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Strong Tensor Non-commutative Residuated
Lattices

Hongxing Liu

Abstract—In this paper, we study the properties of tensor
operators on non-commutative residuated lattices. We give some
equivalent conditions of (strict) strong tensor non-commutative
lattices and investigate the relation between state operators on £
and state operators on £”'. Moreover, we give the representation
theory for (strict) strong tensor non-commutative residuated
lattices and obtain the one to one correspondence between tense
filters in £ and tense congruences on (.

Index Terms—tensor operator, non-commutative residuated
lattice, frame, filter, congruence.

I. INTRODUCTION

Residuated lattices are an important algebraic structure in
mathematics. The works on residuated lattices were initiated
by Krull, Dilworth and Ward etc. ([8], [13], [16], [17]). Also,
these structures are closely related to logics. BL-algebra are
algebras of basic fuzzy logics. MV-algebras are algebras
of Lukasiewicz infinite valued logics and Heyting algebras
are algebras of intuitionistic logics. Residuated lattices are a
common generalization of these algebras.

Classical tense logic is the propositional logic with t-
wo tense operators (G which reveals the future and H
which expresses the past. Burges [2] studied tensor op-
erators on Boolean algebra. Later, many authors have in-
vestigated tensor operators on other algebras. Diaconescu
and Georgescu [7] studied the tensor operators for MV -
algebra and Lukasiewicz-Moisil algebras. Chajda, Kolarik
and Paseka ([5], [6]) studied tense operators for effect
algebras for investigating quantum structures dynamically.
Recently, Bakhshi [1] studied the algebraic properties of
tense operators for non-commutative residuated lattices. The
Dedekind-MacNeill completion of non-commutative lattices
with involutive is investigated in [1].

In this paper, we will further study the tensor operators
on non-commutative residuated lattices. We give some char-
acterizations of tensor non-commutative residuated lattices
which extend some results on effect algebras in [6]. The
condition ——x = z is important in studying tense op-
erators for effect algebras. However, this condition is not
valid in non-commutative residuated lattices. We have to
overcome this difficulty for studying tense operators on non-
commutative residulated lattices. in this paper, we get the
one to one correspondence between tense filters (not normal
tense filters) of £ and tense congruences on L. The paper
is constructed as follows: In Section 2, we give some basic
properties on tensor non-commutative residuated lattices. In
Section 3, we give some equivalent conditions for strong
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tensor non-commutative residuated lattices and investigate
the relation between state operators on £ and state operators
on LT, Finally, we give the representation theory of (strict)
strong tensor non-commutative residuated lattices in Section
4. In Section 5, we study the relation between tense filters
in £ and tense congruences on L.

II. PRELIMINARIES

In this section, we give some basic notions and properties
on non-commutative lattices which is useful in the paper.

A structure (£,(),U,*, —,~>,0,1) is called a non-
commutative residuated lattice, if the following conditions
are satisfied:

L1) (£,),U,0,1) is a bounded lattice;

L2) (£,#,1) is a monoid (not necessarily commutative);

L) aezxy < ziffoe <y = ziff y <z~ 2z for all
z,y,z € L.

For x € £, we denote x — 0 by —x and denote x ~~ 0
by ~ z.

A non-commutative residuated lattice £ is called to be
involutive, if =~z =~ -z =z, for all x € L.

I1.1 Proposition. ([1]) Let £ be a non-commutative residu-
ated lattice. For all z,y,z € L, then
NeLlyiffr—y=1iffx~y=1.
2z —-y<y—z)~(@—=z2)z~>y<(y~z2) —
(x ~ 2).
3)x <yimpliesy —>z<x—>zandy~ 2z <x ~ 2.
Farticularly, x <y implies ~y < —x and ~ y <~ x.
frx(zx~y <zAy; (x—>y)xz<zAy;
S)axx~x=0=—xxx.
6) xxy =0iff v < ~yiffy <~ x; Particularly, xt <~ —x
and v < -~ x.

IL.2 Definition. ([1]) Let (£,(), U, *, —,~>,0, 1) be a non-
commutative residuated lattice and G, H be maps of £
into itself. We call (£,G,H) a tensor non-commutative
residuated lattice, if the following conditions are satisfied:

TRL1) G(1) =1,H(1) = 1.

TRL2) G(z — y) < G(z) = G(y), Gz ~ y) <
G(z) ~ G(y), Hx — y) < H(z) —» H(y), H(z ~
y) < H() ~ H(y).

TRL3) < GP.(z) N\GP.(z),x < HF (z) NHF.(x),
where

Po(z) = -H(~ ),
Fo(z) = ~G(~ 2),

Po(z) =~ H(-x),
F.(z) =~ G(—z).

I1.3 Definition. Let (£, G, H) be a tensor non-commutative
residuated lattice. We call (£, G, H) to be a strong tensor
non-commutative residuated lattice, if G(0) = H(0) = 0.

In fact, G and H are strong tense operators on £ in
Example 1 in [1] (or see [15]).
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I1.4 Proposition. ([1]) Let (L,N,U,*,—,~,0,1) be a
non-commutative residuated lattice. For all x,y € L, the
following conditions are satisfied.

1)z <y implies G(x) < G(y), H(x) < H(y), F.(z) <
gﬂ((y); Fo(z) < Fuly), G-(z) < G-(y), Go(z) <
~(y).

2) G(z) « G(y) < Gz *y), H(x)* H(y) < H(z*y).

IL5 Proposition. Ler (£,),U,*,—,~,0,1) be a non-
commutative residuated lattice and G, H be maps of L into
itself. Then (L,G,H) is a strong tensor non-commutative
residuated lattice if and only if

STRLI) G(0) =0,H(0) =0,G(1) =1,H(1) = 1.

STRL2) x < y implies G(x) < G(y) and H(z) < H(y);
G(x) * G(y) < Gz *y), H(x) « H(y) < H(x * y)

STRL3) © < GP-(z) NGP.(x),x < GF-(x) N\GF.(x),
where

/\
\_/

Po(2) = ~H(~2), Pu(z) =~ H(2),
F.(z) =-G(~2z), F.(z)=~G(—x).

Proof: =: By Definition II.3 and Proposition 1.4, we
get the desired result.
<=: We only need to prove TRL2). For all z,y € £, we
have (z — y) * x < y by Proposition 2.1 4). Hence,

Gz — ) * Glx) < G((x — y) ¥ 7) < G(y).

This implies G(z — y) < G(x) = G(y).
Similarly, we can get G(z ~ y) < G(z) ~ G(y); H(z —
y) < H(z) = H(y); H(x —y) < H(z) = H(y). u

I1.6 Lemma. Let (£,(),U, *, —,~>,0,1) be a strong tensor
non-commutative residuated lattice. For all x,y € L, the
following conditions are satisfied.

1) G(oa) < ~G(), G~ @) <~ G(a), H(-w) <
—H(z), H(~ z) <~ H(x).

2) P-(~) > P(a), Po(~ x) >~ P.(z), Fo(-a) >
-Fo(x), Fu(~x) >~ F_(x).

Proof: 1) By (x — 0) x x < 0, we have
Gz = 0)xG(z) < G((x — 0) xz) < G(0).

Hence, G(—x) < -G(x).

Similarly, G(~ z) <~ G(x), H(—x)
x) <~ H(x).

3) Using Proposition I1.3, we get P_(—x
-~ H(—z) = =2P(x).

Similarly, we have P.(~ z) >~ P.(z), F_(—z) >
-F.(z), Fu(~x) >~ F (z). O [ |

Notation Let (£,(), U, *,=,0,1) be a non-commutative
residuated lattice. The following condition

< ﬁ}I(x)? H(N

) =—H(~—z) >

Vaz,ye L,

is denoted by (C).

If £ is involutive, then £ satisfies condition (C').
IL.7 Proposition. Ler (£,(),U,*,—,~,0,1) be a non-
commutative residuated lattice with condition (C). For all

z,y € L, we have
P.G(z) <z, P.G(x) <z, F.H(x) <z, F.H(x) <=z

Proof: By D4) of Definition 1.2, we have

& < HF.(~z) = H(-G(~ —1)) < H(~G(z))
< -~ H(~G(x)) = ~P~(G(x)).

y< o ryeo~vy <~

This proves P.G(z) < x
Similarly, we have P.G(z) < =z, FLH(z) < uz,
F . H(z) <. [ |

III. CHARACTERIZATIONS OF STRONG TENSOR
NON-COMMUTATIVE RESIDUATED LATTICES

In this section, we give some equivalent characterizations
of (strict) strong tensor non-commutative residuated lattices.
Some techniques in [6] are used.

III.1 Theorem. Let L be a non-commutative residuated
lattice with condition (C) and G, H : L — L be mappings.
Then the followings are equivalent.

1) (£,G, H) is a strong tensor non-commutative residu-
ated lattice.

2)i) G(z) *G(y) < Gz *y), H(z) « H(y) < H(x *y).

ii) G has two left adjoints P-, and P., such that P-(x) =
—-H(~z),P.(1)=1P.(z) =~ H(—z),P.(1) =1land H
has two left adjoints F-, and F,. such that F_(z) = =G(~
x), Fo(1) = 1, Fu(z) =~ G(—x), F.(1) = 1, for all
z e L.

Proof: 1) = 2) Suppose that (£,G, H) is a strong
tensor non-commutative residuated lattice. Then i) is valid
by Proposition IL.5.

ii) For all z,y € L, if P.(z) < y, then we get x <
GP.(z) < G(y) by STRL2) and STRL3). If z < G(y),
then P_(z) < P-G(y) < y by Proposition I.4. This proves
that P is a left adjoint of G. It is easy to check that P_(1) =
—H(~ 1) = =H(0) = -0 = 1. Analogously, P., is also a
left adjoint of G and P.(1) = 1. Similarly, H has two left
adjoints I, and F. such that F'.(z) = -G(~ z), F.(1) =
1, Fu(z) =~ G(—z), F.(1) =1, for all z € L.

2) = 1) Note that G and H are the right adjoints, we
have that G and H preserve infima and order. Hence, G(1) =
H(1) = 1. This proves that STRL2) holds.

For all y € L, since G(~ y) < G(~ y) and G
is right adjoint, we get P_(G(~ y)) <~ y. That is,
~ H(-G(~ y)) <~ y. By condition (C'), we have
y < H(-G(~ y)) = HF.(y). Similarly, y < HF_.(y),
y < GP-(y), y < GP-(y). Hence, STRL3) holds.

-H(0) = =H(~ 1) = P.(1) = 1 implies H(0) = 0.
Similarly, G(0) = 0. This proves STRL1). |

III.2 Lemma. Let (£,G, H) be a non-commutative residu-
ated lattice. For all a;,b; € £,i € I, we have

Ndailie b« N{biliel} < Naixbi|ieTl}

Proof: Foralli € I, N{a;|i €I} <a;and A{b; |i €

I} <b; hold. This concludes the desired result. [ |

A pair (T, R) is called a frame if T is a nonempty set and
R is a binary relation on 7'

Let £ be a non-commutative residuated lattice and 71" be

a nonempty set. We denote the set of all mappings from T’

to £ by £T.
For f,g € LT, define operations on LT by
fxg(@) = f(z)xg(z), (fVg)z)=flz)Vg(z),
(frg)a) = flx)nglx), (f—g)(@)=fz)—g(x)

we can see that £7 is a non-commutative residuated lattice

(see [1]).
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Let 0 and 1 be the elements in £ such that 0(z) = 0 and
1(z) =1, forall z € T.

Similarly to Theorem 3 in [1], we also have the following
theorem.

IIL3 Theorem. Let (L,G,H) be a strong tensor non-
commutative residuated lattzce and (T, R) be a frame. For
all p € LT, we can define G H: LT = LT as

w) = N\{p(v) | uRv),
w) = \{p() | vRu}.

Then (LT, G, H) is a strong tensor non-commutative resid-
uated lattice.

__ Proof: By Theorem 3 in [1], we only need to check that
G(0)=0,H(0)=0,G(1)=1and H(1) = 1. [

IT1.4 Definition. (£,G, H) is called a strict strong tensor
non-commutative residuated lattice, if for all z,y € £,

Gz —y) =G(x) = Gy),
Gz ~y) = G(z) ~ G(y),
H(z —y) = H(z) — H(y),
H(xz ~y) = H(z) ~ H(y).

IIL.5 Lemma. Let (£, G, H) be a strict strong dynamic non-
commutative residuated lattice. For all x € L, we have
G(-z) = =G(z), G(~ z) =~ G(z), H(~z) = —H(x),
H(~ x) =~ H(z).

Proof: By Definition II1.4, we have G(x — 0) =
G(z) = G(0) = G(z) — 0. So G(—x) = -G(x). Similarly,
G~ 2) =~ G(x), H(~z) = ~H(x), H(~ 7) =~ H(z).

|

IIL.6 Theorem. If L is a non-commutative residuated lattice
with condition (C), G,H : L — L are mappings. Then the
following conditions are equivalent.

1) (L,G,H) is a strict strong tensor non-commutative
residuated lattice.

2) G and H satisfy the following properties:

i) G(0) = H(0) =0.

ii) G is both a left adjoint and a right adjoint to H.

i) G(x — y) = G(x) = G(y), Gz ~ y) = G(z) ~
G(y).

iv) Hxz —y) = H(z) —» H(y), H(x ~ y) = H(x) ~
H(y).

Proof: 1) = 2) : i) By Definition IL.3, we obviously

have G(0) = H(0) = 0.

ii) For all z,y € £, if = < G(y), By Proposition I1.7 we
get Po(z) <y, ie. ~H(~ x) <y < - ~ y. This implies
~y < H(~z) =~ H(z). Hence H(x) < y. Conversely, if
H(z) <y, we have

~y<~H(z)=H(~z) <~ -H(~z) =~ P (z).

Then P-(z) < y. By Theorem III.1 again, z < G(y) holds.
Hence, G is a right adjoint to H. Similarly, we can prove
that H is also a right adjoint to G.

iii) and iv) are obvious.

2) = 1) : Since G is a right adjoint, G preserves infima
and G(1) = 1. For all z,y € £, we have G(z) < G(y —

xxy) =G(y) —» G(x *y) by x <y — x xy. This implies
G(z) * G(y) < G(x x y). Similarly, H preserves order and
H(z)* H(y) < H(x *y). Then STRL2) holds.

Now, we prove STRL3). For all x € £, we have

H(z) <H(—~~z) <-H(~z)= P.(x).

By H(x) < H(x), then < GH(z) < GP-(x). Similarly,
x < GP.(x), x < HF_(x), x < HF. (). [ |

In the following, we discuss the relation between state
operators on commutative residuated lattice £ and state
operators on L7,

II1.7 Definition. ([10]) Let (£,, U, *, —,0,1) be a resid-
vated lattice and 7 : L — £ a map. If the following
conditions are satisfied

D 7(0) =0,
Nrx—y=1=71(x) > 71(y) =1,
N1 —=y) =71() = 7(AY),
Y r(xxy)=71(x)x7(x = (x*xy)),

(
(

5) 7(r(z) x 7(y)) = 7(2) * 7(y),
E (

6) 7(7(z) = 7(y)) = 7(z) = 7(v),
7 7(r(z) vV 1(y)) = 7(x) V 7(y),
8)T(T(z) AT(y)) = 7(2) AT(y),

for all x,y € £, then 7 is called to be a state operator on
L.

The following proposition is Proposition 3.5 in [10], which
is useful.

II1.8 Proposition. ([10]) Let £ be a residuated lattice and
7: L — L a state operator on L. We have

1) 7(1) =1,

2) x <y implies T(x) < 7(y).

For z,y € L, we have x <y <=z —y =1 ([1]).

IIL9 Theorem. If 7 : L — L is a state operator on L,
the mapping 7 : LT — LT defined by 7(f) = 7f is also a
state operator on LT

Proof: 1) Obviously, 7(0) =
2) For f,g € LT, if f — g =
every x € L, we get 7f(z) <7
concludes that 7(f) < 7(g). Tha

1 we have f < g. For
( ) y Proposition II1.8. Tt

is, 7(f) = 7(9) = 1.

3)
7 (f = g)(x) =7(f = g)(z)
=7(f(z) = g(2))
=7f(x) = 7(f(x) N g(z))
=7f(x) = 7(f Ag)(x)
=T = 7(f Ag))().
Therefore, 7(f — g) = 7(f) — 7(f Ag). Similarly, we have
T(f)xg)=7(f)«7(f — f*g),
T(7(f) *7(9)) = 7(f) * 7(9),
T(7(f) = 7(9)) = 7(f) = 7(9),
(T (f) n7(9) =7(f) AT(9),
(T () VT(9) =7(f) V7(9)
Hence, 7 is a state operator on L7 ]
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IV. REPRESENTATIONS OF STRONG TENSOR
NON-COMMUTATIVE RESIDUATED LATTICES

In this section, we shall give representation theorems for
strong tensor non-commutative residuated lattices and strict
strong tensor non-commutative residuated lattices. Some
proofs are similar to those in [6].

Let P and P’ be two bounded posets. Amap f : P — P
is called to be morphism, if f preserves order, top element
and bottom element. A map f : P — P is called to be
order reflecting, if f is a morphism and

fl@)< fly) = az<y, VayePl

IV.1 Definition. Let £ and £ be two non-commutative
residuated lattices. A map f : L — £ is called a semi-
morphism from £ into L' if f satisfies the followings:

1) f preserves order.

2) f(@) * f(y) < flz*y), Yo,y € L.

3) f(0) =0, f(1) =

A semi-morphism f : £ —s £ is called to be strict, if
for all x,y € £,

flx—=y)=f@) = fy), fla~y) = flz) ~ fly).

If f is a strict semi-morphism, for all z € £, we have

f(mx) = ~f(x), fl~z) =~ f(x).

Let S be a set of semi-morphisms from £ into LA
subset T C S is full, if for z,y € £,

r<y<=t(x) <tly),vteT.

IV.2 Theorem. Let (L,G,H) be a dynamic non-
commutative residuated lattice with a full set S of semi-
morphisms into a non-commutative residuated lattice C. Then

1) There exists a semi-morphisms set T satisfies the
following conditions:

i)SCT, N

ii) the map .~ : (£,G,H) — (LT, G,
to L () is order reflecting, where X (x)(t) =
reltel.

2) There exists a frame (T, R) satisfies:

forall s,t €T, (s,t) € Riff Vo € £,s(G(z)) < t(x).

Moreover,
) = Mt(@) | sRt}.

Proof: Let T' be the smallest set consisting of semi-
morphisms into € such that S C T and soG,so H € T.
Let R={(s,t) € T x T | s(G(z)) < t(x)}.

1) For all z,y € £,s € S, we have

H) which sends ©
t(x), for all

r<y=soG(x) <soG(y), soH(x)<soH(y).

(s0G)(2)*(s0G)(y) < s0(G(2)*G(y)) < (SoG)(ﬂf*y)
50 G(0) = s(G(0)) = 5(0) =
soG(1) =s(G(1)) = s(1) =

This concludes so G € T.

Similarly, so H € T.

2)Forall z,y € £,t € T, since Sis a full setand S C T,
we have

r<y <= Lf(y)(t)

t(x) < t(y) <= ] (x)(t) <
=i (x) < (y).

Hence, (7 is order reflecting.

Since (1F(2) £ () (t) = t(x) $1(y) < t(zxy) = F(a+
y)(t), we have 7 (x) * . (y) < ¢f (x *y). Hence, ¢] is an
order reflecting semi-morphisms into C.

3) For all s € T, there is t € T such that t; = so G.
Therefore,

s(G(z)) =

z) > \{t(@)

= A{t(z) | sRt}. That is,
G(/L(z)). Also, we have

2)) = N\t(2) | sRt}.

| sRt} > s(G(x)).

This implies that (L (G(x))
17 (G(2)) =

Similarly, we can give the representation theorem for strict
strong non-commutative residuated lattices.

IV.3 Theorem. Let (L,G,H) be a strict strong non-
commutative residuated lattice with a full set S of strict
semi-morphisms into a non-commutative residuated lattice
C and (L satisfy condition (C). Then

1) There exists a strict semi-morphisms set T' satisfies the
following conditions:

i)SCT,

i) the map .~ : (£L,G, H)
to JL(z) is order reflecting, where 1% (z)(s) =
rel,seS.

2) There is a frame (T, R) satisfies:

forall s,t € R, (s,t) € R iff Vz € £,s(G(z)) < t(x).
Moreover,

— (L7, G, H) which sends x
s(z), for all

= A\ft() | sRt).

= A\ {t(z) | tRs}.

Proof: Firstly, we show that, if s and ¢ are morphisms,
we have

s(G(z)) < t(z) <= t(H(z)) < s(x),Vx € L.
For all z € £, suppose s(G(x)) < t(x), then
x))) < t(P-(~

H(~ z) ==~ H(z) > H(x), we have
hence,

s(~x) < s(oGP-(~ x)) <~ tP.(x).

Since P-(x) =
t(H (x ))St(P( );

~t(H(x)) >~ t(P-(x)) > s(~ x) =~ s(x).

It follows t(H (x)) < s(x). Similarly, we can prove the other
direction.

Define
R = {(s,t) eT xT|s(G(x)) <t(x)}
— {(s,) €T x T | t(H(x)) < s(x)}.
Analogously to the above theorem, we can get the desired
result. u
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V. CONGRUENCES ON COMMUTATIVE RESIDUATED
LATTICES

There is a bijection correspondence between normal filters
of £ and congruences on £. In [1], the author proves that
there is a bijection correspondence between tense normal
filters of £ and tense congruences on L. In this section, we
will prove that there is a bijection correspondence between
filters of £ and congruences on £ when G(z xy) = G(z) *
G(y),H(x xy) = H(z) * H(y), for z,y € L.

Recall that a filter F' of (£, G, H) is called to be a tense
filter, if G(z), H(x) € F, for all z € F.

A congruence 6 on (£,G,H) is called to be a tense
congruence, if 0y, then G(x)0G(y) and H(x)0H (y), for
z,y € L.

In paper [14], the author gives the one to one corre-
spondence between the ideals in quasi-Mv algebras and
ideal congruences on quasi-Mv algebras. Inspired this fact,
we will define a relation on £, which can be used to
construct congruences on L. Further, we can give the one
to one correspondence between tense filters in £ and tense
congruences on £ under certain conditions.

Let F' be a subset of £. The relation C(F) on £ is defined
as following: for x,y € £,

2C(F)y <
Gx—=>yY)ANGly—2zx),Hxz—y NH(y — z) € F.(R)

V.1 Proposition. Let (L,G,H) be a tense commutative
residuated lattice such that G(z xy) = G(z) * G(y), H(x *
y) = H(x)* H(y) and F be a tense filter of L. The relation
C(F) is a tense congruence on L.

Proof: 1) Since F' is a filter, we have 1 € F. For all
r €L,
Gz)—=Gx)=1eF

holds. This concludes that C(F') is reflexive.
2) The symmetry is obvious.
3) Suppose xC(F)y and yC(F')z. We have

Gz —y),Gly—2),Gly—2),G(z—y) €L
Hence,
Gz = 2) <Gz —=y) = (z—=vy)
<Gz —y) = G(z—y) el

Similarly, G(z — z) € F. So C(F) is transitive.

4) Suppose zC(F)y and aC(F)b. We have
zx(x—y) <y, ax(a—>b)<b.

Hence,

xxa*x(x—y)*x(a—b) <yxb.
It concludes that

(x—=y)x(a—b) <xxa—yx*b.
Then

G(z — y) * G(a — b) G((z = y) * (a — b))

G((z*a) — (y*b)).

oan

z), we get

+

Byz—oy<(z—=2)—(y
<G

(x
Then (z — 2)C(F)(y — 2).

G(r —y) z) = (y = 2)).

5) Suppose zC(F)y. Then G(x — y),G(y — =) € F.
By G(z — y) < G(z) — G(y), we have G(G(z — y)) <
G(G(x) — G(y)). Since F is a tensor filter, we concludes
G(G(x — y)) € F and so G(G(x) — G(y)) € F. Similarly,
G(G(y) — G(x)) € F. This proves that G(z)C(F)G(y).

By above, we get that C(F') is a tense congruence on L.

|

V.2 Proposition. Let (£,G,H) be a tense commutative
residuated lattice and F be a subset of L. If C(F) is a
tensor congruence on L, then C(F')(1) is a filter of L.

Proof: For z,y € C(F)(1), we have
G(1)=G(x—1),G(x)=G(l - z) € F.
Hence,
Gl = (xxy))=Gxxy) = G(z) *Gy) € F,
G((x+xy) - 1)=G(1) € F.
This implies that z x y € C(F)(1).
If z € CF(1) and x < y, we have (1 = z) < (1 — y)

and so G(1 —» z) < G(1 — y) € F. Since G(z — 1) =
Gly—1)=1€F, we gety € CF(1). |
).

V.3 Proposition. Let 0 be a tense congruence on (L,G, H
Then 0(1) is a tense filter.

Proof: Let x,y € 6(1). We have G(z),G(y) € 6(1).
By 201, y01, we concludes that x x y01, i.e. x xy € 6(1).
If x <y and z01, then z — yf1 — y, i.e. 10y. Hence,
6(1) is a tensor filter. [ |

V.4 Theorem. Let (L,G, H) be a tense commutative resid-
uated lattice. There is a bijection between the tense filters of
L and tense congruences on L.

Let A be a subset of £. Denote by Fil(A) the filter

generated by A. Ciung [3] proved that
Fil(A) ={ze€L|x>a;*xazs*---*xa,,n €N,
ay,ag, -+ ,a, € A}.

If F'is a filter of £ and a € £, then

Fil(Fia) ={x € L|x > (fixa™) x (foxa™)x---x
(fm*anm)amEN>n17n27"' s Mim, €N+u
flvf?a"' 7fm GF}

Similar to Proposition 5.1 of [12], we have the following
proposition.

V.5 Proposition. Let L be a tense residuated lattice and
a € L such that G(a) = H(a) = a. Then Fil(F,a) is a
tense filter of L.

Proof: For x € Fil(F, a), there exist y1,y2, -,y € F,
mi,Ma, -+ ,my € NT such that © > y1 * a™! * yp * a™2 *
<ok gy xa™t. Thus

cG(z) > Gy *a™ xyg xa™ x - xy, x a™)

= G(y1) * G(a)™ x G(yz) x G(a™?) * - - x
G(ye) * G(a)™.
This proves that G(z) € Fil(F, a). |
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