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Abstract—In this paper, by using Zalcman Lemma, we obtain
some normal criterions of meromorphic functions concerning
shared fixed-points, which improves some earlier related results.

Index Terms—meromorphic function; fixed-points; shared
value; normal criterion.

I. INTRODUCTION AND MAIN RESULTS

LET D be a domain in C, and F be a family of
meromorphic functions defined in the domain D. Then

F is said to be normal in D, in the sense of Montel, if
each sequence {fn} ⊂ F contains a subsequence {fnj} such
that {fnj} converges spherically, locally uniformly in D to
a meromorphic function or ∞. F is said to be normal at a
point z0 if there exists a neighborhood of z0 in which F is
normal(see [1-2]). Clearly, F is normal in D if and only if
it is normal at every point of D.

Suppose f(z) is a meromorphic function in a domain D,
and z0 ∈ D, if f(z0) = z0, we say z0 is the fixed-point of
f(z). Let f(z) and g(z) denote two meromorphic functions
in D, if f(z)−z and g(z)−z have the same zeros (ignoring
multiplicity), then we say f(z) and g(z) share the fix-points.

In this paper, we assumed that the reader is familiar with
the standard notations and the basic results of Nevanlinna’s
value-distribution theory(see [3-5]).

It is also more interesting to find normality criteria from
the point of shared values. In this area, Schwick [6] first
proved an interesting result that a family of meromorphic
functions in a domain is normal if in which every function
shares three distinct finite complex numbers with its first
derivative. And later, more results about normality criteria
concerning shared values have emerged, for instance (see [7-
10]). In recent years, this subject has attracted the attention
of many researchers.

In 2009, Y. T. Li and Y. X. Gu[11] gave the following
result:

Theorem 1.1 Let F be a family of meromorphic functions
defined in a domain D. Let k, n ≥ k + 2 be positive integers
and a ̸= 0 be a finite complex number. For each pair of
(f, g) ∈ F , if (fn)(k) and (gn)(k) share a in D, then F is
normal in D.

In 2009, many authors studied the functions of the form
f(f (k))n. And D. W. Meng and P. C. Hu[12] proved:

Theorem 1.2 Take positive integers n and k with n, k ≥ 2
and take a non-zero complex number a. Let F be a family of
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meromorphic functions in the plane domain D such that each
f ∈ F has only zeros of multiplicity at least k. For each pair
of (f, g) ∈ F , if f(f (k))n and g(g(k))n share a in D, then F
is normal in D.

Lately, Q Yang[13] extended Theorem 1.2 as follows:
Theorem 1.3 Let F be a family of meromorphic functions

defined in a domain D. Let n, k ≥ 2 be two positive integers.
For every f ∈ F , all of whose zeros have multiplicity at least
nk+2
n−1 . For each pair of (f, g)ϵF , if f(f (k))n and g(g(k))n

share z in D, then F is normal in D.

A natural question is: What’s the result if the func-
tion f(f (k))n in Theorem 1.3 is replaced by the function
fd(f (k))n? In this paper, we study the problem and obtain
the following theorems.

Theorem 1.4 Let F be a family of meromorphic functions
defined in a domain D. Let k, n, d be three positive integers. If
for every f ∈ F with f ̸= 0, and for each pair of (f, g) ∈ F ,
fd(f (k))n and gd(g(k))n share z in D, then F is normal in
D.

Theorem 1.5 Let F be a family of meromorphic functions
defined in a domain D. Let n, k ≥ 2, d be three positive
integers. For every f ∈ F , all of whose zeros have multiplicity
at least max{ nk+2

n+d−2 , k}. For each pair of (f, g) ∈ F , if
fd(f (k))n and gd(g(k))n share z in D, then F is normal in
D.

II. PRELIMINARY LEMMAS

In order to obtain our theorems, we require the following
Lemmas.

Lemma 2.1[7] Let F be a family of meromorphic functions
in a domain D, and k be a positive integer, such that each
function f ∈ F has only zeros of multiplicity at least k, and
suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A
whenever f(z) = 0. If F is not normal at z0 ∈ D, then
for each 0 ≤ α ≤ k, there exists a sequence of points
zn ∈ D, zn → z0, a sequence of positive numbers ρn → 0+,
and a subsequence of functions fn ∈ F such that

gn(ζ) =
fn(zn + ρnς)

ραn
→ g(ζ)

locally uniformly with respect to the spherical metric, where
g is a nonconstant meromorphic function, all of whose zeros
have multiplicity at least k, such that g♯(ζ) ≤ g♯(0) = kA+1.
Moreover, g has order at most 2.

Here as usual, g♯(ζ) = |g
′
(ζ)|

1+|g(ζ)|2 is the spherical derivative
of g.
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Lemma 2.2 Let k, n, d be three positive integers, and f be a
non-constant rational meromorphic function such that f ̸= 0,
then fd(z)(f (k)(z))n − z has at least two distinct zeros.
Proof: Since f ̸= 0, let

f(z) =
A

t∏
i=1

(z − βi)
(n+d)ni

, (1)

where A is a non-zero constant and nj(j = 1, 2, · · · , t) are
positive integers.

For the sake of simplicity, we denote N := n1 + n2 +
· · ·+ nt. Obviously, N ≥ t.

From (1), we have

f (k) =
P (z)

t∏
i=1

(z − βi)
ni+k

, (2)

and

fd(f (k))n =
AdPn(z)

t∏
i=1

(z − βi)
(n+d)ni+nk

. (3)

Where P (z) ̸≡ 0 is a polynomial, and deg(P ) = k(t − 1).
Differentiating (3), we get

[fd(f (k))n]
′′
=

P1(z)
t∏

i=1

(z − βi)
(n+d)ni+nk+2

. (4)

Where P1(z) ̸≡ 0 is a polynomial, and deg(P1) = (nk +
2)(t− 1).

If fd(f (k))n − z has at most one zero. We distinguish the
following two cases:

Case 1: fd(f (k))n − z has exactly one zero z0.
By (3), we obtain

fd(f (k))n − z =
B(z − z0)

(n+d)N+nkt+1

t∏
i=1

(z − βi)
(n+d)ni+nk

, (5)

where B is a non-zero constant. Differentiating (5), we have

[fd(f (k))n]
′′
=

P2(z)(z − z0)
(n+d)N+nkt−1

t∏
i=1

(z − βi)
(n+d)ni+nk+2

. (6)

Where P2(z) ̸≡ 0 is a polynomial, and deg(P2) ≤ 2t.
From (4) and (6), we get

(nk + 2)(t− 1) ≥ (n+ d)N + nkt− 1
≥ (n+ d)t+ nkt− 1,

then −nk ≥ (n+ d− 2)t+ 1 ≥ 1, this is a contradiction.
Case 2: fd(f (k))n − z has no zero.
By (5), we have (n + d)N + nkt + 1 = 0, which is a

contradiction and Lemma 2.2 is hold.

Lemma 2.3 Let n, k, d ≥ 2 be three positive integers
and f be a non-constant rational meromorphic function. If
all zeros of f have multiplicity at least max{ nk+2

n+d−2 , k}, then
fd(z)(f (k)(z))n − z has at least two distinct zeros.

Proof: Suppose that fd(z)(f (k)(z))n − z has at most one
zero.

Case 1: f is a polynomial.
In this case, we find that all zeros of fd(z)(f (k)(z))n have

multiplicity at least kd. Since all zeros of f have multiplicity
at least max{ nk+2

n+d−2 , k}, so fd(z)(f (k)(z))n−z has at least
one zero and [fd(z)(f (k)(z))n]

′
has zeros with multiplicity

at least kd − 1. According to the assumption, we obtain
fd(z)(f (k)(z))n − z has only one zero z0, then there exists
a non-zero constant A and a integer l ≥ 2 such that

fd(z)(f (k)(z))n = z +A(z − z0)
l.

So,
[fd(z)(f (k)(z))n]

′
= 1 +Al(z − z0)

l−1.

Which implies that it has only simple zeros. This contra-
dicts with the facts that all zeros of fd(z)(f (k)(z))n have
multiplicity at least kd.

Case 2: f is a rational but not a polynomial.
In this case, we get

f(z) =
A(z − α1)

m1(z − α2)
m2 · · · (z − αs)

ms

(z − β1)n1(z − β2)n2 · · · (z − βt)nt
, (7)

Where A is a non-zero constant and mj ≥ nk+2
n+d−2 (j =

1, 2, · · · , s).
For simplicity, we denote

M = m1 +m2 + · · ·+ms ≥
(nk + 2)s

n+ d− 2
, (8)

N = n1 + n2 + · · ·+ nt ≥ t. (9)

From (7), we have

f (k) =

s∏
j=1

(z − αj)
mj−kg(z)

t∏
i=1

(z − βi)
ni+k

, (10)

and

fd(f (k))n =

s∏
j=1

(z − αj)
(n+d)mj−nkgn(z)

t∏
i=1

(z − βi)
(n+d)ni+nk

=
P (z)

Q(z)
. (11)

Where g(z) ̸≡ 0 is a polynomial and deg(g) ≤ k(s+ t− 1).
Differentiating (11), we have

[fd(f (k))n]
′
=

s∏
j=1

(z − αj)
(n+d)mj−nk−1g1(z)

t∏
i=1

(z − βi)
(n+d)ni+nk+1

, (12)

and

[fd(f (k))n]′′ =

s∏
j=1

(z − αj)
(n+d)mj−nk−2g2(z)

t∏
i=1

(z − βi)
(n+d)ni+nk+2

. (13)
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Where g1(z) ̸≡ 0, g2(z) ̸≡ 0 are polynomials, and deg(g1) ≤
(nk + 1)(s+ t− 1), deg(g2) ≤ (nk + 2)(s+ t− 1).

Now, we distinguish the two subcases:
Subcase 2.1: fd(z)(f (k)(z))n−z has exactly one zero z0.
From (11), we obtain

fd(f (k))n = z +
B(z − z0)

l

t∏
i=1

(z − βi)
(n+d)ni+nk

=
P (z)

Q(z)
. (14)

Differentiating (14), we have

[fd(f (k))n]
′
= 1 +

(z − z0)
l−1g∗1(z)

t∏
i=1

(z − βi)
(n+d)ni+nk+1

, (15)

and

[fd(f (k))n]
′′
=

(z − z0)
l−2g∗2(z)

t∏
i=1

(z − βi)
(n+d)ni+nk+2

. (16)

Where g∗1(z) ̸≡ 0, g∗2(z) ̸≡ 0 are polynomials, deg(g∗1) ≤
t, deg(g∗2) ≤ 2t. By (12) and (15), we have z0 ̸= αj(j =
1, 2, · · · , s).

Further, we consider the following two subcases.
Subcase 2.1.1: l ̸= (n+ d)N + nkt+ 1.
From (14), it is easily obtained that deg(P ) ≥ deg(Q).

Thus (11) implies

deg(Q) = (n+ d)N + nkt ≤ deg(P )
= (n+ d)M − nks+ n deg(g)
≤ (n+ d)M − nks+ nk(s+ t− 1)
= (n+ d)M + nkt− nk.

So, M ≥ N + nk
n+d , that is M > N . From (11) and (14),

noting that z0 ̸= αj(j = 1, 2, · · · , s), we have

(n+ d)M − (nk + 2)s ≤ deg(g∗2) ≤ 2t.

It follows that (n+ d)M ≤ (nk + 2)s+ 2t, by (8) and (9),
we obtain

(n+ d)M ≤ (nk + 2)s+ 2t

≤ (nk + 2) (n+d−2)M
nk+2 + 2N

< (n+ d)M

which is impossible.
Subcase 2.1.2: l = (n+ d)N + nkt+ 1.
If M > N , the similar to the Subcase 2.1.1. It follows

that (n+ d)M < (n+ d)N , which is impossible.
We may assume that M ≤ N , by (13) and (16), we have

l − 2 ≤ deg(g2) ≤ (nk + 2)(s+ t− 1),

and

(n+ d)N = l − nkt− 1 ≤ (nk + 2)(s+ t− 1)− nkt+ 1
= (nk + 2)s+ 2t− (nk + 1)

< (nk + 2) (n+d−2)M
nk+2 + 2N

≤ (n+ d)N.

This is also a contradiction.
Subcase 2.2: f(z)(f (k)(z))n − z has no zero.
Then l = 0 for (14). And differentiating (14), the

similarly to the proof of Subcase 2.1, we also obtain a

contradiction. Hence, the Lemma 2.3 is hold.

Lemma 2.4[14] Let f(z) be a transcendental meromorphic
function, n, k, d be three positive integers. Then, when k ≥ 1,
n, d ≥ 2, fd(f (k))n − φ(z) has infinitely many zeros, where
φ(z) ̸≡ 0, T (r, φ) = S(r, f).

III. PROOFS OF THEOREMS

Proof of Theorem 1.5. From theorem 1.3, the theorem
1.5 holds when d = 1. Next, we will prove the case d ≥ 2.

Case 1: z0 = 0.
Let F1 = {Fj : Fj(z) =

fj(z)

z
1

n+d
|fjϵF}. If F1 is not normal

at 0, by Lemma 2.1, there exists a sequence {zj} of complex
numbers with zj → 0, a sequence {ρj} of positive numbers
with ρj → 0 such that

gj(ξ) = ρ
− nk

n+d

j Fj(zj + ρjξ) → g(ξ),

locally uniformly on compact subsets of C, where g(ξ) is a
non-constant meromorphic function in C.

Here we distinguish two subcases.
Subcase 1.1: zj

ρj
→ c, where c is a finite complex number.

Then

ϕj(ξ) =
fj(ρjξ)

ρ
1+nk
n+d

j

=
Fj(zj+ρj(ξ−

zj
ρj

))

ρ
nk
n+d
j

(ρjξ)
1

n+d

ρ
1

n+d
j

→ ξ
1

n+d g(ξ − c) = H(ξ),

locally uniformly on compact subsets of C disjoint from
the poles of g, where H(ξ) is a non-constant meromorphic
function in C, all of whose zeros have multiplicity at least
max{ nk+2

n+d−2 , k}.
Hence,

ϕd
j (ξ)(ϕ

(k)
j (ξ))n − ρjξ

ρj
=

fd
j (ρjξ)(f

(k)
j (ρjξ))

n−(ρjξ)

ρj

→ Hd(ξ)(H(k)(ξ))n − ξ,

spherically locally uniformly in C disjoint from the poles of
g.

If Hd(ξ)(H(k)(ξ))n ≡ ξ, since H(ξ) has zeros with
multiplicity at least max{ nk+2

n+d−2 , k}, obviously this is a con-
tradiction. Hence, Hd(ξ)H(k)(ξ) ̸≡ ξ. Since the multiplicity
of all zeros of H(ξ) is at least max{ nk+2

n+d−2 , k}, by Lemma
2.3 and 2.4, Hd(ξ)(H(k)(ξ))n − ξ has at least two distinct
zeros.

Suppose that ξ0, ξ
∗
0 are two distinct zeros of

Hd(ξ)(H(k)(ξ))n − ξ. Then we can choose a positive
number δ small enough such that D1

∩
D2 = ∅ and

Hd(ξ)(H(k)(ξ))n− ξ has no other zeros in D1

∪
D2 except

for ξ0 and ξ∗0 , where

D1 = {ξ ∈ C||ξ − ξ0| < δ}, D2 = {ξ ∈ C||ξ − ξ∗0 | < δ}.

By Hurwitz’s Theorem, for sufficiently large j, there exist
points ξj ∈ D1, ξ

∗
j ∈ D2 such that

fd
j (ρjξ

∗
j )(f

(k)
j (ρjξ

∗
j ))

n − (ρjξ
∗
j ) = 0,

fd
j (ρjξj)(f

(k)
j (ρjξj))

n − (ρjξj) = 0.

By the assumption in Theorem 1.5, fd
m(f

(k)
m )n and

fd
j (f

(k)
j )n share z, it follows that

fd
m(ρjξ

∗
j )(f

(k)
m (ρjξ

∗
j ))

n − (ρjξ
∗
j ) = 0,
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fd
m(ρjξj)(f

(k)
m (ρjξj))

n − (ρjξj) = 0.

Fix m, take j → ∞, and note ρjξj → 0, ρjξ
∗
j → 0, we

obtain
fd
m(0)(f (k)

m (0))n = 0.

Since the zeros of fd
j (ξ)(f

(k)
j (ξ))n − ξ has no accumulation

point, for sufficiently large j, we have

ρjξj = 0, ρjξ
∗
j = 0.

Therefore, when j is large enough, ξ0 = ξ∗0 . This contradicts
with the facts ξ0 ∈ D1, ξ

∗
0 ∈ D2, D1

∩
D2 = ∅. Thus, F1 is

normal at 0.
Subcase 1.2: zj

ρj
→ ∞.

We have

f
(k)
j (z) = z

1
n+dF

(k)
j (z) +

k∑
l=1

clk(z
1

n+d )(l)F
(k−l)
j (z)

= z
1

n+dF
(k)
j (z) +

k∑
l=1

clz
1

n+d−lF
(k−l)
j (z),

where cl = 1
n+d (

1
n+d − 1) · · · ( 1

n+d − l + 1)Cl
k. Thus, we

get

fd
j (z)(f

(k)
j (z))n

= [z
1

n+dF
(k)
j (z) +

k∑
l=1

clz
1

n+d−lF
(k−l)
j (z)]nz

d
n+dF d

j (z),

fd
j (z)(f

(k)
j (z))n

z

= [F
(k)
j (z)F

d
n
j (z) +

k∑
l=1

cl
F

(k−l)
j (z)F

d
n
j (z)

zl
]n.

Since F
(k−l)
j (zj + ρjξ) = ρ

kn
n+d−(k−l)

j g
(k−l)
j (ξ), we have

fd
j (zj+ρjξ)(f

(k)
j (zj+ρjξ))

n

zj+ρjξ

= (g
(k)
j (ξ)g

d
n
j (ξ) +

k∑
l=1

cl
g
(k−l)
j (ξ)g

d
n
j (ξ)

(
zj
ρj

+ ξ)l
)n.

On the other hand, for l = 1, 2, · · · , k, we have

lim
j→∞

cl
(
zj
ρj

+ξ)l
= 0,

Thus,

fd
j (zj + ρjξ)(f

(k)
j (zj + ρjξ))

n

zj + ρjξ
→ gd(ζ)(g(k)(ξ))n,

spherically locally uniformly in C disjoint from the poles of
g.

If gd(ξ)(g(k)(ξ))n ≡ 1, then g has no zeros. Of course,
g also has no poles. Since g is a non-constant Mero-
morphic function of order at most 2, there exist constant
ci(i = 1, 2), (c1, c2) ̸= (0, 0), and g(ξ) = ec0+c1ξ+c2ξ

2

,
obviously, this contradicts the case gd(ξ)(g(k)(ξ))n ≡ 1.
Hence, gd(ξ)(g(k)(ξ))n ̸≡ 1.

Since the multiplicity of all zeros of g is at least
max{ nk+2

n+d−2 , k}. By Lemma 2.4, gd(ξ)(g(k)(ξ))n − 1 has
at least two distinct zeros.

Suppose that ξ1, ξ
∗
1 are two distinct zeros of

gd(ξ)(g(k)(ξ))n − 1. We choose a positive number δ small
enough such that D3

∩
D4 = ∅ and gd(ξ)(g(k)(ξ))n − 1 has

no other zeros in D3

∪
D4 except for ξ1 and ξ∗1 , where

D3 = {ξ ∈ C||ξ − ξ1| < δ}, D4 = {ξ ∈ C||ξ − ξ∗1 | < δ}.

By Hurwitz’s Theorem, for sufficiently large j there exist
points ξ̂j ∈ D1, ξ̃j ∈ D2 such that

fd
j (zj + ρj ξ̂j)(f

(k)
j (zj + ρj ξ̂j))

n − (zj + ρj ξ̂j) = 0,

fd
j (zj + ρj ξ̃j)(f

(k)
j (zj + ρj ξ̃j))

n − (zj + ρj ξ̃j) = 0.

By the assumption in Theorem 1.5, fd
m(f

(k)
m )n and

fd
j (f

(k)
j )n share z, it follows that

fd
m(zj + ρj ξ̂j)(f

(k)
m (zj + ρj ξ̂j))

n − (zj + ρj ξ̂j) = 0,

fd
m(zj + ρj ξ̃j)(f

(k)
m (zj + ρj ξ̃j))

n − (zj + ρj ξ̃j) = 0.

Similar to the proof of Subcase 1.1, Fix m, take j → ∞,
we also get ξ1 = ξ∗1 . This contradicts the facts ξ1 ∈ D3, ξ

∗
1 ∈

D4, D3

∩
D3 = ∅. Thus, F1 is normal at 0.

From Subcases 1.1 and 1.2, we know F1 is normal at 0,
there exists ∆ = {z : |z| < ρ} and a subsequence of Fj , we
may still denote it as Fj , such that Fj converges spherically
locally uniformly to a meromorphic function F (z) or ∞ in
∆. Here we distinguish the following two cases.

Case i: fj(0) ̸= 0, when j is large enough.

Then F (0) = ∞. Thus, for each Fj(z) ∈ F1, there exists
δ > 0 such that |F (z)| > 1 for all z ∈ ∆δ = {z : |z| < δ}
when F (z) ∈ F1. So, for sufficiently large j, |Fj(z)| ≥ 1,
1
fj

is holomorphic in ∆δ . Therefore, for all fj ∈ F , we have

| 1
fj
| = | 1

Fj(z)z
1

n+d
| ≤ ( 2δ )

1
n+d .

when |z| = δ
2 . By maximum Principle and Montel’s Theo-

rem, F is normal at z = 0.

Case ii: There exists a subsequence of fj , we may still
denote it as fj such that fj(0) = 0.

Since f ∈ F , the multiplicity of all zeros of f is
at least max{ nk+2

n+d−2 , k}, then Fj(0) = 0. Thus, there
exists 0 < r < ρ such that Fj(z) is holomorphic in
∆r = {z : |z| < r} and has a unique zero z = 0 in
∆r. Then Fj converges spherically locally uniformly to a
holomorphic function F (z) in ∆r, fj converges spherically
locally uniformly to a holomorphic function F (z)z

1
n+d in

∆r. Hence, F is normal at z = 0.

From Case i and ii, we know that F is normal at z = 0.

Case 2: z0 ̸= 0.

Suppose that F is not normal in D. Then there exists
at least one point z0 such that F is not normal at the
point z0. By Lemma 2.1, there exist a sequence {znj} of
complex numbers with znj → z0, a sequence {ρn} of
positive numbers with ρn → 0 such that

gn(ξ) = ρ
− nk

n+d
n fn(zn + ρnξ) → g(ξ), (17)

locally uniformly on compact subsets of C, where g(ξ) is a
non-constant meromorphic function in C, all of whose zeros
have multiplicity at least max{ nk+2

n+d−2 , k}. Moreover, g(ξ)
has order at most 2.
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From (17), we get

gdn(ξ)(g
(k)
n (ξ))n − (zn + ρnξ)

= fd
n(zn + ρnξ)(f

(k)
n (zn + ρnξ))

n − (zn + ρnξ)
→ gd(ξ)(g(k)(ξ))n − z0,

spherically locally uniformly in C disjoint from the poles of
g.

If gd(g(k))n ≡ z0, then g has no zeros. Of course, g also
has no poles. Since g is a non-constant meromorphic function
of order at most 2, then there exist constant ci(i = 1, 2) ̸= 0,
and g(ξ) = ec0+c1ξ+c2ξ

2

. Obviously, this is contrary to the
case gd(g(k))n ≡ z0. Hence gd(g(k))n ̸≡ z0.

By Lemma 2.4, we deduce that gd(g(k))n − z0 has at
least two distinct zeros. Next we show that it is impossible.
Let ξ2 and ξ∗2 be two distinct zeros of gd(g(k))n − z0.
We choose a positive number δ small enough such that
D5

∩
D6 = ∅ and such that gd(g(k))n − z0 has no other

zeros in D5

∪
D6 expect for ξ2 and ξ∗2 , where

D5 = {ξ ∈ C||ξ − ξ2| < δ}, D6 = {ξ ∈ C||ξ − ξ∗2 | < δ}.

By Hurwitz’s Theorem, similar to the proof of Case 1, we
can get ξ2 = ξ∗2 . This is contrary to the facts ξ2 ∈ D5, ξ

∗
2 ∈

D6, D5

∩
D6 = ∅. Thus, F1 is normal at z0. Hence, the

Theorem 1.5 is hoid.
The proof of Theorem 1.4 is similar to Theorem 1.5, only

replace Lemma 2.3 by Lemma 2.2 in the proof procedure,
here we omit the proof.
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