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Abstract—An upwind-mixed finite element method with mov-
ing grids is presented to simulate quasi-nonlinear Sobolev
equations. This method is constructed by two methods. The
upwind method is used to approximate the the convection
term of Sobolev equations, meanwhile an expanded mixed finite
element method is applied to discretize the diffusion term. The
scalar unknown function and the adjoint vector function can
be approximated simultaneously by this method. Optimal error
estimates in L2-norm are obtained for both the scalar unknown
function and the adjoint vector function. Finally, numerical
experiments are presented to illustrate the efficiency of this
method.

Index Terms—Upwind method, mixed finite element method,
moving grids, quasi-nonlinear Sobolev equations

I. INTRODUCTION

WE consider the following quasi-nonlinear Sobolev
equations

ut −∇ ·
(
a(x, t)∇ut + b(x, t, u)∇u

)
+ c(x, t, u) · ∇u

= f(x, t, u), x ∈ Ω, t ∈ (0, T ],
u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(1)
where Ω is a bounded subset of R2 with smooth
boundary ∂Ω, u0(x) and f(x, t, u) are known
functions, the coefficients a(x, t), b(x, t, u), c(x, t, u) =
(c1(x, t, u), c2(x, t, u))

T satisfy the following condition:

0 < a0 ≤ a(x, t) ≤ a1, |∂a(x, t)
∂t

| ≤ a2,

0 < b0 ≤ b(x, t, u) ≤ b1,

|c(x, t, u)| =
√

c21(x, t, u) + c22(x, t, u) ≤ c0,

|∂c(x, t, u)
∂u

| ≤ K1,

b(x, t, u), c(x, t, u), f(x, t, u) and
∂c(x, t, u)

∂u
are Lipschitz continuous with respect to u.

(2)

where a0, a1, a2, b0, b1, c0,K1 are positive constants. We
assume that u(x, t) satisfy the smooth condition needed in
the following analysis.

For time-changing localized phenomena, such as sharp
fronts and layers, the finite element method with mov-
ing grids [1]-[3] is advantageous over fixed finite element
method. The reason is that the former treats the problem
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with the finite element method on space domain by using
different meshes and different basic functions at different
time level so that it has the capability of self-adaptive local
grid modification (refinement or unrefinement) to efficiently
capture propagating fronts or moving layers. The paper [4]
had combined this method with mixed finite element method
to study parabolic problems.

Sobolev equations have important applications in many
mathematical and physical problems, such as the percolation
theory of the fluid flowing through the cracks [5], the
transfer problem of the moisture in the soil [6], and the
heat conduction problem in different materials [7]. Hence,
there exists great and actual significance to discuss Sobolev
equations in depth. Many papers had researched on numerical
methods for Sobolev equations. More attentions were paid
for treating the damping term ∇· (a∇ut), which is a distinct
character of Sobolev equations different from parabolic e-
quation. For example, time-stepping Galerkin methods were
presented for nonlinear Sobolev equations in [8], [9]. In [10],
[11], nonlinear Sobolev equations with convection term were
researched by using finite difference streamline-diffusion
method and discontinuous Galerkin method, respectively.
Two new least-squares mixed finite element procedures were
formulated for solving convection-dominated Sobolev equa-
tions in [12]. In [13], two-grid methods for characteristic
finite volume element approximations were considered for
semi-linear Sobolev equations.

Mixed finite element method has been proven to be a
powerful tool to numerically solve the fluid problems. It has
an advantage of approximating the unknown function and
its adjoint function simultaneously. The theoretical analysis
and actual applications of mixed finite element method were
discussed well, such as [14], [15], [16]. For the convection
dominated equation, the solutions of standard finite element
method often suffer from spurious oscillations. A variety of
numerical techniques were put forward to solve this problem
well, such as characteristic finite element method [17], [18],
characteristic finite volume method [19]. The papers [20] and
[21] introduced an upwind mixed covolume method and an
upwind cell-centered difference method for the problem with
diagonal diffusion tensor, respectively. Hughes and Brooks
[22] proposed the streamline upwind Petrov-Galerkin method
(SUPG) by adding an artificial diffusion in the streamline
direction to diminish the oscillations. Johnson [23] and
Johnson et al. [24] stabilized the SUPG method by adding
another artificial diffusion in the crosswind direction to avoid
overshooting and undershooting around the sharp fronts. In
[25], an upwind-mixed method on changing meshes was
considered for two-phase miscible flow in porous media.
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This paper presents an upwind-mixed finite elemen-
t method with moving grids for quasi-nonlinear Sobolev
equations. In Section II, this method is constructed by
two methods. The convection term of Sobolev equations
is approximated by the upwind method, and the diffusion
term is discretized by an expanded mixed finite element
method. This method can approximate simultaneously the
scalar unknown function and the adjoint vector function
effectively. Optimal error estimates in L2-norm are derived
for both the scalar unknown function and the adjoint vector
function in Section III. In Section IV, we present the results
of numerical experiments, which confirm our theoretical
results. We draw some conclusions in Section V.

Throughout the analysis, the symbol K will denote a
generic constant, which is independent of mesh parameters
∆t, h and not necessarily the same at different occurrences.

II. UPWIND-MIXED METHOD WITH MOVING GRIDS

At first, we introduce some notations and basic assump-
tions. The usual Sobolev spaces and norms are adopted on Ω.
The inner product on L2(Ω) is denoted by (f, g) =

∫
Ω
fgdx.

Define the following two spaces

W = L2(Ω)/{φ ≡ constant on Ω},
V =

{
v ∈ H(div; Ω)| v · n = 0 on ∂Ω

}
,

where n is the unit outward vector normal to ∂Ω.
Let ∆tn > 0 (n = 1, 2, · · · , N∗) denote different time-

step size such that T =
N∗∑
n=1

∆tn and tn =
n∑

k=1

∆tk. We take

∆t = max
n

∆tn. We assume that the time-step size ∆tn do
not change too rapidly, that is, there exist positive constants
λ∗ and λ∗ which are independent of n and ∆t such that

λ∗ ≤ ∆tn

∆tn−1
≤ λ∗. (3)

For a given function g(x, t), we denote gn = g(x, tn).
At each time level tn, we construct a quasi-uniform

partition Kn
h = {eni } of Ω for the mixed finite element

space. And we assume hn be the diameter of eni ∈ Kn
h and

∆tn = O(hn). We take h = max
n

hn. Let Wn
h ×V n

h ⊂ W×V

and divV n
h = Wn

h denote the ”lowest-order” Raviart-Thomas
spaces. That is to say, on each element eni ∈ Kn

h , Wn
h is the

space of functions which are constant and V n
h is the space

of vector valued functions whose components are continuous
and linear. The degrees of freedom of a function vn ∈ V n

h

correspond to the values of vn · γ at the midpoints of ∂eni .
Here, ∂eni is the side of eni and γ is the unit outward vector
normal to ∂eni .

By introducing variables z̃ = −∇u,z = bz̃ + az̃t, g =
cu = (c1u, c2u)

T = (g1, g2)
T and c̄(x, t, u) = (∂c1∂u , ∂c2

∂u )T,
we can rewrite the first equation in (1) as

ut +∇ · z +∇ · g + uc̄(u) · z̃ = f(u). (4)

Here, we utilize the so-called ”expanded” mixed finite ele-
ment method, proposed by Arbogast, Wheeler and Yotov[26],
which gives a gradient approximation z̃ and an approxima-
tion z to the diffusion term.

Then, the weak formula of (4) is
(ut, w) + (∇ · z, w) + (∇ · g, w)

+(uc̄(u) · z̃, w) = (f(u), w), ∀ w ∈ W,
(z̃,v) = (u,∇ · v), ∀ v ∈ V,
(z,v) = (b(u)z̃ + az̃t,v), ∀ v ∈ V.

(5)

The upwind-mixed finite element method with moving
grids is presented as follows: at each time level n, ∀wn ∈
Wn

h , v
n ∈ V n

h , find Un ∈ Wn
h ,Z

n ∈ V n
h such that

(
Un −RnUn−1

∆tn
, wn) + (∇ ·Zn, wn) + (∇ ·Gn, wn)

+(Unc̄(Un) · Z̃
n
, wn) = (f(Un), wn),

(RnUn−1 − Un−1, wn) = 0,

(Z̃
n
,vn) = (Un,∇ · vn),

(Zn,vn) = (b(Un)Z̃
n
+ an

Z̃
n
−RnZ̃

n−1

∆tn
,vn),

(an(RnZ̃
n−1

− Z̃
n−1

),vn) = 0.
(6)

When different finite element spaces are used at time level tn

and tn−1, the second and fifth equations of (6) give the L2-
projection {RnUn−1, RnZ̃

n−1
} of the previous approximate

solution {Un−1, Z̃
n−1

} into the current finite element space
Wn

h × V n
h . Then, this projection is used as initial value to

calculate {Un, Z̃
n
} in the first and third equations of (6). If

the finite element spaces are same at time level tn and tn−1,
we know that RnUn−1 = Un−1, RnZ̃

n−1
= Z̃

n−1
.

In equation (6), Gn is constructed by the upwind method
[25]. Since g = cu = 0 on ∂Ω, we set the integral
average of Gn ·γ equal to zero on boundary edges. Suppose
that elements e1 and e2 share an interior edge l, xl be the
midpoint of the edge l, and γl point from e1 to e2. Then we
adopt ([25])

Gn·γl =

{
Un
e1(c(U

n−1) · γl)(xl), if (c(Un−1) · γl)(xl) ≥ 0,

Un
e2(c(U

n−1) · γl)(xl), if (c(Un−1) · γl)(xl) < 0,

where Un
e1 and Un

e2 are the constant values of Un on the
elements e1 and e2, respectively.

III. ERROR ESTIMATES

In order to derive optimal error estimates, we need three
projections. First, define

∏
un ∈ Wn

h ,
∏̃
z̃n ∈ V n

h to be
the L2-projection of un ∈ H1(Ω) and z̃n ∈ H(div,Ω)
respectively, which satisfy{

(un, wn) = (
∏

un, wn), ∀wn ∈ Wn
h ,

(anz̃n,vn) = (an
∏̃
z̃n,vn), ∀vn ∈ V n

h .
(7)

Then, define πzn ∈ V n
h to be the π-projection of zn ∈

H(div,Ω), which satisfies

(∇ · (zn − πzn), wn) = 0, ∀ wn ∈ Wn
h . (8)

According to [25], [27], these projections have the following
approximate properties

∥un −
∏

un∥ ≤ Khn,

∥z̃n −
∏̃
z̃n∥+ ∥(z̃n −

∏̃
z̃n)t∥ ≤ Khn,

∥zn − πzn∥ ≤ Khn.

(9)

At time level tn, for ∀ wn ∈ Wn
h , vn ∈ V n

h , we know
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that the exact solutions satisfy

(
un − un−1

∆tn
, wn) + (∇ · zn, wn) + (∇ · gn, wn)

+(unc̄(un) · z̃n, wn) = (f(un), wn)− (ρn, wn),

(z̃n,vn) = (un,∇ · vn),

(zn,vn) = (b(un)z̃n + an
z̃n − z̃n−1

∆tn
,vn) + (rn,vn),

(10)

where ρn = un
t − un − un−1

∆tn
, rn = an(z̃n

t − z̃n − z̃n−1

∆tn
).

Denote

ξu = U −
∏

u, ηu = u−
∏

u,

ξ̃z = Z̃ −
∏̃
z̃, η̃z = z̃ −

∏̃
z̃,

ξz = Z − πz, ηz = z − πz.

Using the projections (7) and (8), we subtract (10) from
(6) to get

(
ξnu − ξn−1

u

∆tn
, wn) + (∇ · ξnz , wn) + (∇ · (Gn − gn), wn)

+(Unc̄(Un) · Z̃n, wn)− (unc̄(un) · z̃n, wn)

= (ρn, wn) + (f(Un)− f(un), wn) + (
ηnu − ηn−1

u

∆tn
, wn),

(ξ̃nz ,v
n) = (ξnu ,∇ · vn),

(ξnz ,v
n) = (b(Un)Z̃n − b(un)z̃n,vn)− (rn,vn)

+(an
Z̃n − Z̃n−1

∆tn
,vn) + (ηn

z ,v
n)

−(an
z̃n − z̃n−1

∆tn
,vn).

(11)
Here, the last term of the first equation of (11) is related to
the moving grids. If the grids don’t change, this term is equal
to zero.

Taking wn = ξnu , vn = ξnz and vn = ξ̃nz sequentially in
(11) and adding together, we obtain

(
ξnu − ξn−1

u

∆t
, ξnu ) + (b(Un)Z̃n − b(un)z̃n, ξ̃nz )

+(an
Z̃n − Z̃n−1

∆tn
, ξ̃nz )−(an

z̃n − z̃n−1

∆tn
, ξ̃nz )

= (f(Un)− f(un), ξnu ) + (ρn, ξnu ) + (∇ · (gn −Gn), ξnu )

−(Unc̄(Un) · Z̃n, ξnu ) + (unc̄(un) · z̃n, ξnu )

+(rn, ξ̃nz )− (ηn
z , ξ̃

n
z ) + (

ηnu − ηn−1
u

∆tn
, ξnu ).

(12)
Furthermore, we notice that

(I)
(b(Un)Z̃n − b(un)z̃n, ξ̃nz )

= (b(Un)ξ̃nz , ξ̃
n
z )− (b(Un)η̃n

z , ξ̃
n
z )

+([b(Un)− b(un)]z̃n, ξ̃nz ),

(13)

(II)

(an
Z̃n − Z̃n−1

∆tn
, ξ̃nz )− (an

z̃n − z̃n−1

∆tn
, ξ̃nz )

= (an
ξ̃nz − ξ̃n−1

z

∆tn
, ξ̃nz )− (an

η̃n
z − η̃n−1

z

∆tn
, ξ̃nz ),

(14)

(III)

(Unc̄(Un) · Z̃n, ξnu )− (unc̄(un) · z̃n, ξnu )

= ([ξnu − ηnu ]c̄(U
n) · Z̃n, ξnu ) + (un[c̄(Un)− c̄(un)] · Z̃n, ξnu )

+(unc̄(un) · [ξ̃nz − η̃n
z ], ξ

n
u ).

(15)
The last second term in (14) is related to the moving grids.
If the grids don’t change, this term is equal to zero.

We substitute (13)-(15) into (12) to yield

(
ξnu − ξn−1

u

∆tn
, ξnu ) + (b(Un)ξ̃nz , ξ̃

n
z ) + (an

ξ̃nz − ξ̃n−1
z

∆tn
, ξ̃nz )

= (f(Un)− f(un), ξnu ) + (ρn, ξnu ) + (∇ · (gn −Gn), ξnu )

+(rn, ξ̃nz )− (ηn
z , ξ̃

n
z ) + ([ηnu − ξnu ]c̄(U

n) · Z̃n, ξnu )

−(un[c̄(Un)− c̄(un)] · Z̃n, ξnu ) + (b(Un)η̃n
z , ξ̃

n
z )

+(
ηnu − ηn−1

u

∆tn
, ξnu ) + (unc̄(un) · [η̃n

z − ξ̃nz ], ξ
n
u )

+([b(un)− b(Un)]z̃n, ξ̃nz ) + (an
η̃n
z − η̃n−1

z

∆tn
, ξ̃nz )

Def.
= T1 + T2 + · · ·+ T12.

(16)
Now, we turn to analyze each term in (16). First of all,

for the first and third terms on the left-hand side, we have

(
ξnu − ξn−1

u

∆tn
, ξnu )

=
1

2∆tn

{
[∥ξnu∥2 − ∥ξn−1

u ∥2 + ∥ξnu − ξn−1
u ∥2

}
,

(17)

(an
ξ̃nz − ξ̃n−1

z

∆tn
, ξ̃nz )

≥ 1

2∆tn

{
[(anξ̃nz , ξ̃

n
z )− (an−1ξ̃n−1

z , ξ̃n−1
z )]

+a0∥ξ̃nz − ξ̃n−1
z ∥2

}
−a2

2
∥ξ̃n−1

z ∥2.

(18)

Following from (16), (17) and (18), we derive

1

2∆tn

{
[∥ξnu∥2 − ∥ξn−1

u ∥2 + ∥ξnu − ξn−1
u ∥2

}
+ (b(Un)ξ̃nz , ξ̃

n
z )

+
1

2∆tn

{
[(anξ̃nz , ξ̃

n
z )− (an−1ξ̃n−1

z , ξ̃n−1
z )]

+a0∥ξ̃nz − ξ̃n−1
z ∥2

}
≤ a2

2
∥ξ̃n−1

z ∥2 + T1 + T2 + · · ·+ T12.

(19)
By the Lipschitz continuity of b, c̄ and f , some terms on

the right-hand side of (19) can be estimated as follows:

T1 ≤ K∥ξnu∥2 +Kh2, (20)

T2≤ K∆tn
∥∥∂2u

∂t2
∥∥2
L2(tn−1,tn;H1)

+K∥ξnu∥2, (21)

T4≤ K∆tn
∥∥∂2u

∂t2
∥∥2
L2(tn−1,tn;H1)

+
ε

10
∥ξ̃nz∥2, (22)

T5 ≤ K∥ηn
z∥2 +

ε

10
∥ξ̃nz∥2, (23)

T6 ≤ K∥ξnu∥2 +Kh2, (24)

T7 ≤ K∥unZ̃n∥∥ξnu∥+K∥ξnu∥2 ≤ K∥ξnu∥2, (25)

IAENG International Journal of Applied Mathematics, 47:4, IJAM_47_4_15

(Advance online publication: 17 November 2017)

 
______________________________________________________________________________________ 



T8 ≤ Kb1∥η̃n
z∥2 +

ε

10
∥ξ̃nz∥2 ≤ ε

10
∥ξ̃nz∥2 +Kh2, (26)

T10 ≤ ε

10
∥ξ̃nz∥2 +Kh2 +K∥ξnu∥2, (27)

T11 ≤ K∥ξnu z̃n∥+ ε

10
∥ξ̃nz∥2 ≤ K∥ξnu∥2 +

ε

10
∥ξ̃nz∥2,

(28)
where ε is a sufficiently small positive constant.

We apply the similar technique in [17] to consider T3. Let
πgn ∈ V n

h denote the π-projection of gn, i.e.

(∇ · (gn − πgn), wn) = 0, ∀ wn ∈ Wn
h . (29)

Taking vn = πgn−Gn in the second equation of (11), then
we have

(ξ̃nz , πg
n −Gn) = (∇ · (gn −Gn), ξnu )

so that
(∇ · (gn −Gn), ξnu ) = (ξ̃nz , πg

n −Gn)

≤ 1

2
(b(Un)ξ̃nz , ξ̃

n
z ) +Kb−1

0 ∥πgn −Gn∥2.
(30)

Le l be the common interior edge between elements e1
and e2, and hl denote the length of this edge. Let γl denote
the unit vector normal to l and xl denote the midpoint of the
edge. By the property of π-projection [18], we see∫

l

πgn · γlds =

∫
l

un(cn · γl)ds. (31)

If gn is smooth enough, by the midpoint rule of integration
1

hl

∫
l

πgn · γlds− (c(un) · γl)u
n(xl) = O(h2

l ),

we derive
1

hl

∫
l

(πgn −Gn) · γlds

= un(xl)(c(u
n)− c(un−1)) · γl

+un(xl)(c(u
n−1)− c(Un−1)) · γl

+(un(xl)− Un
e )c(U

n−1) · γl +O(h2
l ).

(32)

Furthermore, if un is smooth enough, we have

|un(xl)− Un
e | ≤ |ξnu |+O(hn). (33)

Noticing that for ∀ v ∈ Vh, the function v is specified in
the interior of Ω and v · γ is a constant on each edge of
element e. From (31) to (33), we have

∥πgn −Gn∥2 ≤ K∥ξnu∥2 +K
{
(∆t)2 + h2

}
, (34)

then

T3 ≤ 1

2
(b(Un)ξ̃nz , ξ̃

n
z )+Kb−1

0

{
∥ξnu∥2+(∆t)2+h2

}
. (35)

Substituting (20)-(28) and (35) into (19), we obtain
1

2∆tn

{
[∥ξnu∥2 − ∥ξn−1

u ∥2 + ∥ξnu − ξn−1
u ∥2

}
+
1

2
(b(Un)ξ̃nz , ξ̃

n
z ) +

a0
2∆tn

∥ξ̃nz − ξ̃n−1
z ∥2

+
1

2∆tn
[(anξ̃nz , ξ̃

n
z )− (an−1ξ̃n−1

z , ξ̃n−1
z )]

≤ ε

2
∥ξ̃nz∥2 +

a2
2
∥ξ̃n−1

z ∥2 +K
{
∥ξnu∥2 + (∆t)2 + h2

}
+K(∆tn)

∥∥∂2u

∂t2
∥∥2
L2(tn−1,tn;H1)

+ T9 + T12.

(36)

Let N be the time-step at which ∥ξnu∥ is maximal, that is,

∥ξNu ∥2 = max
1≤n≤N∗

∥ξnu∥2.

Multiplying (36) by 2∆tn and summing on n from 1 to N ,
we obtain

∥ξNu ∥2 +
N∑

n=1
∥ξnu − ξn−1

u ∥2∆tn + b0
N∑

n=1
∥ξ̃nz∥2∆tn

+a0
N∑

n=1
∥ξ̃nz − ξ̃n−1

z ∥2 + a0∥ξ̃Nz ∥2

≤ K
{
(∆t)2 + h2

}
+

N∑
n=1

{
K∥ξnu∥2 + ε∥ξ̃nz∥2

}
∆tn

+a2
N∑

n=1
∥ξ̃n−1

z ∥2∆tn + ∥ξ0u∥2 + a1∥ξ̃0z∥2

+2
N∑

n=1

{
(
ηnu − ηn−1

u

∆tn
, ξnu ) + (an

η̃n
z − η̃n−1

z

∆tn
, ξ̃nz )

}
∆tn.

(37)
Assuming that the grids change at most M times in the

time interval [0, T ], and M ≤ M∗, where M∗ is independent
of h and ∆t, we can get the following two analysis [3]:

2
N∑

n=1
(
ηnu − ηn−1

u

∆tn
, ξnu )∆tn ≤ K(M∗h)2 +

1

4
∥ξNu ∥2,

(38)

2
N∑

n=1
(an

η̃n
z − η̃n−1

z

∆tn
, ξ̃nz )∆tn ≤ Kh2 + ε

N∑
n=1

∥ξ̃nz∥2∆tn.

(39)
Substituting (38) and (39) into (37), we find

3

4
∥ξNu ∥2 +

N∑
n=1

∥ξnu − ξn−1
u ∥2∆tn + b0

N∑
n=1

∥ξ̃nz∥2∆tn

+a0
N∑

n=1
∥ξ̃nz − ξ̃n−1

z ∥2 + a0∥ξ̃Nz ∥2

≤ K
{
(∆t)2 + h2 + (M∗h)2

}
+ ∥ξ0u∥2 + a1∥ξ̃0z∥2

+
N∑

n=1

{
K∥ξnu∥2 + 2ε∥ξ̃nz∥2 + a2∥ξ̃n−1

z ∥2
}
∆tn.

(40)
Choosing 0 < ε < b0/2 and using the discrete Gronwall’s
lemma, we have

max
n

∥ξnu∥2 ≤ K
{
(∆t)2 + h2 + (M∗h)2

}
, (41)

and

max
n

∥ξ̃nz∥2 ≤ K
{
(∆t)2 + h2 + (M∗h)2

}
. (42)

By the triangle inequality and (9), we obtain the following
result:

Theorem 3.1: Assuming that the coefficients satisfy the
condition (2), and the grids change at most M times in
the time interval [0, T ], M ≤ M∗ and u ∈ L2(H1), ut ∈
L2(H1), utt ∈ L2(H1), then we derive

max
n

∥un − Un∥ ≤ K
{
h+∆t+M∗h

}
,

max
n

∥z̃n − Z̃n∥ ≤ K
{
h+∆t+M∗h

}
,

where K and M∗ are positive constants independent of h
and ∆t.
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IV. NUMERICAL EXAMPLE

In this section, we present numerical experiments to il-
lustrate the efficiency of our upwind-mixed finite element
method with moving grids. We consider the model (1) on
(x, t) ∈ [0, 1] × [0, 1], where a(x, t) = t2(x + 0.25) +
0.25, b(x, t, u) = 0.005ut2(x + 0.05), c(x, t) = 0.05t(x +
1) + 1 and f(x, t, u) is chosen properly so that the exact
solution is u = e−t sinπx.

To compare the computations and show the convergence
rate easily, we set h and ∆t change according to the
following four cases:

Case i: If t ∈ [0, 0.4], set h = ∆t = 0.1; If t ∈ (0.4, 0.6],
set h = ∆t = 0.05; If t ∈ (0.6, 1.0], set h = ∆t = 0.1 and
calculate 40 steps in every time interval.

Case ii: If t ∈ [0, 0.4], set h = ∆t = 0.05; If t ∈
(0.4, 0.6], set h = ∆t = 0.025; If t ∈ (0.6, 1.0], set
h = ∆t = 0.05 and calculate 80 steps in every time interval.

Case iii: If t ∈ [0, 0.4], set h = ∆t = 0.025; If t ∈
(0.4, 0.6], set h = ∆t = 0.0125; If t ∈ (0.6, 1.0], set h =
∆t = 0.025 and calculate 160 steps in every time interval.

Case iv: If t ∈ [0, 0.4], set h = ∆t = 0.0125; If t ∈
(0.4, 0.6], set h = ∆t = 0.00625; If t ∈ (0.6, 1.0], set h =
∆t = 0.0125 and calculate 320 steps in every time interval.

The numerical solutions Un, Z̃n are computed and the L2-
norm error estimates of Un−un, Z̃n− z̃n are obtained, see
Tables I and II below, respectively.

Table I. L2-norm error estimates of Un − un

time Case i Case ii Case iii Case iv
t=0.4 0.0454 0.0232 0.0117 0.0057
t=0.6 0.0250 0.0134 0.0064 0.0031
t=1.0 0.0289 0.0158 0.0079 0.0039

Table II. L2-norm error estimates of Z̃n − z̃n

time Case i Case ii Case iii Case iv
t=0.4 0.0531 0.0303 0.0159 0.0068
t=0.6 0.0637 0.0348 0.0161 0.0074
t=1.0 0.0627 0.0384 0.0190 0.0093

The convergence rates of Un − un, Z̃n − z̃n are given in
Table III, which are also shown by Figure 1. From Fig. (a)
and (b), we can see that the convergence rate of Un − un

is one order and that of Z̃n − z̃n is little smaller than one
order at the beginning. But the convergence rate Z̃n−z̃n will
be close to one order when h decreases, which is consistent
with the analysis in this paper.

Table III. Convergence rate of L2-norm

time Rates of ∥un − Un∥ Rates of ∥z̃n − Z̃n∥
i/ii ii/iii iii/iv i/ii ii/iii iii/iv

t=0.4 0.9683 0.9857 1.0383 0.8082 0.9276 1.2178
t=0.6 0.9024 1.0620 1.0388 0.8718 1.1121 1.1300
t=1.0 0.8512 1.0072 1.0153 0.7074 1.0136 1.0352

For Case iv, we compare the exact solution u, z̃ with
the approximate solution U, Z̃ at time t = 0.25, 0.5, 0.75
respectively, see Figure 2. From Fig. (c) and Fig. (d), we
can see that the approximate solutions are very close to the
exact solutions.

V. CONCLUSIONS

We have considered the upwind-mixed finite elemen-
t method with moving grids for quasi-nonlinear Sobolev

equations. This method is constructed by two methods. The
convection term is approximated by the upwind method and
the diffusion term is discretized by an expanded mixed finite
element method. This method can simultaneously approx-
imate the scalar unknown function and the adjoint vector
function effectively. We have proved optimal error estimates
in L2-norm for both the scalar unknown function and the
adjoint vector function, and presented numerical experiments
to verify the validity of this method.

In this paper, the Sobolev equations we have considered
are of quasi-nonlinear type. We can extend our method to
the whole nonlinear Sobolev equations. The results for this
case will be presented in a forthcoming paper.
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Figure 1: Convergence rate figures
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