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Abstract—Second derivative generalized backward
differentiation formulae (SDGBDF) are developed
herein and applied as boundary value methods
(BVMs) to solve stiff initial value problems (IVPs)
in ordinary differential equations (ODEs). The order,
error constant, zero stability and the region of ab-
solute stability for the SDGBDF are discussed. The
methods are Av,k−v-stable and 0v,k−v-stable with (v,k-
v)-boundary conditions for values of the steplength
k ≥ 1, v < k with order p = k + 1.
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1 Introduction

The mathematical modeling in science and engineering
problems often leads to systems of ordinary differential
equations (ODEs) and many of these problems appear to
be stiff. A potentially good numerical method for the so-
lution of stiff systems of ODEs must have good accuracy
and some reasonably wide region of absolute stability, see
[23]. It is on this ground A-stable (stiffly-stable) methods
are required.

Consider the initial value problem (IVP)

y′ = f(x, y), x ∈ [t0, T ], y(x0) = y0 (1)

Definition 1. (cf: Lambert [37]). The linear system

y′ = Ay + φ(x), y(a) = η, a ≤ x ≤ b (2)

where

y = (y1, y2 . . . , ys) and η = (η1, η2, . . . , ηs)

is said to be stiff if

(i) Re(λi) < 0, i = 1, 2, . . . , s

(ii)Max|Re(λi)| >> Min|Re(λi)|
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where λi are the eigenvalues of s × s matrix A, and the
stiff ratio is Max|Re(λi)|

Min|Re(λi)| .

Definition 2. ([23]). A numerical integrator is said to be
A-stable if its region of absolute stability R incorporates
the entire left half of the complex plane denoted C, i.e.,

R = {z ∈ C|Re(z) ≤ 0}. (3)

Backward differentiation formulae (BDF)

k∑
j=0

αjyn+j = hfn+k (4)

are among the first most popular numerical methods to
be proposed for stiff initial value problems (IVPs), see
[22, 29]. These methods are found to be A-stable up to
order p = 2 with order p = k and A(α) − stable for k =
3(1)6. In [19] is introduced a class of extended backward
differentiation formulae (EBDF)

k∑
j=0

αjyn+j = hβkfn+k + hβk+1fn+k+1 (5)

which has some advantage over the usual BDF. It is
found to be A-stable for k = 1(1)3 and A(α) − stable
for k = 4(1)8 with order p = k + 1. The modified ex-
tended backward differentiation formulae (MEBDF) by
[21] is{

yn+k − h(βk − vk)fn+k

= −∑k−1
j=0 αjyn+j + hvkfn+k + hβk+1fn+k+1

(6)

where the choice of vk can be defined to maximize in some
way the region of absolute stability of (6). The MEBDF
is A-stable for k = 1(1)3 and A(α)− stable for k = 4(1)8
with order p = k + 1. The second derivative extended
backward differentiation formulae (SDEBDF) by [20] are
of two classes in predictor-corrector pair. They are A-
stable for k = 1(1)3 and A(α)− stable for k = 4(1)8 with
order p = k + 2 and p ≥ k + 3 for class 1 and p = k + 3
for class 2. Other authors such as [34, 26, 42, 5] have also
presented some modifications of the BDF. That of [8] and
[9] considered the BDF (4) as boundary value methods
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(BVMs) and obtained the generalized backward differen-
tiation formulae (GBDF) with better stability properties
than the BDF. This class of methods is

k∑
j=0

αjyn+j = hfn+v (7)

where

v =
{

k+2
2 for even k

k+1
2 for odd k

It is 0v,k−v-stable and Av,k−v-stable for all k ≥ 1 with
(v, k−v)-boundary conditions and order p = k. A survey
of some BVMs can be found in the literatures [12, 13, 14,
15, 16, 17, 33, 11, 1, 2, 3, 40, 32, 41]. In this paper second
derivative generalized backward differentiation formulae
(SDGBDF) shall be derived. This class of methods is an
extention of GBDF proposed by [8] and [9]. The methods
developed which are also applied as BVMs in the sense
of [8] and [9] have improved order properties compared
to the GBDF with respect to the steplength k and are
suited for the solution of stiff IVPs in ODEs (1).

The paper is organized as follows. In section 2 we recall
the main facts about BVMs. The stability of BVMs is
discussed in section 3. Section 4 deals with the second
derivative BVMs, the derivation and stability. Section 5
is devoted to the computational aspect for the implemen-
tation of the proposed class of methods to demonstrate
how the class of methods are applied as BVMs. Numer-
ical experiments are carried out in section 6. Finally, in
section 7 the conclusion of the paper is given.

2 Boundary Value Methods (BVMs)

To obtain the numerical solution of (1) it is usual to use
a k-step linear multistep formula (LMF),

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j (8)

where yn denotes the discrete approximation of the so-
lution y(xn) at x = xn and h = (T − t0)/N and
fn = f(xn, yn). If k1 and k2 are two integers such that
k1 +k2 = k then one may impose the k conditions for the
LMF (8) by fixing the first k1(≤ k) values of the discrete
solution y0, y1, . . . , yk1−1 and the last k2 = k − k1 values
yN−k2+1, . . . , yN yielding the discrete problem

k2∑
i=−k1

αi+k1yn+i = h

k2∑
i=−k1

βi+k1fn+i, n = k1, . . . , N − k2,

(9)
y0, y1, . . . , yk1−1, yN−k2+1, . . . , yN fixed

In this case the given continuous initial value problem
(1) is approximated by means of a discrete boundary
value problem. The resulting methods are BVMs with
(k1, k2)-boundary conditions. Observe that for k1 = k

and therefore k2 = 0 , one has the initial value meth-
ods (IVMs). So the class of IVMs is a subclass of BVMs
for ODEs based on LMF [7]. The continuous problem
(1) provides only the initial value y0. In the sense of [7],
to implement (9) as a BVM, the k − 1 additional values
y1, . . . , yk1−1, yN−k2+1, . . . , yN are obtained by introduc-
ing a set of k − 1 additional equations which are derived
by a set of k1 − 1 additional initial methods

k∑
i=0

α
(j)
i yi = h

k∑
i=0

β
(j)
i fi , j = 1, . . . , k1 − 1 (10)

and k2 final methods

k∑
i=0

α
(j)
k−iyN−i = h

k∑
i=0

β
(j)
k−ifN−i , (11)

j = N − k2 + 1, . . . , N

The equations (9), (10) and (11) form a composite scheme
assumed to be of the same order where (10) and (11) are
the most suitable set of additional methods. The dis-
crete problem generated by a k-step BVM with (k1, k2)-
boundary conditions can be put in matrix form as

ANy − hBN f =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k1−1
i=0 (αiyi − hβifi)

...
α0yk1−1 − hβ0fk1−1

0
...
0

αkyN − hβkfN

...∑k2
i=1(αk1+iyN−1+i − hβk1+ifN−1+i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

where AN and BN are (N + 1)× (N + 1) matrices given
in (39) and (40) respectively, y = (y0, . . . , yN )T is the
discrete solution, f = (f0, . . . , fN )T and h is the step size.
The matrix AN − qBN , where q = hλ, has a block quasi-
Toeplitz structure which is as a result of the additional
methods (10) and (11) in AN and BN as given in (12).

3 Stability of BVMs

In order to characterize the stability of the family of
methods to be considered the definitions of zero-stability
and absolute stability for LMM (8) are generalized to
BVM by introducing the following two kinds of polyno-
mials [6, 8]:

Definition 3. Consider a polynomial p(z) such that p
is a function of a complex variable z, calculated by the
formula:

p(z) =
k∑

j=0

αjz
k−j = α0z

k +α1z
k−1+ . . .+αk (α0 �= 0)

(13)
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The zeros of the polynomial p(z) are denoted by zi, i =
1, . . . , k. If the zeros zi are simple for all values of i their
multiplicities are equal to one.

1. The polynomial p(z) is called the Schur polynomial
if for all values of i = 1, . . . , k the condition |zi| < 1 is
satisfied

2. The polynomial p(z) is called the Von Neumann poly-
nomial if for all values of i = 1, . . . , k the condition
|zi| ≤ 1 is satisfied ([37]).

Definition 4. A polynomial p(z) of degree k = k1 + k2

is a Sk1k2-polynomial if its roots are such that

|z1| ≤ |z2| ≤ . . . ≤ |zk1 | < 1 < |zk1+1| ≤ . . . ≤ |zk|
and it is a Nk1k2 - polynomial if

|z1| ≤ |z2| ≤ . . . ≤ |zk1 | ≤ 1 < |zk1+1| ≤ . . . ≤ |zk| being
simple the roots of unit modulus.

Observe that for k1 = k and k2 = 0 a Nk1k2- poly-
nomial reduces to a Von Neumann polynomial and a
Sk1k2-polynomial reduces to a Schur polynomial. Let
ρ(z) =

∑k
j=0 αjz

j and σ(z) =
∑k

j=0 βjz
j denote the two

characteristic polynomials associated with the LMM (8).
Thus

∏
(z, q) = ρ(z) − qσ(z), q = hλ , is the stability

polynomial when (8) is applied on y′ = λy, Re(λ) < 0.
Then we have the following definitions (see [6, 7]):

Definition 5. A BVM with (k1, k2)-boundary conditions
is Ok1k2-stable if ρ(z) is a Nk1k2 - polynomial.

Observe that Ok1k2-stability reduces to the usual zero-
stability from Definition 5. for LMM when k1 = k and
k2 = 0 .

Definition 6. (a) For a giving q ∈ C , a BVM with
(k1, k2)-boundary conditions is (k1, k2)-absolutely stable
if

∏
(z, q) is a Sk1k2-polynomial. Again, (k1, k2)-absolute

stability reduces to the usual notion of absolute stability
when k1 = k and k2 = 0 for LMM.

(b) Similarly, one defines the region of (k1, k2)-absolute
stability of the method as Dk1k2 = {q ∈ C :

∏
(z, q) is

a Sk1k2-pololynomial}. Here
∏

(z, q) is a polynomial of
type (k1, 0, k2)

(c) A BVM with (k1, k2)-boundary conditions is said to
be Ak1k2 -stable if C− ⊆ Dk1k2 .

4 Second Derivative BVMs, Derivation
and Stability

The second derivative backward differentiation formulae
(SDBDF) are based on the second derivative linear mul-
tistep formula (SDLMF) and can be defined generally as:

k∑
i=0

αjyn+j = hβkfn+k + h2γkf ′
n+k (14)

The conventional SDBDF provides 0-stable methods up
to k = 8 and are 0-unstable for k ≥ 9 with an order
p = k + 1. Following the idea of Brugnano and Trigiante
[6, 7, 8, 9], we rewrite (14) as:

k∑
j=0

αjyn+j = hβifn+i + h2f ′
n+i (15)

where i = 0(1)k and γk has been normalized to 1. The
choice i = k is widely used to derive the conventional
SDBDF as IVMs. When (15) is used as BVMs with i �= k,
we gain the freedom of choosing the values of i which
provide methods having the best stability properties for
all values of k ≥ 1. In fact this is the case if i = v such
that

v =
{

k+2
2 for even k

k+1
2 for odd k

. (16)

Consequently (15) becomes

k∑
j=0

αjyn+j = hβvfn+v + h2f ′
n+v (17)

where the k + 2 parameters allow the construction of
methods of maximal order p = k+1. The class of methods
(17) called second derivative generalized backward differ-
entiation formulae (SDGBDF) must be used as BVMs
with (v, k − v) boundary conditions. These methods are
found to be 0v,k−v-stable and Av,k−v-stable for all k ≥ 1
where v is the number of roots inside the unit circle and
k− v are the number of roots outside the unit circle. We
rewrite the formula (17) as:

k∑
j=0

αjy(x + jh) = hβvy′(x + vh) + h2y′′(x + vh). (18)

Expanding (18) in Taylor series and applying the method
of undetermined coefficients yields a system of linear
equations for the coefficients αj and βv (see [38] and [18]).
These coefficients are in Tables 7 and 8 for k = 1(1)10.
According to [37] and [27] the local truncation error as-
sociated with (17) is the linear difference operator

L[y(x);h] =
∑k

j=0 αjy(x + jh)
−hβvy′(x + vh) − h2y′′(x + vh).

(19)

Assuming that y(x) is sufficiently differentiable, we can
find the Taylor series expansion of the terms in (19) about
the point x to obtain the expression

L[y(x);h] =
C0y(x) + C1hy′(x) + · · · + Cqh

qy(q)(x) + · · · (20)

where

C0 =
k∑

j=0

αj , C1 =
k∑

j=1

jαj + βv, , · · ·
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Cq =
k∑

j=1

jqαj

q!
+

βvvq−1

(q − 1)!
− vq−2

(q − 2)!

We say that (17) has order p if

Cj = 0, j = 0(1)p and Cp+1 �= 0, (21)

see [31]. The Cp+1 is the error constant and
Cp+1h

p+1yp+1(x) is the principle local truncation error
at the point x. The order equations (21) is equivalent to
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 . . . 1 0
0 1 2 3 4 . . . k 1
0 1 22 32 42 . . . k2 2v
0 1 23 33 43 . . . k3 3v2

...
...

...
...

... . . .
...

...
0 1 2q 3q 4q . . . kq qvq−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α0

α1

α2

...
αk

βv

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
2
6v
...

q(q − 1)vq−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)
The order and the error constant of the SDGBDF (17)
are shown in tables 7 and 8 for k = 1(1)10.

For the numerical solution of (1) the second deriva-
tive BVMs with (k1, k2)-boundary conditions, the main
method

k2∑
i=−k1

αi+k1yn+i = h

k2∑
i=−k1

βi+k1fn+i+h2
k2∑

i=−k1

λi+k1f
′
n+i ,

(23)
n = k1, . . . , N − k2

y0, . . . , yk1−1, yN , . . . , yN+k2−1 fixed

together with k1 − 1 additional initial methods

k∑
i=0

α
(j)
i yi = h

k∑
i=0

β
(j)
i fi + h2

k∑
i=0

λ
(j)
i f ′

i , (24)

j = 1, . . . , k1 − 1

and k2 final methods{ ∑k
i=0 α

(j)
k−iyN−i = h

∑k
i=0 β

(j)
k−ifN−i

+h2
∑k

i=0 λ
(j)
k−if

′
N−i , j = N, . . . , N + k2 − 1

(25)

can be expressed as

ANy − hBN f − h2CN f′ =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑k1−1
i=0 (αiyn+i − hβifn+i − h2λif

′
n+i)

...
α0yn+k1−1 − hβ0fn+k1−1 − h2λ0f

′
n+k1−1

0
...
0

αkyn+N − hβkfn+N − h2λkf ′
n+N

...∑k2
i=1(αk1+iyn+N−1+i − hβk1+i×

fn+N−1+i − h2λk1+if
′
n+N−1+i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

where AN and BN are defined similarly as in (12), while
CN is given in (41), y = (y0, . . . , yN )T is the discrete

solution, f and f′ are the first and second derivatives re-
spectively, h is the step size and AN , BN and CN are
(N + 1) × (N + 1) matrices with the same structure as
those in (12).

To analyze the stability of a specific method (26), (see,
[30]) we apply (23) on the test problem

y′ = λy, y′′ = λ2y (27)

to determine its boundary locus. The class of methods
(17) yields the characteristics equation:

k∑
j=0

αjz
j − (qβv + q2)zv = 0, q = λh, q ∈ C (28)

where v is defined as in (16). Letting z = eiθ we obtain
two roots (since (28) is quadratic in q) for corresponding
values of k and v to give the stability regions defined by
q given in Figures 1 and 2 for odd and even values of
k respectively. Compared with the generalization of the
BDF by Brugnano and Trigiante [8] discussed in section
1 the proposed class of methods (17) are found to have
higher order p = k + 1 and a smaller error constant for
corresponding values of the steplength k, although with
need to compute the second derivative for which it is not
expensive for some autonomous stiff systems.

5 Implementation Procedure

In this section the implementation procedure for the
SDGBDF(17) of order 4 and 5 as BVMs in the sense
of Brugnano and Trigiante [7, 8] is presented. The pro-
posed class of methods (17) is used with the following
additional initial methods:

k∑
j=0

α∗
jyj = hβifi + h2f ′

i , i = 1, 2, · · · , v − 1 (29)

and final methods:

k∑
j=0

α∗
jyj = hβifi + h2f ′

i , i = v + 1, · · · , N (30)

The SDGBDF (17) of order 4 which is A2,1-stable and
02,1-stable with (2, 1)-boundary conditions requires two
initial methods (y0 is already provided by the initial value
defining the ODE (1)) and one final method. The fourth
order SDGBDF (17) is given as:

−1
6
yn+2yn+1− 5

2
yn+2+

2
3
yn+3 = −hfn+2+h2f ′

n+2 (31)

The main method ( 31) can be written in the form

−1
6
yn−2 + 2yn−1 − 5

2
yn +

2
3
yn+1 = −hfn + h2f ′

n (32)

n = 2, · · · , N − 1
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and used with the following initial method

2
3
y0 − 5

2
y1 + 2y2 − 1

6
y3 = hf1 + h2f ′

1 (33)

and final method

2
9
yN−3−3

2
yN−2+6yN−1−85

18
yN = −11

3
hfN+h2f ′

N (34)

Similarly the SDGBDF (17) of order 5{
1
18yn − 1

2yn+1 + 3yn+2 − 55
18yn+3 + 1

2yn+4

= −5
3hfn+3 + h2f ′

n+3
(35)

n = 3, · · · , N − 1

with the initial methods

1
2
y0 − 55

18
y1 + 3y2 − 1

2
y3 +

1
18

y4 =
5
3
hf1 + h2f ′

1 (36)

and

− 1
12

y0 +
4
3
y1 − 5

2
y2 +

4
3
y3 − 1

12
y4 = 2h2f ′

2 (37)

and the final method{ − 1
8yN−4 + 8

9yN−3 − 3yN−2 + 8yN−1 − 415
72 yN

= −25
6 hfN + h2f ′

N
(38)

will be taken together as a BVM.

The methods (31 and 35) are implemented as BVMs ef-
ficiently by composing the main methods and the addi-
tional methods as simultaneous numerical integrators for
the IVP(1). In particular for linear problems, we can
solve (1) directly from the start with Gaussian elimina-
tion partially using pivoting and for nonlinear problems
we can use a modified Newton-Raphson method. In each
case, the main methods and the additional methods are
combined as BVMs to give a single matrix of finite dif-
ference equations which simultaneously provides the val-
ues of the solution and the first derivatives generated by
the sequences {yn}, {y′

n}, n = 0, . . . , N , where the sin-
gle block matrix equation is solved while adjusting for
boundary conditions ([35]).

6 Numerical Experiments with
SDGBDF

We consider the following stiff problems (linear and non-
linear) to illustrate the implementation and examine the
accuracy of the SDGBDF (17) of orders p=4 (31) and
5 (35) implemented as block methods. The fourth order
method (17) and the fifth order method (17) are denoted
by SDGBDF4 and SDGBDF5 respectively.

Problem 1: A linear stiff problem, see [4, 10, 25, 43]

y′
1 = −21y1 + 19y2 − 20y3, y1(0) = 1,

y′
2 = 19y1 − 21y2 + 20y3, y2(0) = 0,

y′
3 = 40y1 − 40y2 + 40y3, y3(0) = −1.

The SDGBDF4 is applied to this problem and the
maximum absolute errors (|y(x) − yn|) in the inter-
val 0 < x < 10 are compared with the Adams type
block method of Akinfenwa [4] (ATBM7), the general-
ized backward differentiation formula of Brugnano and
Trigiante [10](GBDF8) and the L(α)-stable block multi-
step method of Ehigie and Okunuga [25] denoted by EH-
OK5. The rate of convergence, Rateh = log2( err2h

errh
)

where errh is the maximum absolute error at steplength
h = 1

2n.100 , n = 0, 1, 2, 3 and 4 , is used to verify the order
of the methods. Also in comparison with the CBDF5

of degree s = 5 in Ramos and Garcia-Rubio [43], the
AbsErr(tf ) is obtained by the SDGBDF4 in the inter-
val 0 ≤ x ≤ 1. It is observed that the new method even
though it is of order 4 performs better than the EH-OK5,
the ATBM7 and the GBDF8 of orders 5, 7 and 8 respec-
tively. The details of the numerical results are displayed
in Table 1. In Table 2, it is noticed that the SDGBDF4
is comparable with the EH-OK5 in [25] and the CBDF5

in [43].

Table 1: Maximum absolute error, Max1<i<N |yi(x) −
yi,n| for problem 1, h = 1

2n.100

n SDGBDF4 EH-OK5 GBDF8 ATBM7
(Rate) (Rate) (Rate) (Rate)

0 2.28×10−17 3.21×10−13 1.19×10−3 3.95×10−6

1 1.56×10−18 1.01×10−14 1.39×10−5 2.91×10−8

(3.87) (4.99) (6.42) (7.08)
2 1.02×10−19 3.18×10−16 1.08×10−7 2.21×10−10

(3.93) (4.99) (7.00) (7.06)
3 6.21×10−21 9.96×10−18 1.08×10−9 6.65×10−13

(4.04) (5.00) (6.64) (8.36)
4 9.45×10−23 3.11×10−19 9.41×10−12 2.69×10−15

(6.04) (5.00) (6.84) (7.95)

Table 2: Numerical results in comparison with CBDF5

and EH-OK5 for problem 1 the interval 0 ≤ x ≤ 1
Steps SDGBDF4 EH-OK5 CBDF5

(Rate) (Rate) (Rate)
20 1.12×10−11 3.04×10−11 4.12×10−12

40 7.01×10−13 9.75×10−13 1.33×10−12

(4.00) (4.96) (4.95)
80 4.47×10−14 2.25×10−14 4.31×10−15

(3.97) (5.43) (4.95)
160 1.47×10−15 9.69×10−16 2.55×10−15

(4.93) (4.53) (0.75)

Problem 2: Non-linear stiff system solved by Wu and
Xia [44]

y′
1 = −1002y1 + 1000y2

2 , y1(0) = 1,

y′
2 = y1 − y2(1 + y2), y2(0) = 1,
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The exact solution of the system is given by

y1(x) = e−2x, y2(x) = e−x

Problem 2 is solved using SDGBDF5 with a steplength
h = 0.008 in the range 0 ≤ x ≤ 1. The maximum error
(Max|yi−y(xi)|) of the method is given in Table 3. From
Table 3, it is obvious that the new method of order 5 is
better than the methods of Ehigie et al [24] and Wu-
Xia [44] and very comparable with the method of Jator
and Sahi [36] which are of orders 5, 6 and 8 respectively.
Problem 3: Singularly Perturbed Problem

Table 3: Maximum error, Max|yi − y(xi)|, for problem 2
Method N h y1 y2

(Max|yi − y(xi)|) (Max|yi − y(xi)|)
SDGBDF5 125 0.008 1.80×10−15 6.11×10−16

Ehigie et al 125 0.008 3.88×10−14 3.10×10−14

(BVM3)
Jator-Sahi 125 0.008 1.63×10−14 0.00
Wu-Xia 500 0.002 2.56×10−07 8.02×10−08

y′
1 = −(2 + 104)y1 + 104y2

2 , y′
2 = y1 − y2 − y2

2 ,

y1(0) = 1, y2(0) = 1

The exact solution is y1 = e−2t, y2 = e−t, see [30].
The SDGBDF4 and the SDGBDF5 are applied to Prob-
lem 3 and the results are compared with the theoreti-
cal solution. The SDGBDF5 performs better than the
SDGBDF4 as expected, see Table 4. Furthermore, take
note that the graphs of the exact and the numerical so-
lutions in Figures 3 and 4 coincide.

Table 4: Absolute error in problem 3, h = 0.01, Error
yi=|yi − y(xi)|, i = 1, 2

x yi Error in SDGBDF4 Error in SDGBDF5
1.0 y1 3.06126×10−11 3.43744×10−11

y2 4.22623×10−11 4.96455×10−11

2.0 y1 1.03235×10−11 5.15573×10−12

y2 3.96899×10−11 1.91052×10−11

3.0 y1 2.39019×10−12 6.49362×10−13

y2 2.40044×10−11 6.79007×10−12

4.0 y1 4.31932×10−13 9.57145×10−14

y2 1.20298×10−11 2.61306×10−12

5.0 y1 8.00396×10−14 1.20228×10−14

y2 5.82196×10−12 9.28587×10−13

6.0 y1 1.27167×10−14 1.77133×10−15

y2 2.56518×10−12 3.57306×10−13

7.0 y1 2.18299×10−15 2.22482×10−16

y2 1.15005×10−12 1.26970×10−13

8.0 y1 3.27871×10−16 3.27798×10−17

y2 4.79014×10−13 4.88578×10−14

9.0 y1 4.83562×10−17 4.11682×10−18

y2 1.95919×10−13 1.73602×10−14

10.0 y1 7.87909×10−18 6.06524×10−19

y2 8.33725×10−14 6.67981×10−15

Problem 4: Van der Pol equations, see [30] (nonlinear
problem)

y′
1 = y2, y′

2 = −y1 + 10y2(1 − y2
1),

y1(0) = 2, y2(0) = 0.

For problem 4, it is clearly seen from Table 5 and Figures
5 and 6 that the proposed class of methods compares
favorably with the solution from the Ode15s in MATLAB.
Problem 5: Robertson’s equation, see [30] (nonlinear

Table 5: Errors in problem 4 using the modulus of the
solution of SDGBDF minus the solution of Ode15s, h =
0.001. Error yi = |yiSDGBDF − yiOde15s|, i = 1, 2

x yi Error in SDGBDF4 Error in SDGBDF5
1.0 y1 1.32308×10−4 1.82747×10−5

y2 8.31878×10−6 1.09583×10−6

5.0 y1 3.36208×10−4 1.47667×10−4

y2 2.22430×10−5 3.98291×10−6

10.0 y1 3.67025×10−5 2.25767×10−4

y2 1.98333×10−6 1.32565×10−5

15.0 y1 2.46188×10−5 6.92917×10−4

y2 3.09782×10−5 7.75023×10−5

20.0 y1 9.04906×10−5 2.00872×10−4

y2 1.10280×10−5 6.98618×10−6

problem)

y′
1 = −0.04y1+104y2y3, y′

2 = 0.04y1−104y2y3−3×107y2
2 ,

y′
3 = 3 × 107y2

2 , y1(0) = 1, y2(0) = 0, y3(0) = 0.

Problem 5 is solved by the SDGBDF4 and the SDGBDF5
and the results are compared with the solution from the
Ode15s in MATLAB. It is observed from Table 6 and Fig-
ures 7 and 8 that the new methods are very comparable
with the Ode15s in MATLAB.

Table 6: Errors in problem 5 using the modulus of the
solution of SDGBDF minus the solution of Ode15s, h =
0.0001. Error yi = |yiSDGBDF − yiOde15s|, i = 1, 2, 3

x yi Error in SDGBDF4 Error in SDGBDF5
1.0 y1 2.31233×10−5 6.11248 ×10−6

y2 3.68698×10−9 9.74789 ×10−10

y3 2.31270×10−5 6.11346 ×10−6

3.0 y1 3.91192×10−6 3.91187 ×10−6

y2 4.93245×10−10 4.93239×10−10

y3 3.91241×10−6 3.91236 ×10−6

5.0 y1 1.02179×10−6 1.02175 ×10−6

y2 2.95023×10−10 2.95027 ×10−10

y3 1.02149×10−6 1.02146 ×10−6

7.0 y1 4.48772×10−5 4.48771×10−5

y2 4.22263×10−9 4.22262 ×10−9

y3 4.48814×10−5 4.48814×10−5

10.0 y1 7.35061×10−5 7.35060 ×10−5

y2 5.76555×10−9 5.76555 ×10−9

y3 7.35118×10−5 7.35118 ×10−5
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Table 7: The Coefficients, Error Constant (EC) and Order p of SDGBDF(18) for k = 1(1)10
k v α0 α1 α2 α3 α4 α5 α6

1 1 2 -2 0 0 0 0 0
2 2 − 1

2 4 − 7
2 0 0 0 0

3 2 − 1
6 2 − 5

2
2
3 0 0 0

4 3 1
18 − 1

2 3 − 55
18

1
2 0 0

5 3 1
45 − 1

4 2 − 49
18 1 − 1

20 0
6 4 − 1

120
4
45 − 1

2
8
3 − 217

72
4
5 − 1

30

7 4 − 1
280

2
45 − 3

10 2 − 205
72

6
5 − 1

10

8 5 1
700 − 1

56
1
9 − 1

2
5
2 − 5449

1800 1
9 5 1

1575 − 1
112

4
63 − 1

3 2 − 5269
1800

4
3

10 6 − 1
3780

2
525 − 3

112
8
63 − 1

2
12
5 − 5489

1800

Table 8: Table 7 continued
k v α7 α8 α9 α10 βv γv EC p
1 1 0 0 0 0 -2 1 1

3 2
2 2 0 0 0 0 -3 1 1

6 3
3 2 0 0 0 0 -1 1 − 1

30 4
4 3 0 0 0 0 − 5

3 1 − 1
60 5

5 3 0 0 0 0 − 2
3 1 1

210 6
6 4 0 0 0 0 − 7

6 1 1
420 7

7 4 2
315 0 0 0 − 1

2 1 − 1
1260 8

8 5 − 1
14

1
252 0 0 − 9

10 1 − 1
2520 9

9 5 − 1
7

1
63 − 1

1008 0 − 2
5 1 1

6930 10
10 6 8

7 − 3
28

2
189 − 1

1680 − 11
15 1 1

13860 11

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · · 0 0 · · · · · · 0
α

(1)
0 α

(1)
1 α

(1)
2 α

(1)
3 · · · α

(1)
k 0 · · · · · · 0

...
...

...
... · · · ...

... · · · · · · ...

α
(k1−1)
0 α

(k1−1)
1 α

(k1−1)
2 α

(k1−1)
3 · · · α

(k1−1)
k

... · · · · · · ...
α0 α1 α2 α3 · · · αk 0 · · · · · · 0
0 α0 α1 α2 · · · αk−1 αk 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . 0 α0 · · · · · · · · · · · · αk

...
. . . . . .

... α
(N−k2+1)
0 · · · · · · · · · · · · α

(N−k2+1)
k

...
. . . . . .

...
... · · · · · · · · · · · · ...

0 · · · · · · 0 α
(N)
0 · · · · · · · · · · · · α

(N)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(39)
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BN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0 · · · · · · 0
β

(1)
0 β

(1)
1 β

(1)
2 β

(1)
3 · · · β

(1)
k 0 · · · · · · 0

...
...

...
... · · · ...

... · · · · · · ...

β
(k1−1)
0 β

(k1−1)
1 β

(k1−1)
2 β

(k1−1)
3 · · · β

(k1−1)
k

... · · · · · · ...
β0 β1 β2 β3 · · · βk 0 · · · · · · 0
0 β0 β1 β2 · · · βk−1 βk 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . 0 β0 · · · · · · · · · · · · βk

...
. . . . . .

... β
(N−k2+1)
0 · · · · · · · · · · · · β

(N−k2+1)
k

...
. . . . . .

...
... · · · · · · · · · · · · ...

0 · · · · · · 0 β
(N)
0 · · · · · · · · · · · · β

(N)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

CN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0 · · · · · · 0
λ

(1)
0 λ

(1)
1 λ

(1)
2 λ

(1)
3 · · · λ

(1)
k 0 · · · · · · 0

...
...

...
... · · · ...

... · · · · · · ...

λ
(k1−1)
0 λ

(k1−1)
1 λ

(k1−1)
2 λ

(k1−1)
3 · · · λ

(k1−1)
k

... · · · · · · ...
λ0 λ1 λ2 λ3 · · · λk 0 · · · · · · 0
0 λ0 λ1 λ2 · · · λk−1 λk 0 · · · 0
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . 0

...
. . . . . . 0 λ0 · · · · · · · · · · · · βk

...
. . . . . .

... λ
(N)
0 · · · · · · · · · · · · λ

(N)
k

...
. . . . . .

...
... · · · · · · · · · · · · ...

0 · · · · · · 0 λ
(N+k2−1)
0 · · · · · · · · · · · · λ

(N+k2−1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(41)
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Figure 1: Stability region (exterior of closed curves) of (17), k=1 (2) 31
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                                                                 Figure 2: Stability region (exterior of closed curves) of (17), k=2 (2) 32
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�

Figure 3: Numerical Results for Problem 3 with SDGBDF4, h=0.01

�

� �Figure 4: Numerical Results for Problem 3 with SDGBDF5, h=0.01

IAENG International Journal of Applied Mathematics, 48:1, IJAM_48_1_01

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



�

Figure 5: Numerical Results for Problem 4 with SDGBDF4, h=0.001

�

Figure 6: Numerical Results for Problem 4 with SDGBDF5, h=0.001
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�

Figure 7: Numerical Results for Problem 5 with SDGBDF4, h=0.0001

�

        � Figure 8: Numerical Results for Problem 5 with SDGBDF5, h=0.0001
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7 Conclusion

The second derivative generalized backward differentia-
tion formulae (SDGBDF) have been introduced in section
(4). This class of methods is Av,k−v-stable and 0v,k−v-
stable with (v, k-v)-boundary conditions for values of
k ≥ 1 with order p = k + 1. The new class of meth-
ods is found to be suitable for the solution of stiff IVPs
in ODEs for reason of their stability. The class of meth-
ods (17) also finds application in the solution of boundary
value problems, see [35, 39].
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