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     Abstract— In this paper, we propose the fourth stage of the 

inverse polynomial scheme for the numerical solution of initial 

value problems of ordinary differential equations. Binomial 

expansion and Taylor’s series method are used towards the 

derivation of the scheme. We further study the analysis 

properties to show the efficiency of the method. Numerical 

experiments are carried out and the results are compared with 

the theoretical solution and some existing methods to show that 

it is adequate, effective and computationally time friendly. 

 
Index Terms— inverse polynomial, initial value problem, 

ordinary differential equations, consistency, stability, 

convergence.  

 

I. INTRODUCTION 

n science and engineering, modeling a system frequently 

amounts to solving an initial value problem. In this 

context, the differential equation is an evolution equation 

specifying how, given initial conditions, the system will 

evolve with time. Turning the rules that govern the evolution 

of a quantity into a differential equation is called modeling 

[2]. 

    Numerical method is a substantial aspect in solving initial 

value problems in ordinary differential equations where the 

problems cannot be solved or difficult to obtain analytically. 

The numerical solutions of first order initial value problems 

have caught much attention recently; a new numerical 

scheme for the solution of initial value problems in ordinary 

differential equations was developed [10]. An integrator was 

also developed in [11] by representing the theoretical 

solution to initial value problems by an interpolating 

function which maybe linear or nonlinear. 

    There is a technique [20] for comparing numerical 

methods that have been designed to solve stiff systems of 

ordinary differential equations; the technique was applied to 

five methods of which three turn out to be quite good. 

However, each of the three has a weakness of its own, which 

can be identified with particular problem characteristics. 

    Wavelets was used in solving the first order ordinary 

differential equations which are either stiff or non-stiff [3].  

It is worth mentioning that [1] works on the method for the 

numerical solution of the Painlevé equations (equations 
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having singularities at points where the solution takes certain 

finite values). Researchers also worked on some other forms 

of equations like the integro-differential equations [15] and 

the integral equations where the Petrov-Galerkin method is 

employed for the numerical solution of stochastic volterra 

integral equations [4]. 

Other notable works are [6], [7], [8], [13], [16], and [19] to 

mention a few. 

    In this paper, we developed a numerical integrator capable 

of solving equations of the form  

00 )();,( yxyyxfy                                                (1) 

The integrator is developed by representing the theoretical 

solution ‘ )(xy ’ to (1) by an interpolating function. 

In [14], the effectiveness of the first stage, second stage of 

the inverse polynomial method to solving ordinary 

differential equations with singularities was shown using a 

different integrator and [18] worked on the third stage of the 

method and analyzed its analysis properties; the local 

truncation error and the order were also determined towards 

its implementation. 

 

II. PRELIMINARIES 

    In this section, we present some useful existing concept 

and works. 

    

Definition II.1. The conventional one-step numerical 

integrator for initial value problem (1) is generally described 

according to [12] as  

);,(1 hyxhyy nnnn 
                                            (2) 

Examples of such method are Euler’s method and Runge-

Kutta’s method. 

 

Definition II.2. Truncation error is the error committed 

when the higher terms of the power series are ignored. Such 

errors are essentially algorithmic errors and we can predict 

the extent of the error that will occur in the method. 

 

Definition II.3. An algorithm is said to be numerically 

stable if an error whatever the cause does not grow much 

larger during calculation. This happens if the problem is well 

posed, that is, the solution changes by only a small amount if 

the problem data are changed by small amounts. 

 

Definition II.4. The simplest methods of order ‘P’ are 

always based on the Taylor series expansion of the solution 

‘ )(xy ’ of the IVP (1) as in [9]. If we assume ‘ )(1 xy p ’ to 
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be continuous on the closed interval [a, b], then the Taylor’s 

formula is given by 
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The continuity of ‘ )(1 xy p ’ implies that it is bounded on 

[a, b] and therefore, 
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We introduce (4) in (3), 
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Equation (5) is called the Taylor Series Method of order P.  

  In this work, we denote the Taylor’s series method of order 

4 as TSM-4. 

 

Definition II.5. Runge-Kutta Method (RK4) is a technique 

for approximating the solution of ordinary differential 

equations. It was developed by two mathematicians Carl 

Runge and Withen Kutta around 1900. 

Runge-Kutta method is popular because of its efficient used 

in most computer programs for differential equations. The 

most widely used Runge-Kutta scheme is the fourth order 

scheme RK4 based on Simpson’s rule [17]. 
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III. FOURTH STAGE INVERSE POLYNOMIAL 

SCHEME 

    Let the numerical approximation ‘
1ny ’ evaluated at 

1 nxx  to exact solution ‘ )( 1nxy ’ to the first order 

ordinary differential equation be represented as  
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The parameters 'sa j  are to be determined from the non-

linear equations that will be generated by considering the 

following steps: 

1.   For the fourth order, k=4, and setting 10 a  
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2.   Obtain the Binomial Expansion of (8) 
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3. Express the left hand side of (8) in terms of its 

Taylor's series expansion 
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4.    Insert the obtained equations from steps 2 and 3 

above into (8) and expand 
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5.   We make the expression above agrees term by term 

for each parameter. 
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Solve for 2a by substituting (9) 
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We express each term of 4a  above in relation to (9), (10), 

and (11) 
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By using (9), (10), (11), and (12) in (8), we have the fourth 

stage Inverse Polynomial:  
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 Equation (13) is the Fourth Stage Inverse Polynomial 

Scheme (New Method).  

          

IV. ANALYSIS OF THE BASIC PROPERTIES OF THE 

FOURTH STAGE SCHEME 

A.  Consistency 

A numerical scheme with an increment function 

‘ );,( hyx nn ’ is said to be consistent with the initial value 

problem (1) if  

 yxfhyx nn ,);,(   when h =0. 

From (2) 

     );,(1 hyxhyy nnnn 
                             (14) 
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Taking the limit as h  approaches zero, 
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B.   Stability 

    One-step scheme is said to be stable if for any initial error 

0e , there exist a constant M and 
0h >0 such that when the 

general one-step scheme is applied to initial value problems 

with step size ),,0( 0hh  the ultimate error ne  satisfies 

the following inequalities 
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   The theoretical solution y(x) is given as  
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We take the absolute value of both sides, 
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k

j

j
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




 
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We assume that 



k

j

hn
j

j xaQ
0

                                 (19)       

Then, 
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hnhnhn TeMe   1
                                             (21) 

Let )sup( hnhn eE   and )sup( hnTT   

Similarly, )sup( 11   hnhn eE with  n0  

 We then have in the form  

TMEE hnhn   1
                                                   (22) 

For h=1,  

TMEE nn 1
 

For h=2, 

TMEE nn   12  

          
TMTEM

TTMEM

n

n





2

)(  

TMTEME nn 

2

2
 

For h=3, 

TMEE nn   23
 

          TTMTEMM n  )( 2  

TMTTMEME nn 

23
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The general form is   




 
0r

r

n

k

hn TMEME                                           (23) 
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k

hnkn TMEMEe
 

Since M<1 and as 0,  hnEn  

This shows that the method is stable and also convergent. 

C.   Convergence 

 The necessary and sufficient conditions for a numerical 

method to be convergent are stability and consistency. Since 

these conditions are satisfied, we can conclude that the 

proposed method is Convergent. 

   More of stability, consistency and convergence shall be 

discussed in the next section by considering some test 

problems.  

 

V. NUMERICAL RESULTS AND INTERPRETATIONS. 

A.     Test problems  

  We require that the first, second, 

third and fourth derivatives with respect to 

‘x’ of the interpolating function, respectively coincide with 

the differential equation as well as its first, second, third 

and fourth derivatives with respect to x at nx . In other 

words, we require that, 

3)4(

2

)(

)(

)(

)(

nn

nn

nn

nn

fxy

fxy

fxy

fxy









 

Now for
n

xx
h n 0
 ,                                                    (24) 

We generate iterations to determine ‘
ny ’ at each value of 

‘
nx ’.  

We shall compare our results with the Taylor’s series 

method of order P=4 (TSM-4), Runge-kutta of order 4 

(RK4) and the exact solution of each of the initial value 

problems in order to show the effectiveness of the new 

method. We consider the following examples: 

 

Example 1 

 The logistics growth modelled by the differential equation  

)1(
m

p
kp

dt

dp
  

for some positive constants k and m  

We now take the IVP )( tx  : 

5.0)0();1(  yyyy                                              (a) 

1.0h  

 

The exact solution is given as  

te
ty




5.05.0

5.0
)(  

 

 

    Table I 

     Results of Example 1 

 

t  New Method  Exact solution Error  

0.0 0.500000000 0.500000000 0.000000000 

0.1 0.524979165 0.524979187 0.000000022 

0.2 0.549833952 0.549833997 0.000000045 

0.3 0.574442450 0.574442516 0.000000066 

0.4 0.598687573 0.598687660 0.000000087 

0.5 0.622459225 0.622459331 0.000000106 

0.6 0.645656182 0.645656306 0.000000124 

0.7 0.668187632 0.668187772 0.000000140 

0.8 0.689974326 0.689974481 0.000000157 

0.9 0.710949335 0.710949502 0.000000167 

1.0 0.731058400 0.731058578 0.000000178 

 

 

Example 2 

The non-linear initial value problem as in [5] 

 1)0(,1)0(;0)( 2  yyyy                      (b) 

1.0h ,  0.1nx  

 

This can be reduced to the desired order by the method of 

reduction of order. The exact solution is then given as  

 

1

1
)(




x
xy  
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Table II 

Results of Example 2 

 

x  TSM-4 RK4 New Method 

0.0 1.000000000 1.000000000 1.000000000 

0.1 0.909033333 0.909091186 0.909090909 

0.2 0.833290126 0.833333729 0.833333333 

0.3 0.769197044 0.769231206 0.769230769 

0.4 0.714258558 0.714286154 0.714285714 

0.5 0.666644250 0.66666709 0.666666667 

0.6 0.624981120 0.624980325 0.625000000 

0.7 0.588219131 0.588217885 0.588235294 

0.8 0.555541530 0.555540041 0.555555556 

0.9 0.526303480 0.525828299 0.526315790 

1.0 0.499989092 0.499560026 0.500000000 

 

 The exact solution is given as follows 

Table III 

Exact Solution to (b) 

 

x  Exact solution 

0.0 1.000000000 

0.1 0.909090909 

0.2 0.833333333 

0.3 0.769230769 

0.4 0.714285714 

0.5 0.666666667 

0.6 0.625000000 

0.7 0.588235294 

0.8 0.555555556 

0.9 0.526315790 

1.0 0.500000000 

 

Table IV 

Error Analysis from the Results of Example 2  

 

x  Error in 

TSM-4 

Error in RK4 Error in New 

Method 

0.0 0.000000000 0.000000000 0.000000000 

0.1 0.000057576 0.000000277 0.000000000 

0.2 0.000043207 0.000000396 0.000000000 

0.3 0.000033725 0.000000437 0.000000000 

0.4 0.000027156 0.000000440 0.000000000 

0.5 0.000022417 0.000000423 0.000000000 

0.6 0.000018880 0.000019675 0.000000000 

0.7 0.000016160 0.000017409 0.000000000 

0.8 0.000014026 0.000015515 0.000000000 

0.9 0.000012310 0.000487491 0.000000000 

1.0 0.000010908 0.000439974 0.000000000 

 

 

 Example 3 

We consider the special initial value problem in ordinary 

differential equation of the form 

  01.0,1)0(;1 2  hyyy ,  04.00  x        (c) 

 The exact result is given as 

10);
4

tan()(  xxxy
  

 

 

 

Table V 

Results of Example 3 

 

x  TSM-4 RK4 New Method 

0.00 1.0000000 1.0000000 1.0000000 

0.01 1.0202027 1.0202027 1.0202027 

0.02 1.0408219 1.0408219 1.0408219 

0.03 1.0618748 1.0618748 1.0618748 

0.04 1.0833797 1.0833797 1.0833797 

0.05 1.1053556 1.1053556 1.1053556 

0.06 1.1278228 1.1278228 1.1278228 

0.07 1.1508026 1.1508026 1.1508026 

0.08 1.1743174 1.1743174 1.1743174 

0.09 1.1983911 1.1983911 1.1983911 

0.10 1.2230489 1.2230489 1.2230489 

 

The exact solution is given as follows  

Table VI 

Exact Solution to (c) 

 

x  Exact Solution 

0.00 1.0000000 

0.01 1.0202027 

0.02 1.0408219 

0.03 1.0618748 

0.04 1.0833797 

0.05 1.1053556 

0.06 1.1278228 

0.07 1.1508026 

0.08 1.1743174 

0.09 1.1983911 

0.10 1.2230489 

 

B.  Interpretation of results 

We have implemented the fourth stage of the Inverse 

Polynomial Scheme which has an advantage over all 

previously proposed methods of the same order as it is seen 

in Table II when it was compared with Runge-Kutta method 

of order 4 (RK4) and the Taylor’s series method P=4  

(TSM-4). Table IV showed the analysis of error in each of 

the methods. In Table I, the new method is well behaved 

when compared with the exact solution. This makes it to be 

more accurate and reliable. 

 Example 3 is a special initial value problem which is 

unbounded or undefined at ‘
4


x ’ 

 So, the new method compared favourably with the existing 

methods and the exact method when called upon to solve 

this form of initial value problem as shown above in Table 

V. 

  From all the examples, we can see that the issue of stability 

and consistency of the new scheme is well demonstrated and 

thereby showing a measure of convergence towards the 

exact solution. 
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