting equation (84) into equation (86), we get the
solution

22y? =~ (Cy + Crz) + €2 ((Cy + Csx) cos(?x)

+ (Cy + Csx) sin(?x)).

Example 5.2 Consider the nonlinear sixth-order ordi-
nary differential equation

6 _ 15y + 15y"%y" + 85y — 150e¥y/3y" + 2042y
+ 43 (€3 — 225) + 45y"%y"? + 510y"y" — 150y"%y""

+ 152y 42 (=3e3* 4 274) — 225y + 60y "
+ 3"y (3% — 225) + 340"y — 75y y™Y + 6y/y®

+ 2y (3" — 60) + 15y 4 255”2 — 150y y"”’

+ 15y"y(4) + 4 (=33 4 274) + 10y

+y"(e3* — 225) + 85y — 15y 4 4@ = 0. (87)

It is an equation of the form (5) in Theorem 3.1 with the
coeflicients

A1 =6, Ag = —15, By = 15, By = 15, By = —75,
By = 85, Cy = 10, D5 = 60, Dy, = —150, D3 = 20,
Dy = —150, Dy = 340, Dy = 3% — 225, Ey = 15,
Fy =45, Fy = —225, Fy = 255, G4 = 15,G5 =
Go = 510, G1 = 3(e*® — 225), Gy = —3e3® + 274,
He¢ =1, H; = —15, Hy = 85, Hg—e — 225,
Hy = —3e** + 274, H, = 2(e** — 60), Hy = 0,
A = —150, Ay = 54¢3%, A5 = —189¢37,

Ay = —170100e3%, A5 = 1190700(e3* + 1),

¢ = 5103000€3*, \; = —18852750¢e3%,

g = —22504230000€3*.

One can check that these coefficients obey the conditions
in Theorem 4.1. Hence an equation (76) is linearizable
via a fiber preserving transformation. Applying Corollary
4.2, the linearizing transformation is found by solving the
following equations

1/Jyy :wzp (88)
Yoy =5Py P2z — 02)/(202), (89)

=(4505, ¥ — 2250}, Pataa + 30005, 02 n0a
+ 15093, 07, + 15¢>¢5 o3
— 15002, 03 gz — 30002 00000
— 30e* 7, phbs — 45e> % P30
+ 3003003 Vazzrs + 1500000 tass
+ 1563 0 02 thns + 45637 Qrpipiab,

(Advance online publication:

—150,

+ 45000 03the + 45€%7 00 03t

— 2005 Yazaz — 26°° 0 Vean

— 932 hyy — 23051y — 1937021,
— 15¢>*024) / (2¢3).-

Consider equation (90), one can choose the particular
solution

(91)

p =e".

So that system of equations (88), (89) and (91) as rewrit-
ten as

¢yy :1/@» (92)
Py =0, (93)
Vozzzoe =1srzzs — 85Wuzzs — € Pyas
+ 225000 + 363y — 2740y,
— 2e%%h, + 1200, (94)

Consider equation (92) and (93), we have
Py =KeY, K = constant.
Hence,

P =Ke’ + f(x).

Since one can use any particular solution, we set K =
1, f(x) = 0 and take ¢y = Ke¥. One can readily verify

that this function solves equation (94) as well. Hence,
one obtains the linearizing transformation
t=¢€" u=e". (95)

From Corollary 4.2 the coefficients «a, 3, v and w of the
resulting linear equation (2) are

a=1,=y=w=0.

Hence, the nonlinear equation (87) can be mapped by
transformation (95) into the linear equation

u® " =0. (96)
The solution of equation (96) is
U(t) :(Co + Clt + C2t2) + Cge_t (97)

¢ 3 3
+ e (Cy cos(gt) el sin(gt))
where Cy, C, Co, C3, C4 and Cj are arbitrary constants.

Substituting equation (95) into equation (97), we get the
solution

¥ =(Co + Cre” + Coe®) + Cze™"

teT (Cy cos(?ez) + Cs sin(?er)).
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