
 

  
Abstract— In this work, we obtain analytical solutions of the 

time-fractional Black-Scholes equation for European call option 
via a proposed relatively new semi-analytic technique hereby 
referred to as Projected Differential Transform Method 
(PDTM). This algorithmic technique is a modified version of 
the classical Differential Transformation Method (DTM). We 
demonstrate the efficiency and accuracy of the proposed 
technique by solving some illustrative problems. The results are 
obtained with ease and less computational work. No 
linearization or perturbation is required unlike other 
contemporary techniques. Thus, our results show that the work 
of Edeki et al.  [42] is a particular case of this present work. 
This proposed technique is being reported for the first time in 
literature for solving time-fractional Black-Scholes equation. It 
is therefore recommended as an alternative technique for 
solving linear and nonlinear equations resulting from time-
fractional stochastic differential equations (TFSDEs) in 
financial mathematics, with particular attention to stock option 
valuation; and fractional equations in applied sciences. 
 

Index Terms— Analytical solution; Black-Scholes model; 
European option; fractional derivatives;  PDTM; stock option; 
stochastic differential equations 

I. INTRODUCTION 
RICING and valuation of options remains a central part 
with great interest in financial mathematics as regards 

derivative markets, valuation and financial investment. This 
problem is both theoretical and practical in nature. As a 
response to this, Black and Scholes in 1973 derived one of 
the most famous, effective, and significant models for option 
pricing and assessment [1]. This model can be used for 
options of European–type or American–type.  The Black–
Scholes model equation is a second order partial differential 
equation (PDE) in parabolic form, governing the valuation 
of security derivatives. 
Generally, models of finance are mainly expressed in terms 
of stochastic dynamical equations but in [2], it is found that 
these financial stochastic differential equation (SDE)-based 
models can also be expressed as linear evolutionary PDEs 
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with variable (non-constant) coefficients based on some 
certain restrictions. 
Thus, the PDE describing the Black–Scholes model for 
option valuation on a non-dividend paying underlying is: 
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contingent claim), based on the time parameter,τ   
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 for ( ),p S tΨ a payoff function, with expiration price, *E  

such that for European Call Option (ECO) and European Put 
Option (EPO): 
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where ( )max 0,  S  denotes the maximum value between 

0 and S . 
All the basic assumptions and shortcomings connected with 
the Black-Scholes model, and derivation of (1) with details 
can be found in [3-4] and other SDE standard materials. 
In what follows, we will consider a generalization of (1) with 
regard to fractional order,   orα ∈  , not necessarily an 
integer, to be referred to as time-fractional Black-Scholes 
model (TFBSM) of the form: 

( ) ( )
2

1 22, ,  , 0m S m S r r
S S

α

α δ α
τ

∂ Ψ ∂ Ψ ∂Ψ
+ + = Ψ >

∂ ∂ ∂
  

                                (3) 
subject to a set of corresponding initial or boundary 
conditions, ( ),  , im i⋅ ⋅ ∈ , are non-zero functions. 

In an attempt to obtain analytical or numerical solution of 
(1), many researchers have adopted and used various direct 
and semi-analytical methods. 
In recent years, priority has been attributed to the study of 
fractional differential equations (FDEs) with their 
applications [5-8]. This is traceable to its wider and 
important applications in fields not limited to sciences, 
engineering, management and finance [9]. Fractional 
calculus appears to be a generalization of the classical 
calculus. The greatest advantage in using FDEs lies in their 
nonlocal property since Integer-Order Differential Operators 
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(IODOs) are local operators while fractional-order 
differential operators are nonlocal; meaning that a system 
next state depends both on its present and all of its historical 
states [10-12]. 
It is observed that most FDEs do not have exact 
roots/solutions in analytical forms; and even if they do, 
corresponding direct methods seem not available or appear 
complex in applications. Hence; the involvement of 
analytical, numerical and semi-analytical methods for 
approximate and exact solutions. 
Many authors and researchers have considered the existence, 
uniqueness and stability of solutions of IVP and BVP for 
FDEs (see [13, 14] and the references therein). 
Ibis et al. in [15], implement a semi-analytical-numerical 
technique: fractional differential transformation method 
(FDTM) to fractional-orederd differential-algebracic 
equations (FDAEs) described in Caputo sense. Kocak and 
Yildirim introduce a new iterative method (NIM) for solving 
some nonlinear time-fractional PDEs (NTFPDEs) [16]. 
Elzaki in [17], proposes a modified version of differential 
transform method (MVDTM) and applies it to a nonlinear 
time-fractional biological population model. In [18], Rida et 
al. propose an algorithm of the HAM for solving some time-
fractional systems of differential equations of chemical 
applications. 
Hemeda in [19] develop NIM with suitable algorithm for 
PDEs of fractional order. Herzallah in [20] states some basic 
features of the Caputo, and the Riemann-Liouville fractional 
derivatives, and proves some properties of the fractional 
calculus already in literature to be incorrect, giving some 
counter examples. In [21], Dhaigude and Birajdar use space 
discrete ADM for the solution of system of fractional PDEs 
with initial conditions. Povstenko [22] considers the time-
fractional advection diffusion equations based on some 
generalized boundary conditions. In [23], Yang and Hua 
propose the local fractional iteration transform method 
(LFITM) for solving FDEs of local fractional derivatives. 
Song et al. in [24] study with comparison the difference 
between fractional VIM and the ADM. Khan et al. suggest a 
fractional form of VIM for fractional-order PDEs [25]. 
Jafari, Kadem and Baleanu apply the VIM to the fractional-
order Brusselator system [26] while Momani and Odibat in 
[27] apply the ADM and the VIM to FPDEs in fluid 
mechanics.  
In considering solutions of fractional type Black-Scholes 
equations (FTBSEs) in option pricing; Elbeleze, Kilcman 
and Taib in [28], apply the homotopy perturbation Sumudu 
transform (HPSTM) for analytical solution.  Kumal et al. in 
[29], apply the homotopy perturbation method coupled with 
Laplace transform for analytical solution. Ghandehari and 
Ranjbar in [30] apply an extension of the decomposition 
method via expansion series.  Kumar, Kumar, and Singh in 
[31] implement the HPM and HAM to the time-fractional 
Black-Scholes (TFBSE) with boundary conditions. In [32], 
Ahmed et al. employ fractional variation iterative method 
(FVIM) for analytical solutions of linear fractional Black-
Scholes models. Hariharan in [33], employ the Laplace 
Legendre wavelet method for numerical solutions. Such 
iterative techniques have wider applications for solutions of 
nonlinear BVPs of fractional order [34], and models of 

integro-differential type encountered in finance and actuarial 
sciences [35]. 
Here, a modified form of the DTM known as (projected 
DTM) is implemented for the first time (to the best of our 
knowledge), for the solution of the well-known Black- 
Scholes model equation of fractional-order-type for 
valuation of options. 
The remaining sections of this paper are structured as 
follows: section 2 is for the preliminaries, main notations 
and definitions with regard to fractional calculus; section 3 is 
for the basic features and theorems of the PDTM, and the 
analysis of the FPDTM; section 4 is for the application of 
the projected DTM to some examples of time-fractional-
order-type Black–Scholes equations, while section 5 is on 
graphical presentation via figures for interpretation of 
results; and we give concluding remarks in section 6. 
 

II. FRACTIONAL CALCULUS: NOTATIONS AND 
PRELIMINARIES 

In this section, we present a brief introduction of fractional 
calculus with regard to its preliminaries, basic definitions 
and notations [36-38].  

A. A Note on Fractional Calculus: notations and 
definitions  

Here, we will give a brief introduction to fractional calculus 
with respect to some definitions, and theorems. In fractional 
calculus, the power of the differential operator is considered 
real or complex number. Hence, the following: 
Definition 1: {The Gamma function sense of fractional 
derivative} 

Let 
( )  and 

d
D J

dx
⋅

=  be differential and integration 

operators respectively, such that, the gamma function of 
( )f x  is defined as: 

1

0

( ) , Re( )x nn e t dt n
∞

− −Γ = ∈∫                    (4) 

with: 
2

1! ( 1),  
2

n n π  = Γ + Γ =    
 .                (5) 

Suppose ( ) kf x x=  (a monomial, of degree k , not 
necessarily a fraction), then: 

1

2
2 2 2

2

( )( ) = , 

( ) !( ) = ( 1) .
( 2)!

k

k k

df xDf x kx
dx
d f x kD f x k k x x

dx k

−

− −


=


 = − =
 −









 (6) 

In general, 

( ) !=
( )!

m
k m

m

d f x k x
dx k m

−

−



 .             (7) 

But in terms of gamma notation, (4) is expressed as: 
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 .              (8) 

We referred to (8) as a fractional derivative of ( )f x , of 

order α , if α ∈ .  

Definition 2: Suppose ( )f x  is defined for 0x > , then: 

( )( )
0

( )
x

Jf x f s ds= ∫                  (9) 

and as such, an arbitrary extension of (9) (i.e. Cauchy 
formula for repeated integration) yields: 

( )( ) ( )
1

0

1 ( ) ( )
1 !

x
n nJ f x x s f s ds

n
−= −

− ∫  .      (10) 

Thus, the gamma sense of (10) is: 

 ( )( ) ( )
1

0

1 ( ) ( ) , 0
x

J f x x s f s dsα α α
α

−= − >
Γ ∫  . (11) 

Equation (11) is an order α -Riemann-Liouville fractional 
integration. 
Definition 3:  Fractional derivative (Riemann-Liouville) 

( )( )
( )

h h

h

d J f x
D f x

dx

α
α

−

=


 .           (12) 

Definition 4:  Fractional derivative (Caputo) 

( )( )
( ) ,

 1 ,  .

h h

h

J d f x
D f x

dx
h h h

α
α

α

−
 =

 − < < ∈







          (13) 

Note: In (12), Riemann-Liouville compute first, the 
fractional integral of the function and thereafter, an ordinary 
derivative of the obtained result but the reverse is the case in 
Caputo sense of fractional derivatives; this allows the 
inclusion of the traditional initial conditions (ICs) and the 
boundary conditions (BCs) in formulating the problem. 
Remark: {See Lemma 4 in [24]}: The link between the 
Caputo fractional differential operator and the Riemann-
Liouville operator for ( )1 , n n nα− < < ∈ is: 

( ) ( )( ) ( )t t tJ D f t D D f tα α α α−=   

1

0
( ) (0) .

!

kn
k

k

tf t f
k

−

=
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As such,  

( )
1

0
( ) ( ) (0)

!

kn
k

t
k

tf t J D f t f
k

α α
−

=

= + ∑   .       (15) 

Definition 5: The Mittag-Leffler function of ,z  ( )E zα  

holding true in the whole complex plane is denoted by the 
series representation (see [39] and related references therein) 
as: 

( ) ( )0
,   0,  

1

k

k

zE z z
kα α

α

∞

=

= ≥ ∈
Γ +∑  .   (16) 

Remark:  For 1,α =  ( )E zα in (16) becomes: 

( )1
zE z eα = = .                  (17) 

 
 

III. THE PDTM AND THE FPDTM 
Here, we present the basic features and theorems of the 

PDTM, and analyze the FPTM [40-41]. 

A. Fundamental Theorems of the Projected DTM 

Consider ( ),  z x t  as an analytic function in a domain *D ,  

at a point ( )* *,  x t , so for taking the Taylor series 

expansion  of ( ),z x t , preference is given to some terms, 
vs t=  unlike the case of the classical DTM where the 

variables are all considered. Hence, the projected form, the 
differential transform (DT) of ( ),  z x t  in terms to t  at *t  

is defined as: 

( ) ( )

*

,  1,  
!

h

h
t t

z x t
Z x h

h t
=

 ∂
=  

∂  









             (18)      

and as such: 

( ) ( )( )*
0

,  ,  h

h

z x h Z x h t t
∞

=

= −∑




             (19)   

where (19) is called inverse projected differential  (IPD) 

transform of ( ),  Z x h  with respect to t . 

B. Some Basic Properties and theorems of the PDTM 

Theorem 1:  If ( ) ( ) ( ),  ,  ,  a bz x t z x t z x tα β= + ,   then  

( ) ( ) ( ),  ,  ,  a bZ x h Z x h Z x hα β= +     

Theorem 2:   If ( ) ( )* ,  
,  ,

n

n

z x t
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t
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∂
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n
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x
∂

=
∂
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,  
n
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∂
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 .  

Theorem 5:  If ( ) ( ) ( )2
*,  ,  ,z x t q x z x t=  then  

( ) ( ) ( ) ( )* *
0

,  ,  ,  .
h

Z x h q x Z x Z x h
υ

υ υ
=

= −∑


   

Theorem 6:  If ( ) *,  r rz x y x y=  then  

( ) ( ),  ,  *Z k h k hδ υ υ= − −   
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( ) ( )*k hδ υ δ υ= − − ,                   

where   
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Theorem 7:  (PDTM of a fractional derivative) 

If ( ) ( ),  ,  ,tf x t D u x tα=  then, 

( ) ( )
1
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1

k
q

F x k U x k q
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.        

Consequently, we have: 

( ) ( )1 ,  1 ,  k kU x k q F x k
q q

α α
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                               (20) 
Setting 1qα =  in (20) gives: 
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1 1
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α
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As such, for ( ),  u x t  α - analytic at 0 0.x =  

( ) ( ) ( )
0 0

,  ,  ,  
h

hq

h h
u x t U x h t U x h tα

∞ ∞

= =
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C. Analysis of a Fractional DTM 
Consider the general non-linear fractional differential 
equation (NLFDE): 

( ) [ ] ( ) [ ] ( ) ( )
( ) ( )

,  ,  ,  ,  ,

,  0 , 0.
t x xD u x t L u x t N u x t q x t

u x g x t
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                         (23) 

where tD
t

α
α

α

∂
=

∂
 is the fractional  Caputo derivative of 

( ),  u x t ; whose projected differential transform is 

( , )U x h , [ ] [ ] and L N⋅ ⋅  are linear and nonlinear differential 

operators with respect to x  respectively, 

while ( ),  q q x t=  is the source term. 

We rewrite (23) as: 
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t x xD u x t L u x t N u x t q x t

u x g x n n n

α
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 = − − +


= − < < ∈ 

 

                        (24) 
Applying the inverse fractional Caputo derivative, tD α−  to 
both sides of (24) and with regard to (14) gives: 

( )
( )

[ ] ( ) [ ] ( ) ( ){ }

*

*

,  ( ) ,
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, , , .t x x

u x t g x
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(25) 

Thus, expanding ( ,  )u x t  in terms of fractional power series 

form, the IPDT of ( , )U x h  for ( ),0 ( )u x g x=  is given 

as follows: 

( ) ( )
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h
u x t U x h tα

∞
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   ( ) ( )
1

,  0 ,  .h

h
u x U x h tα

∞
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IV. ILLUSTRATIVE EXAMPLES AND APPLICATIONS 
Here, three examples of time-fractional Black-Scholes 
model equations will be solved with the algorithmic 
technique as proposed. 
Problem 1:  Consider the time-fractional Black-Scholes 
equation (FBSE): 

2
2

2 0.5 0 , 0 1w w wx x w
t x x

α

α α∂ ∂ ∂
+ + − = < ≤

∂ ∂ ∂
    (27) 

subject to: 

( ) ( )
3

3 ,for 0
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0, for 0. 
x x

w x x
x

 >
= = 

≤
      (28) 

Procedure w.r.t Problem 1:   
Here, we will consider 0x >  and use the following 
representations for simplicity: 

,x t
w w

t

α
α

α

∂
=

∂
, 

( )2

,2

,
x h

W x h
W

x
∂

′′=
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 , 

( ) ( ), , 12

,
,  and , 1x h x h

W x h
W W x h W

x +

∂
′= + =

∂
 .    (29) 

So taking the PDTM of (27) and (28) gives:  
( )

( )
2

,1 , , ,

1
0.5

1 (1 )x h x h x h x h

h
W x W W W

h
α

α+

Γ +
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                               (30) 
subject to: 

3
,0xW x= .                                                        (31) 

2
,0 ,0  3  and 6x xW x W x′ ′′⇒ = = ,                 (32) 

so, when 0,h =   

( )
( )

2
,1 ,0 ,0 ,0

1
0.5

1x x x xW x W W W
α

Γ
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( )

( )
3 3 3

,1

1
6 1.5

1xW x x x
α

Γ
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( )

( )
31

6.5
1

x
α

Γ
 = − Γ +

                 (33) 

As such: 
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so for 1h = ,  
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α
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1 2 1 2x x
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1 2
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x
α
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Similarly, we arrive at the recurrence relation below: 
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Hence, 

, ,
0

,  1x t xw W t qαη
η

η

η
∞

=

= =∑  

 
      2 3

,0 ,1 ,2 ,3x x x xW W t W t W tα α α= + + + +   

      
( )

( )
( )

2 3 23
3 6.5(6.5 )

1 1 2
x tt xx
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− +
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3

0

6.5
1

n

n

t
x

n

α

α

∞

=

−
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       ( )3 6.5x E tα
α= − .                                   (38) 

We therefore remark that 3 6.5
,

t
x tw x e−=  is the exact 

root/solution of problem 1 when 1α =  (a special case). 
 
Problem 2:  Consider the (FBSE) ( [33, 42] for 1α = ): 

( )
2

2 1w w wk kw
x xt

α

α∂ ∂ ∂
= + − −

∂ ∂∂
, 0 1α< ≤         (39) 

for the initial condition: 

( ) ( ),0 max 1,  0xw x e= −                      (40) 

where ( , )w w x t= .  

 
Problem 2:  Solution Procedure:  
Taking the PDTM of (39) and (40) gives: 

( )
( )

( )

, 1 **

2
, ,

,2**

1
1 (1 )

1  .

x

x x
x

W A

W W
A k kW

x x

η

η η
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αη
α η+
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∂ ∂
= + − − ∂ ∂

                (41) 

( ),0 max 1,0x
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( )
2

,0 ,0
2 max ,0x x xW W

e
x x

∂ ∂
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∂ ∂
.                       (43) 

Thus, when 0η = ,  we have: 
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2
,0 ,0

,1 ,02
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x x
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W W
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 ∂ ∂Γ

= + − − Γ + ∂ ∂ 
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1
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x x x
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H e k e

α
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1

x xk e e
α

= − −
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                                           (44) 

so,  
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2 0x xW W

x x
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2
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1 1
1 2 1 2 1
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x

k HkW
W

α α
α α α
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( ) ( ) ( )( )
2
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1 2

x xk e e
α

−
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, (46) 

so, 
2

,2 ,2
20x xW W

x x
∂ ∂

= =
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.                          (47) 

When 2,η =   

( )
( ),3 ,2

1 2
1 3x xW kW

α
α

Γ +
 = − Γ +
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( ) ( )

31 2
1 3 1 2
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α α
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=  Γ + Γ + 

 

 
( ) ( ) ( )( )

3

max ,0 max 1,0
1 3

x xk e e
α

= − −
Γ +

  (48) 

such that  
2

,3 ,3
20x xW W

x x
∂ ∂

= =
∂ ∂

.                           (49) 

When 3,η =  
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( )
( ),4 ,3

1 3
1 4x xW kW

α
α

Γ +
 = − Γ +

  

( ) ( ) ( )( )
4

max ,0 max 1,0
1 4

x xk e e
α

−
= − −

Γ +
 .     (50) 

Suppose we set  

     ( ) ( )( )* max ,0 max 1,0x xM e e= − − .            (51) 

Then, 

  
 

, ,
0

,  1x t x hw W t qαη

η

η
∞

=

= =∑   

   2 3
,0 ,1 ,2 ,3x x x xW W t W t W tα α α= + + + +   

 
   ( ) ( ) ( )

1*

1

( )max 1,  0 1
1

n
nx

n

kte M
n

α

α

∞
+

=

= − + −
Γ +∑   

( ) ( )
*

1

( )max 1,0
1

n
x

n

kte M
n

α

α

∞

=

−
= − −

Γ +∑   

( )
( ) ( )( )

( )

max 1,  0

max ,  0 max 1,  0 ,

for 1 ( )

x

x x x

x

e

e e D

D E ktα
α

= − +
− − −


= − + −

  

( )
( )( )

max 1,0 ( )

  max ,0 1 ( ) ,

x

x

e E kt

e E kt

α
α

α
α

= − −


+ − −
             (52) 

where ( )E ktα
α −  denotes a one parameter Mittag-Leffler 

function. 
We remark that a special case of problem 2 at 1α =  has an 
exact solution: 

     ( )

( ) ( ){ } ( )

,

1

1

  max 1,  0

( )max ,  0 max 1,  0 1
!

x
x t

m
mx x

m

w e

kte e
m

∞
+

=

= −

+ − − −∑
  

  ( ) ( )( )max 1,  0 max ,  0 1x kt x kte e e e− −= − + − .   (53) 

 
Problem 3:   Consider the FBSE {Ex 2, [31, 42], for 

1α = }: 

( )
2

2 2
20.08 2 0.06 0.06w w wSinx x x w

t x x

α

α

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 

                            (54) 
for the initial condition: 

( ) ( )0.06,  0 max 25 ,  0w x x e−= − .                      (55) 

 
Problem 3:  Solution Procedure:  

Taking the projected DTM of (54) and (55) gives:  

( )
( ), 1

1
1 (1 )xW η

αη
α η+

Γ +
= ×

Γ + +
    

( )
2

2 , , ,2
2

32 32
25 50 50

x h x h x hW W WxSinx x
x x

 ∂ ∂
− + − +  ∂ ∂ 

 

                                   (56)   
for the initial condition: 

( )0.06
,0 max 25 ,  0xW x e−= − .                 (57) 

2
,0 ,0

2 1,   and  0x xW W
x x

∂ ∂
⇒ = =

∂ ∂
.               (58) 

So, when 0,η =  

( )
( ) ( )0.06

,1

0.06 1
max 25 ,0

1xW x x e
α

−Γ  = − + − Γ +
  

  
( ) ( )( )0.06 max 25exp 0.06 ,  0
1

x x
α

−  = − − − Γ +
. (59) 

As such: 
2

,1 ,1
20x xW W

x x
∂ ∂

= =
∂ ∂

 .                        (60) 

So for 1η =  ,  

( )
( ),2 ,1

1
0.06

1 2x xW W
α
α

Γ +
 =  Γ +

  

        
( ) ( )( )( )

2(0.06) max 25exp 0.06 ,  0
1 2

x x
α

−
= − − −

Γ +
 

                            (61) 
and, 

2
,2 ,2

20x xW W
x x

∂ ∂
= =

∂ ∂
.                 (62) 

So when 2η =  ,  

 
( )
( ),3 ,3

1 2
0.06

1 3x xW W
α
α

Γ +
 =  Γ +

  

  

( ) ( )( )( )
3(0.06) max 25exp 0.06 ,0 .

1 3
x x

α
= − − − −

Γ +
                    (63) 

Similarly, for p ∈ ,  

( ) ( )*
,

(0.06)
1 3

p

x pW N
pα

= −
Γ +

            (64) 

where 
  ( )( )* max( 25exp 0.06 ,  0N x x= − − − .        (65) 

 
Hence, 

 
, ,

0
,  1x t x hw W t qαη

η

η
∞

=

= =∑  

( )( ), max 25exp 0.06 ,  0x tw x= − − +  
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2 3
* (0.06 ) (0.06 ) (0.06 )

1 1 2 1 3
t t tN

α α α

α α α
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     ( )( ) ( )
0.06 *

1

(0.06 )max 25 ,0
1

n

n

tx e N
n

α

α

∞
−

=

= − −
Γ +∑ .    (66) 

Thus, simplifying (66) gives:
     

 
       

    

( )( )
( )( ) ( )

, 1 0.06

max 25exp 0.06 ,  0 0.06 .

x tw x E t

x E t

α
α

α
α

 = −


+ − −

  (67) 

We remark that when 1α = , Problem 3  has a special case 
whose exact solution is: 

( )( ),  2max exp 0 005 . 6 ,x t xw = −−   

 ( )( )exp 0 01 . 6t+ − ×  

( )( )( )max 25exp 0.06 ,  0x x− − −  

       ( )( )1 exp 0.06x t= −   

 ( )( ) ( )max 25exp 0.06 ,  0 exp 0.06 .x t+ − −  

                         (68) 
 

V. RESULTS AND DISCUSSION 
Here, the graphical views of solutions are presented (see Fig. 
1-9).  Fig.1 and Fig. 2 are for problem 1, Fig. 3 and Fig. 4 
are for problem 2, while Fig. 5 and Fig. 6 are for problem 3. 
For each case, same interval is used for the x -parameter 
while different intervals are used for the time-parameter. In 
Table I, we present the error analysis for different solution 
methods. 

 
Fig.  1. [ ] [ ]:  ,18  & , 4w t o x o∈ ∈  

 

 

Fig.  2. [ ] [ ]:  ,36  & , 4w t o x o∈ ∈  
 

 
 

Fig.  3. [ ] [ ]:  ,5  & ,15w t o x o∈ ∈  

 
Fig.  4. [ ] [ ]:  ,10  & ,15w t o x o∈ ∈  

 
Fig.  5. [ ] [ ]:  , 45  & ,50w t o x o∈ ∈  
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Fig.  6. [ ] [ ]:  ,100  & ,50w t o x o∈ ∈  

 
Table I: Solutions analysis of problem 1 when 1α =  

x  t  ( )ADMw     ( )HPMw   ( )PDTMw
 

0.1 0.13 39.2646 10−×
 

37.361 10−×
 

34.454 10−×
 

0.2 0.18 39.3652 10−×
 

37.445 10−×
 

34.548 10−×
 

0.3 0.27 39.4713 10−×
 

37.523 10−×
 

34.463 10−×
 

0.4 0.32 39.4747 10−×
 

37.567 10−×
 

34.482 10−×
 

0.5 0.38 39.6129 10−×
 

37.693 10−×
 

34.746 10−×
 

 

 
Fig. 7. Exact solutions of problem 1 when 1α =  

 
 

 
Fig. 8. PDTM solutions of problem 1 when 1α =  

 
Fig. 9. Solutions of problem 1 when 0.5α =   

 
In Table I above, we present the analysis of the solutions by 
comparing those obtained via the proposed method with 
those obtained using other semi-analytical methods: the 
ADM, and the HPM. The comparison is in terms of the 
errors as related to the exact solution of problem 1 when 

1α = . We denote by ( )ADMw  [43], ( )HPMw  and 

( )PDTMw , the solutions via ADM, HPM [44] and PDTM 
respectively. 
Emphasizing on the robustness and efficiency of the PDTM 
with regard to the link between integer-type and fractional-
type differential equations, we considered problem 1 in 
terms of integer order ( )1α =  and time-fractional order 

( )0.5α = . The results are graphically displayed in Fig. 7 
Fig. 8, and Fig. 9 respectively. Conclusion is drawn in the 
following section. 
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VI. CONCLUDING REMARKS 
 In this work, we have successfully applied a proposed 
relatively new computational algorithm referred to as 
projected DTM (PDTM) to the time-fractional Black-
Scholes equations in terms of European call option valuation 
for analytical solutions. The same approach can be 
employed for the valuation of put options of European type. 
For efficiency of the proposed method, some examples were 
solved numerically. The convergence rate of the obtained 
results is very fast when compared with their exact form of 
solutions (even without ignoring the accuracy), and they are 
in strong agreement with those already in literature.  
Though, the technique is advantageous, reliable and efficient 
since less computational work is required, no linearization or 
perturbation is needed. This proposed technique has not 
been reported in literature for solving time-fractional Black-
Scholes equations. This therefore, shows that the work of 
Edeki et al. [42] is a special case of this present work for 

1α = . Therefore, we note here that the time-fractional B-S 
model equation for option valuation is a generalization of 
the classical Black-Scholes model equation in its equivalent 
form.  
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