
Periodic Solutions in Shifts Delta(+/-) for a Nabla
Dynamic System of Nicholson’s Blowflies on

Time Scales
Lili Wang, Pingli Xie, and Meng Hu

Abstract—In this paper, based on some properties of nabla
exponential function êp(t, t0) and shift operators δ± on time
scales, by using Krasnoselskii’s fixed point theorem in a cone
and some mathematical methods, sufficient conditions are es-
tablished for the existence and nonexistence of positive periodic
solutions in shifts δ± for a nabla dynamic system of Nicholson’s
blowflies on time scales of the following form:

x∇(t)=−a(t)x(t) +

m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t)),

where t ∈ T,T ⊂ R is a periodic time scale in shifts δ± with
period P ∈ [t0,∞)T and t0 ∈ T is nonnegative and fixed.
Finally, two numerical examples are presented to illustrate the
feasibility and effectiveness of the results.

Index Terms—positive periodic solution; Nicholson’s blowflies
model; nabla dynamic equation; shift operator; time scale.

I. INTRODUCTION

THE theory of time scales was introduced by S. Hilger
[1] in order to unify, extend, and generalize ideas from

discrete calculus, quantum calculus, and continuous calculus
to arbitrary time scale calculus. A time scale is a nonempty
arbitrary closed subset of reals. The time scales approach not
only unifies differential and difference equations, but also
solves some other problems such as a mix of stop-start and
continuous behaviors [2,3] powerfully. Nowadays the theory
on time scales has been widely applied to ecological dynamic
systems.

In 1980, Gurney et al. [4] proposed a mathematical model

x′(t) = −δx(t) + px(t− τ)e−ax(t−τ)

to describe the dynamics of Nicholson’s blowflies, where
x(t) is the size of the population at time t, p is the maximum
per capita daily egg production, 1/a is the size at which
the population reproduces at its maximum rate, δ is the per
capita daily adult death rate, and τ is the generation time.
Nicholson’s blowflies model and its analogous equations on
time scales have attracted much attention in the past few
years; see, for example, [5,6].

The existence problem of periodic solutions is of impor-
tance to biologists since most models deal with certain types
of populations. In the paper of Kaufmann and Raffoul [7],
the authors were the first to define the notion of periodic time

Manuscript received June 5, 2017; revised September 6, 2017. This work
was supported in part by the Key Project of Scientific Research in Colleges
and Universities in Henan Province (Nos.16A110008; 18A110005).

L. Wang and M. Hu are with the School of Mathematics and Statis-
tics, Anyang Normal University, Anyang, Henan, 455000 China e-mail:
ay wanglili@126.com.

P. Xie is with the School of Science, Henan University of Technology,
Zhengzhou, Henan, 450001 China.

scales, by satisfying the additivity “there exists a ω > 0 such
that t ± ω ∈ T, ∀t ∈ T.” Under this additivity all periodic
time scales are unbounded above and below. However, there
are many time scales that are of interest to biologists and
scientists such as qZ and ∪∞

k=1[3
±k, 2.3±k] ∪ {0} which

do not satisfy the additivity. To overcome such difficulties,
Adıvar introduced a new periodicity concept on time scales
which does not oblige the time scale to be closed under
the operation t ± ω for a fixed ω > 0. He defined a new
periodicity concept with the aid of shift operators δ± which
are first defined in [8] and then generalized in [9].

In recent years, periodic solutions in shifts δ± for some
nonlinear dynamic equations on time scales with delta deriva-
tive have been studied by many authors; see, for example,
[10-13]. However, to the best of our knowledge, there are
few papers published on the existence of periodic solutions
in shifts δ± for a dynamic equation on time scales with nabla
derivative.

Motivated by the above, in the present paper, we first study
some properties of the nabla exponential function êp(t, t0)
and shift operators δ± on time scales, and then we consider
the following nabla dynamic system of Nicholson’s blowflies
on time scales:

x∇(t) = −a(t)x(t)

+
m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t)), (1)

where t ∈ T,T ⊂ R is a periodic time scale in shifts δ± with
period P ∈ [t0,∞)T and t0 ∈ T is nonnegative and fixed;
a, bi ∈ Cld(T, (0,∞)) (i = 1, 2, . . . ,m) are ∆-periodic in
shifts δ± with period ω and −a ∈ R+; ci ∈ Cld(T, (0,∞))
are periodic in shifts δ± with period ω for i = 1, 2, · · · ,m;
τi(i = 1, 2, . . . ,m) are fixed if T = R and τi ∈ [P,∞)T if
T is periodic in shifts δ± with period P .

For convenience, we introduce the notation

f∗ = sup
t∈[t0,δω+(t0)]T

f(t), f∗ = inf
t∈[t0,δω+(t0)]T

f(t),

where f is a positive and bounded periodic function.
Take the initial condition

x(s) = ϕ(s), ϕ ∈ Cld([δ−(τ
∗, 0), 0]T, (0,∞)), ϕ ̸≡ 0, (2)

where τ∗ = max
1≤i≤m

τi.

It is easy to prove that the initial value problem (1) and
(2) has a unique non-negative solution x(t) on [0,∞)T.

The main purpose of this paper is to establish sufficient
conditions for the existence and nonexistence of positive
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periodic solutions in shifts δ± of system (1) using Krasnosel-
skii’s fixed point theorem in a cone and some mathematical
methods.

II. PRELIMINARIES

Let T be a nonempty closed subset (time scale) of R. The
forward jump operator σ : T → T is defined by σ(t) =
inf{s ∈ T : s > t} for all t ∈ T, while the backward jump
operator ρ : T → T is defined by ρ(t) = sup{s ∈ T : s < t}
for all t ∈ T.

A point t ∈ T is called left-dense if t > inf T and ρ(t) = t,
left-scattered if ρ(t) < t, right-dense if t < supT and σ(t) =
t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If
T has a right-scattered minimum m, then Tk = T\{m};
otherwise Tk = T. The backwards graininess function ν :
Tk → [0,+∞) is defined by ν(t) = t− ρ(t).

A function f : T → R is ld-continuous provided it is
continuous at left-dense point in T and its right-side limits
exist at right-dense points in T.

The function p : T → R is ν-regressive if 1−ν(t)p(t) ̸= 0
for all t ∈ Tk. The set of all ν-regressive and ld-continuous
functions p : T → R will be denoted by Rν = Rν(T,R).
Define the set R+

ν = {p ∈ Rν : 1− ν(t)p(t) > 0, ∀ t ∈ T}.
If p is a ν-regressive function, then the nabla exponential

function êr is defined by

êp(t, s) = exp

{∫ t

s

ξ̂ν(τ)(p(τ))∇τ

}
for all s, t ∈ T, with the cylinder transformation

ξ̂h(z) =

{
−Log(1−hz)

h if h ̸= 0,
z if h = 0.

Lemma 1. [14] If p ∈ Rν , and a, b, c ∈ T, then
(i) ê0(t, s) ≡ 1 and êp(t, t) ≡ 1;
(ii) êp(ρ(t), s) = (1− ν(t)p(t))êp(t, s);
(iii) êp(t, s)êp(s, r) = êp(t, r);
(iv) (êp(t, s))

∇ = p(t)êp(t, s);
(v) (êp(c, ·))∇ = −p(êp(c, ·))ρ and∫ b

a
p(t)êp(c, ρ(t))∇t = êp(c, a)− êp(c, b);

(vi)
∫ b

a
f(ρ(t))g∇(t)∇t

= (fg)(b)− (fg)(a)−
∫ b

a
f∇(t)g(t)∇t.

For more details about the calculus on time scales, see
[14].

Let T∗ be a non-empty subset of the time scale T and
t0 ∈ T∗ be a fixed number, define operators δ± : [t0,+∞)×
T∗ → T∗. The operators δ+ and δ− associated with t0 ∈ T∗

(called the initial point) are said to be forward and backward
shift operators on the set T∗, respectively. The variable
s ∈ [t0,+∞)T in δ±(s, t) is called the shift size. The value
δ+(s, t) and δ−(s, t) in T∗ indicate s units translation of the
term t ∈ T∗ to the right and left, respectively. The sets

D± := {(s, t) ∈ [t0,+∞)T × T∗ : δ∓(s, t) ∈ T∗}

are the domains of the shift operator δ±, respectively. Here-
after, T∗ is the largest subset of the time scale T such that
the shift operators δ± : [t0,+∞)× T∗ → T∗ exist.

Definition 1. [15] (Periodicity in shifts δ±) Let T be a time
scale with the shift operators δ± associated with the initial

point t0 ∈ T∗. The time scale T is said to be periodic in shifts
δ± if there exists p ∈ (t0,+∞)T∗ such that (p, t) ∈ D± for
all t ∈ T∗. Furthermore, if

P := inf{p ∈ (t0,+∞)T∗ : (p, t) ∈ δ±, ∀t ∈ T∗} ̸= t0,

then P is called the period of the time scale T.

Definition 2. [15] (Periodic function in shifts δ±) Let T be a
time scale that is periodic in shifts δ± with the period P . We
say that a real-valued function f defined on T∗ is periodic in
shifts δ± if there exists ω ∈ [P,+∞)T∗ such that (ω, t) ∈ D±
and f(δω±(t)) = f(t) for all t ∈ T∗, where δω± := δ±(ω, t).
The smallest number ω ∈ [P,+∞)T∗ is called the period of
f .

Definition 3. (∇-periodic function in shifts δ±) Let T be a
time scale that is periodic in shifts δ± with the period P .
We say that a real-valued function f defined on T∗ is ∇-
periodic in shifts δ± if there exists ω ∈ [P,+∞)T∗ such that
(ω, t) ∈ D± for all t ∈ T∗, the shifts δω± are ∇-differentiable
with ld-continuous derivatives and f(δω±(t))δ

∇ω
± (t) = f(t)

for all t ∈ T∗, where δω± := δ±(ω, t). The smallest number
ω ∈ [P,+∞)T∗ is called the period of f .

Similar to the proofs of Lemma 2, Corollary 1 and
Theorem 2 in [15], we can get the following two lemmas.

Lemma 2. δω+(ρ(t)) = ρ(δω+(t)) and δω−(ρ(t)) = ρ(δω−(t))
for all t ∈ T∗.

Lemma 3. Let T be a time scale that is periodic in shifts
δ± with the period P , and let f be a ∇-periodic function
in shifts δ± with the period ω ∈ [P,+∞)T∗ . Assume that
f ∈ Cld(T), then∫ t

t0

f(s)∇s =

∫ δω±(t)

δω±(t0)

f(s)∇s.

Lemma 4. [16] Let T be a time scale that is periodic in
shifts δ± with the period P . Assume that the shifts δω± are
∇-differentiable on t ∈ T∗ where ω ∈ [P,+∞)T∗ . Then the
ν-graininess function ν : T → [0,+∞) satisfies

ν(δω±(t)) = δ∇ω
± (t)ν(t).

Lemma 5. [16] Let T be a time scale that is periodic in
shifts δ± with the period P . Assume that the shifts δω± are ∇-
differentiable on t ∈ T∗ where ω ∈ [P,+∞)T∗ and p ∈ Rν

is ∇-periodic in shifts δ± with the period ω. Then
(i) êp(δ

ω
±(t), δ

ω
±(t0)) = êp(t, t0) for t, t0 ∈ T∗;

(ii) êp(δ
ω
±(t), ρ(δ

ω
±(s))) = êp(t, ρ(s)) =

êp(t,s)
1−ν(t)p(t) for

t, s ∈ T∗.

Lemma 6. [14] Assume that r is ν-regressive and f : T → R
is ld-continuous. Let t0 ∈ T, y0 ∈ R, then the unique solution
of the initial value problem

y∇ = r(t)y + f(t), y(t0) = y0

is given by

y(t) = êr(t, t0)y0 +

∫ t

t0

êr(t, ρ(τ))f(τ)∇τ.

Set

X =
{
x : x ∈ Cld(T,R), x(δω+(t)) = x(t)

}
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with the norm ∥x∥ = sup
t∈[t0,δω+(t0)]T

|x(t)|, then X is a Banach

space.

Lemma 7. The function x(t) ∈ X is an ω-periodic solution
in shifts δ± of system (1) if and only if x(t) is an ω-periodic
solution in shifts δ± of

x(t) =

∫ δω+(t)

t

G(t, s)

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s, (3)

where

G(t, s) =
ê−a(t, ρ(s))

ê−a(t0, δω+(t0))− 1
.

Proof: If x(t) is an ω-periodic solution in shifts δ±
of system (1). By using Lemmas 1 and 6, for any s ∈
[t, δω+(t)]T, we have

x(s) = ê−a(s, t)x(t) +

∫ s

t

ê−a(s, ρ(θ))

×
m∑
i=1

bi(θ)x(δ−(τi, θ))e
−ci(θ)x(δ−(τi,θ))∇θ.

Let s = δω+(t) in the above equality, we have

x(δω+(t)) = ê−a(δ
ω
+(t), t)x(t) +

∫ δω+(t)

t

ê−a(δ
ω
+(t), ρ(θ))

×
m∑
i=1

bi(θ)x(δ−(τi, θ))e
−ci(θ)x(δ−(τi,θ))∇θ.

Noticing that ê−a(t, δ
ω
+(t)) = ê−a(t0, δ

ω
+(t0)), x(δ

ω
+(t)) =

x(t), by Lemma 1, then x(t) satisfies (3).
Let x(t) be an ω-periodic solution in shifts δ± of (3). By

(3) and Lemmas 1, 2 and 5, we have

x∇(t) = −a(t)x(t)

+G(ρ(t), δω+(t))

m∑
i=1

bi(δ
ω
+(t))δ

∇ω
+ (t)

×x(δ−(τi, δ
ω
+(t)))e

−ci(δ
ω
+(t))x(δ−(τi,δ

ω
+(t)))

−G(ρ(t), t)
m∑
i=1

bi(t)x(δ−(τi, t))

×e−ci(t)x(δ−(τi,t))

= −a(t)x(t)

+
m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t)).

So, x(t) is an ω-periodic solution in shifts δ± of system (1).
This completes the proof.

It is easy to verify that the Green’s function G(t, s)
satisfies the property

0 <
1

ξ − 1
≤ G(t, s) ≤ ξ

ξ − 1
, ∀s ∈ [t, δω+(t)]T, (4)

where ξ = ê−a(t0, δ
ω
+(t0)). By Lemma 5, we have

G(δω+(t), δ
ω
+(s)) = G(t, s), ∀t ∈ T∗, s ∈ [t, δω+(t)]T. (5)

Define K, a cone in X , by

K =
{
x ∈ X : x(t) ≥ 1

ξ
∥x∥, ∀t ∈ [t0, δ

ω
+(t0)]T

}
(6)

and an operator H : K → X by

(Hx)(t) =

∫ δω+(t)

t

G(t, s)

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s. (7)

In the following, we shall give some lemmas concerning
K and H defined by (6) and (7), respectively.

Lemma 8. H : K → K is well defined.

Proof: For any x ∈ K, t ∈ [t0, δ
ω
+(t0)]T. In view of (7),

by Lemma 3 and (5), we have

(Hx)(δω+(t))

=

∫ δω+(δω+(t))

δω+(t)

G(δω+(t), s)
m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

=

∫ δω+(t)

t

G(δω+(t), δ
ω
+(s))

m∑
i=1

bi(δ
ω
+(s))δ

∇ω
+ (s)

×x(δ−(τi, δ
ω
+(s)))e

−ci(δ
ω
+(s))x(δ−(τi,δ

ω
+(s)))∇s

=

∫ δω+(t)

t

G(t, s)

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

= (Hx)(t),

that is, Hx ∈ X .
Furthermore, for any x ∈ K, t ∈ [t0, δ

ω
+(t0)]T, we have

(Hx)(t) ≥ 1

ξ − 1

∫ δω+(t)

t

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

=
1

ξ
· ξ

ξ − 1

∫ δω+(t0)

t0

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

≥ 1

ξ
∥Hx∥,

that is, Hx ∈ K. This completes the proof.

Lemma 9. H : K → K is completely continuous.

Proof: Clearly, H is continuous on [t0, δ
ω
+(t0)]T. For

any x ∈ K, t ∈ [t0, δ
ω
+(t0)]T,

∥Hx∥ = sup
t∈[t0,δω+(t0)]T

(Hx)(t)

≤ ξ

ξ − 1

∫ δω+(t0)

t0

m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

<
ξ

ξ − 1
· B
c∗

:= M1, (8)

where

c∗ = min
1≤i≤m

ci∗, B :=

∫ δω+(t0)

t0

m∑
i=1

bi(s)∇s.

Furthermore, for t ∈ T, we have

(Hx)∇(t) = −a(t)(Hx)(t)

+
m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t)),
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and

∥(Hx)∇(t)∥ = sup
t∈[t0,δω+(t0)]T

| − a(t)(Hx)(t)

+
m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t))|

≤ a∗M1 +
1

c∗

m∑
i=1

b∗i .

To sum up,
{
Hx : x ∈ K

}
is a family of uniformly

bounded and equicontinuous functionals on [t0, δ
ω
+(t0)]T. By

a theorem of Arzela-Ascoli, the functional H is completely
continuous. This completes the proof.

III. EXISTENCE RESULT

In this section, we shall state and prove our main result
about the existence of at least one positive periodic solution
in shifts δ± of system (1).

Lemma 10. (Guo-Krasnoselskii [17]) Let X be a Banach
space and K ⊂ X be a cone in X . Assume that Ω1,Ω2 are
bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and
H : K∩(Ω2\Ω1) → K is a completely continuous operator
such that, either
(1) ∥Hx∥ ≤ ∥x∥, x ∈ K ∩ ∂Ω1, and ∥Hx∥ ≥ ∥x∥, x ∈

K ∩ ∂Ω2; or
(2) ∥Hx∥ ≥ ∥x∥, x ∈ K ∩ ∂Ω1, and ∥Hx∥ ≤ ∥x∥, x ∈

K ∩ ∂Ω2.
Then H has at least one fixed point in K ∩ (Ω2 \ Ω1).

Lemma 11. Let
m∑
i=1

bi(t) > a(t), t ∈ [t0, δ
ω
+(t0)]T. (9)

Then there exist positive constants M1 and M2 such that for
x ∈ K,

M2 ≤ ∥Hx∥ ≤ M1. (10)

Proof: From (8), for any x ∈ K, t ∈ [t0, δ
ω
+(t0)]T,

∥Hx∥ ≤ M1. (11)

From (9), there exists a q > 1 such that
m∑
i=1

bi(t) > qa(t), t ∈ [t0, δ
ω
+(t0)]T. (12)

For any x ∈ K, t ∈ [t0, δ
ω
+(t0)]T,

(Hx)(t) =

∫ δω+(t)

t

G(t, s)
m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s

> q

∫ δω+(t0)

t0

a(s)ê−a(t0, ρ(s))

ê−a(t0, δω+(t0))− 1

· min
1≤i≤m

inf
s∈[t0,δω+(t0)]T

{x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))}∇s

= q

∫ δω+(t0)

t0

1

ê−a(t0, δω+(t0))− 1

· min
1≤i≤m

inf
s∈[t0,δω+(t0)]T

{x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))}∇[ê−a(t0, s)]

≥ qmin{x∗e
−c∗x∗ , x∗e−c∗x∗

}, (13)

where c∗ = max
1≤i≤m

c∗i .

Comparing (3) with (7), we also have for x ∈ K, t ∈
[t0, δ

ω
+(t0)]T,

x(t) > qmin{x∗e
−c∗x∗ , x∗e−c∗x∗

},

which implies that

x∗ > qmin{x∗e
−c∗x∗ , x∗e−c∗x∗

}. (14)

In the same way as (8), x(t) ≤ M1, which implies that

x∗ ≤ M1. (15)

If min{x∗e
−c∗x∗ , x∗e−c∗x∗} = x∗e−c∗x∗

, then

(Hx)(t) > qM1e
−c∗M1 := M21 > 0. (16)

If min{x∗e
−c∗x∗ , x∗e−c∗x∗} = x∗e

−c∗x∗ , from (14), x∗ >
qx∗e

−c∗x∗ , which implies that

x∗ >
ln q

c∗
.

From (13), we obtain

(Hx)(t) > q
ln q

c∗
e−c∗· ln q

c∗ =
ln q

c∗
:= M22 > 0. (17)

Let M2 = min{M21,M22}, then for x ∈ K,

∥Hx∥ ≥ M2. (18)

This completes the proof.

Theorem 1. Assume that

m∑
i=1

bi(t) > a(t), t ∈ [t0, δ
ω
+(t0)]T.

Then system (1) has at least one positive ω-periodic solution
in shifts δ±.

Proof: Let

Ω1 = {x ∈ X : ∥x∥ ≤ M2},

and

Ω2 = {x ∈ X : ∥x∥ ≤ M1}.

Clearly, Ω1 and Ω2 are open bounded subsets in X , and
θ ∈ Ω1,Ω1 ⊂ Ω2. From Lemma 8, H : K ∩ (Ω2 \Ω1) → K
is completely continuous.

If x ∈ K ∩ ∂Ω2, which implies that ∥x∥ = M1, from
Lemma 11, ∥Hx∥ ≤ M1. Hence ∥Hx∥ ≤ ∥x∥ for x ∈
K ∩ ∂Ω2.

If x ∈ K ∩ ∂Ω1, which implies that ∥x∥ = M2, from
Lemma 11, ∥Hx∥ ≤ M2. Hence ∥Hx∥ ≥ ∥x∥ for x ∈
K ∩ ∂Ω1.

From the cone fixed point theorem (Lemma 10), the
operator H has at least one fixed point lying in K∩(Ω2\Ω1),
i.e., system (1) has at least one positive ω-periodic solution
in shifts δ±. This completes the proof.
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IV. NONEXISTENCE RESULT

In this section, we shall state and prove our main result
about the nonexistence of positive periodic solution in shifts
δ± of system (1).

Lemma 12. Assume that
m∑
i=1

bi(t) ≤
1

2
a(t), t ∈ [t0, δ

ω
+(t0)]T. (19)

Then every positive solution of system (1) tends to zero as
t → ∞.

Proof: Let x(t) be any positive solution of system (1).
By using Lemma 5, integrating system (1) from t0 to t(> t0),
we have

x(t) = ê−a(t, t0)x(t0)

+

∫ t

t0

ê−a(t, ρ(s))
m∑
i=1

bi(s)x(δ−(τi, s))

×e−ci(s)x(δ−(τi,s))∇s. (20)

From (19),

x(t) ≤ ê−a(t, t0)x(t0) +
1

2c∗

∫ t

t0

a(s)ê−a(t, ρ(s))∇s

= ê−a(t, t0)x(t0) +
1

2c∗

∫ t

t0

∇[ê−a(t, s)]

= ê−a(t, t0)x(t0) +
1

2c∗
[1− ê−a(t, t0)].

Let β = lim sup
t→∞

x(t), then 0 ≤ β < ∞.

Next, we shall prove β = 0. We have some possible cases
to consider.

Case 1. x∇(t) > 0 eventually. Choose t0 > 0 such that
x∇(t) > 0 for t ≥ t0. Let η > 0 be a sufficient large number
with δ−(τi, t) > t0, i = 1, 2, . . . ,m for t > t0 + η. Then
0 < x(δ−(τi, t)) < x(t) for t ≥ t0 + η and i = 1, 2, . . . ,m.
From (1), for t ≥ t0 + η,

0 < −a(t)x(t) +

m∑
i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t))

<

[ m∑
i=1

bi(t)− a(t)

]
x(t) < 0.

This contradiction shows that Case 1 is impossible.
Case 2. x∇(t) < 0 eventually. Choose t0 > 0 such that

x∇(t) < 0 for t ≥ t0. Then β < x(δ−(τi, t)) < x(δ−(τi, t0))
for t ≥ t0 + η and i = 1, 2, . . . ,m. From (19) and (20), we
have

x(t) ≤ ê−a(t, t0)x(t0) +
1

2
max

1≤i≤m
x(δ−(τi, t0))e

−c∗β

×[1− ê−a(t, t0)]. (21)

Let t → ∞ in (21), we obtain

β ≤ 1

2
max

1≤i≤m
x(δ−(τi, t0))e

−c∗β . (22)

Again let t0 → ∞ in (22), we have that β ≤ β( 12e
−c∗β),

which implies that β = 0.
Case 3. x∇(t) is oscillatory. By the definition of oscilla-

tory, then

(i) there exists {tn} with tn → ∞ as n → ∞ such that

x∇(tn) = 0 and lim
n→∞

x(tn) = β;

or
(ii) there exists {tn} with tn → ∞ as n → ∞ such that

x∇(tn)x
∇(ρ(tn)) < 0 for n = 1, 2, . . . ,

and lim
n→∞

x(tn) = lim
n→∞

x(ρ(tn)) = β.

In case (i), from (1),

a(tn)x(tn)

=
m∑
i=1

bi(tn)x(δ−(τi, tn))e
−ci(tn)x(δ−(τi,tn))

≤ x(δ−(τl, tn))e
−c∗x(δ−(τl,tn))

m∑
i=1

bi(tn), (23)

where l = l(n) ∈ {1, 2, . . . ,m} such that

x(δ−(τl, tn))e
−c∗x(δ−(τl,tn))

= max
1≤i≤m

x(δ−(τi, tn))e
−ci(tn)x(δ−(τi,tn)).

From (19) and (23), we have

2x(tn)e
c∗x(δ−(τl,tn)) ≤ x(δ−(τl, tn)). (24)

Set α = lim sup
n→∞

x(δ−(τl, tn)), then α ≤ β. Finding the

superior limit of both sides of (24), we obtain

β(2ec∗α) ≤ α,

then

β(2ec∗α) ≤ α ≤ β,

which implies that β = α = 0.
In case (ii), from (1),

a(tn)a(ρ(tn))x(tn)x(ρ(tn))

+
m∑
i=1

bi(tn)x(δ−(τi, tn))e
−ci(tn)x(δ−(τi,tn))

×
m∑
i=1

bi(ρ(tn))x(δ−(τi, ρ(tn)))

×e−ci(ρ(tn))x(δ−(τi,ρ(tn)))

< a(tn)x(tn)
m∑
i=1

bi(ρ(tn))x(δ−(τi, ρ(tn)))

×e−ci(ρ(tn))x(δ−(τi,ρ(tn)))

+a(ρ(tn))x(ρ(tn))
m∑
i=1

bi(tn)x(δ−(τi, tn))

×e−ci(tn)x(δ−(τi,tn))

≤ [a(tn)x(tn)

m∑
i=1

bi(ρ(tn))

+a(ρ(tn))x(ρ(tn))
m∑
i=1

bi(tn)]

×x(δ−(τl, t̂n))e
−c∗x(δ−(τl,t̂n)), (25)

where l = l(n) ∈ {1, 2, . . . ,m}, t̂n = {tn, ρ(tn)}, such that

x(δ−(τl, t̂n))e
−c∗x(δ−(τl,t̂n))

= max
1≤i≤m

{
x(δ−(τi, tn))e

−ci(tn)x(δ−(τi,tn)),

x(δ−(τi, ρ(tn)))e
−ci(ρ(tn))x(δ−(τi,ρ(tn)))

}
.
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From (19) and (25), we have

2x(tn)x(ρ(tn))e
c∗x(δ−(τl,t̂n))

≤ [x(tn) + x(ρ(tn))]x(δ−(τl, t̂n)). (26)

Set α = lim sup
n→∞

x(δ−(τl, tn)), then α ≤ β. Finding the

superior limit of both sides of (26), we obtain

βec∗α ≤ α,

then

βec∗α ≤ α ≤ β,

which implies that β = α = 0. This completes the proof.
From Lemma 12, we can get the following Theorem.

Theorem 2. Assume that the condition (19) hold. Then
system (1) has no positive ω-periodic solution in shifts δ±.

V. NUMERICAL EXAMPLES

Consider the following Nicholson’s blowflies model on
time scales T

x∇(t) = −a(t)x(t)

+
2∑

i=1

bi(t)x(δ−(τi, t))e
−ci(t)x(δ−(τi,t)). (27)

Example 1. Take

a(t) = a0 +
| sin 2t+ cos 3t|

2
,

b1(t) = ee−1(10 + 0.005| sin t|),
b2(t) = ee−1(10 + 0.005| cos t|),
c1(t) = c2(t) = 0.25 + 0.025| sin 3t+ cos 2t|.

Let T = R, t0 = 0, then ω = π and δω+(t) = t + π. It is
easy to verify a(t), bi(t), ci(t) (i = 1, 2) satisfy

a(δω+(t))δ
∇ω
+ (t) = a(t), bi(δ

ω
+(t))δ

∇ω
+ (t) = bi(t),

ci(δ
ω
+(t)) = ci(t), ∀t ∈ T∗, i = 1, 2,

and −a ∈ R+.
Case I. If a0 = 18, by a direct calculation, we can get

2∑
i=1

bi(t) ≥ 20ee−1 > a(t), t ∈ R.

According to Theorem 1, when T = R, system (27) exists
at least one positive π-periodic solution in shifts δ±.

Case II. If a0 = 240, by a direct calculation, we can get
2∑

i=1

bi(t) ≤ 20.02ee−1 <
1

2
a(t), t ∈ R.

According to Theorem 2, when T = R, system (27) has
no positive periodic solution in shifts δ±.

Example 2. Take

a(t) =
1

a0t
, b1(t) =

1

2t
, b2(t) =

1

3t
,

c1(t) = c2(t) = 0.25.

Let T = 2N0 , t0 = 1, then ω = 4 and δω+(t) = 4t. It is
easy to verify a(t), bi(t), ci(t) (i = 1, 2) satisfy

a(δω+(t))δ
∇ω
+ (t) = a(t), bi(δ

ω
+(t))δ

∇ω
+ (t) = bi(t),

ci(δ
ω
+(t)) = ci(t), ∀t ∈ T∗, i = 1, 2,

and −a ∈ R+.
Case I. If a0 = 6, by a direct calculation, we can get

2∑
i=1

bi(t) =
5

6t
> a(t), t ∈ 2N0 .

According to Theorem 1, when T = 2N0 , system (27)
exists at least one positive 4-periodic solution in shifts δ±.

Case II. If a0 = 1
2 , by a direct calculation, we can get

2∑
i=1

bi(t) =
5

6t
<

1

2
a(t), t ∈ 2N0 .

According to Theorem 2, when T = 2N0 , system (27) has
no positive periodic solution in shifts δ±.

VI. CONCLUSION

Two problems for a Nicholson’s blowflies model with time
delays on time scales have been studied, namely, existence
and nonexistence of positive periodic solutions in shifts δ±
on time scales. It is important to notice that the methods used
in this paper can be extended to other types of biological
models; see, for example, [18-20]. Future work will include
biological dynamic systems modeling and analysis on time
scales.
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