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Abstract—In this paper, we study the properties of tensor
operators on non-commutative residuated lattices. We give some
equivalent conditions of (strict) strong tensor non-commutative
lattices and investigate the relation between state operators on L
and state operators on LT . Moreover, we give the representation
theory for (strict) strong tensor non-commutative residuated
lattices and obtain the one to one correspondence between tense
filters in L and tense congruences on L.

Index Terms—tensor operator, non-commutative residuated
lattice, frame, filter, congruence.

I. INTRODUCTION

Residuated lattices are an important algebraic structure in
mathematics. The works on residuated lattices were initiated
by Krull, Dilworth and Ward etc. ([8], [13], [16], [17]). Also,
these structures are closely related to logics. BL-algebra are
algebras of basic fuzzy logics. MV-algebras are algebras
of Łukasiewicz infinite valued logics and Heyting algebras
are algebras of intuitionistic logics. Residuated lattices are a
common generalization of these algebras.

Classical tense logic is the propositional logic with t-
wo tense operators G which reveals the future and H
which expresses the past. Burges [2] studied tensor op-
erators on Boolean algebra. Later, many authors have in-
vestigated tensor operators on other algebras. Diaconescu
and Georgescu [7] studied the tensor operators for MV -
algebra and Łukasiewicz-Moisil algebras. Chajda, Kolǎrı́k
and Paseka ([5], [6]) studied tense operators for effect
algebras for investigating quantum structures dynamically.
Recently, Bakhshi [1] studied the algebraic properties of
tense operators for non-commutative residuated lattices. The
Dedekind-MacNeill completion of non-commutative lattices
with involutive is investigated in [1].

In this paper, we will further study the tensor operators
on non-commutative residuated lattices. We give some char-
acterizations of tensor non-commutative residuated lattices
which extend some results on effect algebras in [6]. The
condition ¬¬x = x is important in studying tense op-
erators for effect algebras. However, this condition is not
valid in non-commutative residuated lattices. We have to
overcome this difficulty for studying tense operators on non-
commutative residulated lattices. in this paper, we get the
one to one correspondence between tense filters (not normal
tense filters) of L and tense congruences on L. The paper
is constructed as follows: In Section 2, we give some basic
properties on tensor non-commutative residuated lattices. In
Section 3, we give some equivalent conditions for strong
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tensor non-commutative residuated lattices and investigate
the relation between state operators on L and state operators
on LT . Finally, we give the representation theory of (strict)
strong tensor non-commutative residuated lattices in Section
4. In Section 5, we study the relation between tense filters
in L and tense congruences on L.

II. PRELIMINARIES

In this section, we give some basic notions and properties
on non-commutative lattices which is useful in the paper.

A structure (L,
∩
,
∪
, ∗,→, , 0, 1) is called a non-

commutative residuated lattice, if the following conditions
are satisfied:

L1) (L,
∩
,
∪
, 0, 1) is a bounded lattice;

L2) (L, ∗, 1) is a monoid (not necessarily commutative);
L3) x ∗ y ≤ z iff x ≤ y → z iff y ≤ x  z, for all

x, y, z ∈ L.
For x ∈ L, we denote x → 0 by ¬x and denote x  0

by ∼ x.
A non-commutative residuated lattice L is called to be

involutive, if ¬ ∼ x =∼ ¬x = x, for all x ∈ L.

II.1 Proposition. ([1]) Let L be a non-commutative residu-
ated lattice. For all x, y, z ∈ L, then

1) x ≤ y iff x → y = 1 iff x y = 1.
2) x → y ≤ (y → z)  (x → z); x  y ≤ (y  z) →

(x z).
3) x ≤ y implies y → z ≤ x → z and y  z ≤ x  z.

Particularly, x ≤ y implies ¬y ≤ ¬x and ∼ y ≤∼ x.
4) x ∗ (x y) ≤ x ∧ y; (x → y) ∗ x ≤ x ∧ y;
5) x∗ ∼ x = 0 = ¬x ∗ x.
6) x∗y = 0 iff x ≤ ¬y iff y ≤∼ x; Particularly, x ≤∼ ¬x

and x ≤ ¬ ∼ x.

II.2 Definition. ([1]) Let (L,
∩
,
∪
, ∗,→, , 0, 1) be a non-

commutative residuated lattice and G,H be maps of L

into itself. We call (L, G,H) a tensor non-commutative
residuated lattice, if the following conditions are satisfied:

TRL1) G(1) = 1,H(1) = 1.
TRL2) G(x → y) ≤ G(x) → G(y), G(x  y) ≤

G(x)  G(y), H(x → y) ≤ H(x) → H(y), H(x  
y) ≤ H(x) H(y).

TRL3) x ≤ GP¬(x)∧GP∼(x), x ≤ HF¬(x)∧HF∼(x),
where

P¬(x) = ¬H(∼ x), P∼(x) =∼ H(¬x),

F¬(x) = ¬G(∼ x), F∼(x) =∼ G(¬x).

II.3 Definition. Let (L, G,H) be a tensor non-commutative
residuated lattice. We call (L, G,H) to be a strong tensor
non-commutative residuated lattice, if G(0) = H(0) = 0.

In fact, G and H are strong tense operators on L in
Example 1 in [1] (or see [15]).
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II.4 Proposition. ([1]) Let (L,
∩
,
∪
, ∗,→, , 0, 1) be a

non-commutative residuated lattice. For all x, y ∈ L, the
following conditions are satisfied.

1) x ≤ y implies G(x) ≤ G(y), H(x) ≤ H(y), F¬(x) ≤
F¬(y), F∼(x) ≤ F∼(y), G¬(x) ≤ G¬(y), G∼(x) ≤
G∼(y).

2) G(x) ∗G(y) ≤ G(x ∗ y), H(x) ∗H(y) ≤ H(x ∗ y).

II.5 Proposition. Let (L,
∩
,
∪
, ∗,→, , 0, 1) be a non-

commutative residuated lattice and G,H be maps of L into
itself. Then (L, G,H) is a strong tensor non-commutative
residuated lattice if and only if

STRL1) G(0) = 0,H(0) = 0, G(1) = 1,H(1) = 1.
STRL2) x ≤ y implies G(x) ≤ G(y) and H(x) ≤ H(y);

G(x) ∗G(y) ≤ G(x ∗ y), H(x) ∗H(y) ≤ H(x ∗ y).
STRL3) x ≤ GP¬(x)∧GP∼(x), x ≤ GF¬(x)∧GF∼(x),

where

P¬(x) = ¬H(∼ x), P∼(x) =∼ H(¬x),

F¬(x) = ¬G(∼ x), F∼(x) =∼ G(¬x).

Proof: =⇒: By Definition II.3 and Proposition II.4, we
get the desired result.
⇐=: We only need to prove TRL2). For all x, y ∈ L, we

have (x → y) ∗ x ≤ y by Proposition 2.1 4). Hence,

G(x → y) ∗G(x) ≤ G((x → y) ∗ x) ≤ G(y).

This implies G(x → y) ≤ G(x) → G(y).
Similarly, we can get G(x y) ≤ G(x) G(y);H(x →

y) ≤ H(x) → H(y); H(x → y) ≤ H(x) → H(y).

II.6 Lemma. Let (L,
∩
,
∪
, ∗,→, , 0, 1) be a strong tensor

non-commutative residuated lattice. For all x, y ∈ L, the
following conditions are satisfied.

1) G(¬x) ≤ ¬G(x), G(∼ x) ≤∼ G(x), H(¬x) ≤
¬H(x), H(∼ x) ≤∼ H(x).

2) P¬(¬x) ≥ P∼(x), P∼(∼ x) ≥∼ P¬(x), F¬(¬x) ≥
¬F∼(x), F∼(∼ x) ≥∼ F¬(x).

Proof: 1) By (x → 0) ∗ x ≤ 0, we have

G(x → 0) ∗G(x) ≤ G((x → 0) ∗ x) ≤ G(0).

Hence, G(¬x) ≤ ¬G(x).
Similarly, G(∼ x) ≤∼ G(x), H(¬x) ≤ ¬H(x), H(∼

x) ≤∼ H(x).
3) Using Proposition II.3, we get P¬(¬x) = ¬H(∼ ¬x) ≥

¬ ∼ H(¬x) = ¬P∼(x).
Similarly, we have P∼(∼ x) ≥∼ P¬(x), F¬(¬x) ≥

¬F∼(x), F∼(∼ x) ≥∼ F¬(x). �
Notation Let (L,

∩
,
∪
, ∗,⇒, 0, 1) be a non-commutative

residuated lattice. The following condition

∀ x, y ∈ L, ¬y ≤ ¬x ⇔ x ≤ y ⇔∼ y ≤∼ x.

is denoted by (C).
If L is involutive, then L satisfies condition (C).

II.7 Proposition. Let (L,
∩
,
∪
, ∗,→, , 0, 1) be a non-

commutative residuated lattice with condition (C). For all
x, y ∈ L, we have
P¬G(x) ≤ x, P∼G(x) ≤ x, F¬H(x) ≤ x, F∼H(x) ≤ x.

Proof: By D4) of Definition II.2, we have

¬x ≤ HF¬(¬x) = H(¬G(∼ ¬x)) ≤ H(¬G(x))
≤ ¬ ∼ H(¬G(x)) = ¬P∼(G(x)).

This proves P∼G(x) ≤ x.
Similarly, we have P¬G(x) ≤ x, F¬H(x) ≤ x,

F∼H(x) ≤ x.

III. CHARACTERIZATIONS OF STRONG TENSOR
NON-COMMUTATIVE RESIDUATED LATTICES

In this section, we give some equivalent characterizations
of (strict) strong tensor non-commutative residuated lattices.
Some techniques in [6] are used.

III.1 Theorem. Let L be a non-commutative residuated
lattice with condition (C) and G,H : L −→ L be mappings.
Then the followings are equivalent.

1) (L, G,H) is a strong tensor non-commutative residu-
ated lattice.

2) i) G(x) ∗G(y) ≤ G(x ∗ y),H(x) ∗H(y) ≤ H(x ∗ y).
ii) G has two left adjoints P¬ and P∼ such that P¬(x) =

¬H(∼ x), P¬(1) = 1 P∼(x) =∼ H(¬x), P∼(1) = 1 and H
has two left adjoints F¬ and F∼ such that F¬(x) = ¬G(∼
x), F¬(1) = 1, F∼(x) =∼ G(¬x), F∼(1) = 1, for all
x ∈ L.

Proof: 1) =⇒ 2) Suppose that (L, G,H) is a strong
tensor non-commutative residuated lattice. Then i) is valid
by Proposition II.5.

ii) For all x, y ∈ L, if P¬(x) ≤ y, then we get x ≤
GP¬(x) ≤ G(y) by STRL2) and STRL3). If x ≤ G(y),
then P¬(x) ≤ P¬G(y) ≤ y by Proposition II.4. This proves
that P¬ is a left adjoint of G. It is easy to check that P¬(1) =
¬H(∼ 1) = ¬H(0) = ¬0 = 1. Analogously, P∼ is also a
left adjoint of G and P∼(1) = 1. Similarly, H has two left
adjoints F¬ and F∼ such that F¬(x) = ¬G(∼ x), F¬(1) =
1, F∼(x) =∼ G(¬x), F∼(1) = 1, for all x ∈ L.
2) =⇒ 1) Note that G and H are the right adjoints, we

have that G and H preserve infima and order. Hence, G(1) =
H(1) = 1. This proves that STRL2) holds.

For all y ∈ L, since G(∼ y) ≤ G(∼ y) and G
is right adjoint, we get P∼(G(∼ y)) ≤∼ y. That is,
∼ H(¬G(∼ y)) ≤∼ y. By condition (C), we have
y ≤ H(¬G(∼ y)) = HF¬(y). Similarly, y ≤ HF∼(y),
y ≤ GP¬(y), y ≤ GP∼(y). Hence, STRL3) holds.
¬H(0) = ¬H(∼ 1) = P¬(1) = 1 implies H(0) = 0.

Similarly, G(0) = 0. This proves STRL1).

III.2 Lemma. Let (L, G,H) be a non-commutative residu-
ated lattice. For all ai, bi ∈ L, i ∈ I, we have∧

{ai | i ∈ I} ∗
∧

{bi | i ∈ I} ≤
∧

{ai ∗ bi | i ∈ I}.

Proof: For all i ∈ I,
∧
{ai | i ∈ I} ≤ ai and

∧
{bi | i ∈

I} ≤ bi hold. This concludes the desired result.
A pair (T,R) is called a frame if T is a nonempty set and

R is a binary relation on T.
Let L be a non-commutative residuated lattice and T be

a nonempty set. We denote the set of all mappings from T
to L by LT .

For f, g ∈ LT , define operations on LT by

f ∗ g(x) = f(x) ∗ g(x), (f ∨ g)(x) = f(x) ∨ g(x),

(f ∧ g)(x) = f(x) ∧ g(x), (f → g)(x) = f(x) → g(x).

we can see that LT is a non-commutative residuated lattice
(see [1]).
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Let 0 and 1 be the elements in LT such that 0(x) = 0 and
1(x) = 1, for all x ∈ T.

Similarly to Theorem 3 in [1], we also have the following
theorem.

III.3 Theorem. Let (L, G,H) be a strong tensor non-
commutative residuated lattice and (T,R) be a frame. For
all p ∈ LT , we can define Ĝ, Ĥ : LT → LT as

Ĝ(p)(u) =
∧

{p(v) | uRv},

Ĥ(p)(u) =
∧

{p(v) | vRu}.

Then (LT , Ĝ, Ĥ) is a strong tensor non-commutative resid-
uated lattice.

Proof: By Theorem 3 in [1], we only need to check that
Ĝ(0) = 0, Ĥ(0) = 0, Ĝ(1) = 1 and Ĥ(1) = 1.

III.4 Definition. (L, G,H) is called a strict strong tensor
non-commutative residuated lattice, if for all x, y ∈ L,

G(x → y) = G(x) → G(y),

G(x y) = G(x) G(y),

H(x → y) = H(x) → H(y),

H(x y) = H(x) H(y).

III.5 Lemma. Let (L, G,H) be a strict strong dynamic non-
commutative residuated lattice. For all x ∈ L, we have
G(¬x) = ¬G(x), G(∼ x) =∼ G(x), H(¬x) = ¬H(x),
H(∼ x) =∼ H(x).

Proof: By Definition III.4, we have G(x → 0) =
G(x) → G(0) = G(x) → 0. So G(¬x) = ¬G(x). Similarly,
G(∼ x) =∼ G(x), H(¬x) = ¬H(x), H(∼ x) =∼ H(x).

III.6 Theorem. If L is a non-commutative residuated lattice
with condition (C), G,H : L → L are mappings. Then the
following conditions are equivalent.

1) (L, G,H) is a strict strong tensor non-commutative
residuated lattice.

2) G and H satisfy the following properties:
i) G(0) = H(0) = 0.
ii) G is both a left adjoint and a right adjoint to H.
iii) G(x → y) = G(x) → G(y), G(x  y) = G(x)  

G(y).
iv) H(x → y) = H(x) → H(y), H(x  y) = H(x)  

H(y).

Proof: 1) =⇒ 2) : i) By Definition II.3, we obviously
have G(0) = H(0) = 0.

ii) For all x, y ∈ L, if x ≤ G(y), By Proposition II.7 we
get P¬(x) ≤ y, i.e. ¬H(∼ x) ≤ y ≤ ¬ ∼ y. This implies
∼ y ≤ H(∼ x) =∼ H(x). Hence H(x) ≤ y. Conversely, if
H(x) ≤ y, we have

∼ y ≤∼ H(x) = H(∼ x) ≤∼ ¬H(∼ x) =∼ P¬(x).

Then P¬(x) ≤ y. By Theorem III.1 again, x ≤ G(y) holds.
Hence, G is a right adjoint to H. Similarly, we can prove
that H is also a right adjoint to G.

iii) and iv) are obvious.
2) =⇒ 1) : Since G is a right adjoint, G preserves infima

and G(1) = 1. For all x, y ∈ L, we have G(x) ≤ G(y →

x ∗ y) = G(y) → G(x ∗ y) by x ≤ y → x ∗ y. This implies
G(x) ∗ G(y) ≤ G(x ∗ y). Similarly, H preserves order and
H(x) ∗H(y) ≤ H(x ∗ y). Then STRL2) holds.

Now, we prove STRL3). For all x ∈ L, we have

H(x) ≤ H(¬ ∼ x) ≤ ¬H(∼ x) = P¬(x).

By H(x) ≤ H(x), then x ≤ GH(x) ≤ GP¬(x). Similarly,
x ≤ GP∼(x), x ≤ HF¬(x), x ≤ HF∼(x).

In the following, we discuss the relation between state
operators on commutative residuated lattice L and state
operators on LT .

III.7 Definition. ([10]) Let (L,
∩
,
∪
, ∗,→, 0, 1) be a resid-

uated lattice and τ : L −→ L a map. If the following
conditions are satisfied

1) τ(0) = 0,
2) x → y = 1 =⇒ τ(x) → τ(y) = 1,
3) τ(x → y) = τ(x) → τ(x ∧ y),
4) τ(x ∗ y) = τ(x) ∗ τ(x → (x ∗ y)),
5) τ(τ(x) ∗ τ(y)) = τ(x) ∗ τ(y),
6) τ(τ(x) → τ(y)) = τ(x) → τ(y),
7) τ(τ(x) ∨ τ(y)) = τ(x) ∨ τ(y),
8)τ(τ(x) ∧ τ(y)) = τ(x) ∧ τ(y),
for all x, y ∈ L, then τ is called to be a state operator on

L.

The following proposition is Proposition 3.5 in [10], which
is useful.

III.8 Proposition. ([10]) Let L be a residuated lattice and
τ : L −→ L a state operator on L. We have

1) τ(1) = 1,
2) x ≤ y implies τ(x) ≤ τ(y).

For x, y ∈ L, we have x ≤ y ⇐⇒ x → y = 1 ([1]).

III.9 Theorem. If τ : L −→ L is a state operator on L,
the mapping τ̄ : LT −→ LT defined by τ̄(f) = τf is also a
state operator on LT .

Proof: 1) Obviously, τ̄(0) = 0.
2) For f, g ∈ LT , if f → g = 1, we have f ≤ g. For
every x ∈ L, we get τf(x) ≤ τg(x) by Proposition III.8. It
concludes that τ̄(f) ≤ τ̄(g). That is, τ̄(f) → τ̄(g) = 1.

3)

cτ̄(f → g)(x) = τ(f → g)(x)

= τ(f(x) → g(x))

= τf(x) → τ(f(x) ∧ g(x))

= τf(x) → τ(f ∧ g)(x)

= (τ̄ → τ̄(f ∧ g))(x).

Therefore, τ̄(f → g) = τ̄(f) → τ̄(f∧g). Similarly, we have

τ̄(f) ∗ g) = τ̄(f) ∗ τ̄(f → f ∗ g),

τ̄(τ̄(f) ∗ τ̄(g)) = τ̄(f) ∗ τ̄(g),

τ̄(τ̄(f) → τ̄(g)) = τ̄(f) → τ̄(g),

τ̄(τ̄(f) ∧ τ̄(g)) = τ̄(f) ∧ τ̄(g),

τ̄(τ̄(f) ∨ τ̄(g)) = τ̄(f) ∨ τ̄(g).

Hence, τ̄ is a state operator on LT .
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IV. REPRESENTATIONS OF STRONG TENSOR
NON-COMMUTATIVE RESIDUATED LATTICES

In this section, we shall give representation theorems for
strong tensor non-commutative residuated lattices and strict
strong tensor non-commutative residuated lattices. Some
proofs are similar to those in [6].

Let P and P
′

be two bounded posets. A map f : P −→ P
′

is called to be morphism, if f preserves order, top element
and bottom element. A map f : P −→ P

′
is called to be

order reflecting, if f is a morphism and

f(x) ≤ f(y) ⇐⇒ x ≤ y, ∀x, y ∈ P.

IV.1 Definition. Let L and L
′

be two non-commutative
residuated lattices. A map f : L −→ L

′
is called a semi-

morphism from L into L
′
, if f satisfies the followings:

1) f preserves order.
2) f(x) ∗ f(y) ≤ f(x ∗ y), ∀x, y ∈ L.
3) f(0) = 0, f(1) = 1.

A semi-morphism f : L −→ L
′

is called to be strict, if
for all x, y ∈ L,

f(x → y) = f(x) → f(y), f(x y) = f(x) f(y).

If f is a strict semi-morphism, for all x ∈ L, we have

f(¬x) = ¬f(x), f(∼ x) =∼ f(x).

Let S be a set of semi-morphisms from L into L
′
. A

subset T ⊆ S is full, if for x, y ∈ L,

x ≤ y ⇐⇒ t(x) ≤ t(y), ∀t ∈ T.

IV.2 Theorem. Let (L, G,H) be a dynamic non-
commutative residuated lattice with a full set S of semi-
morphisms into a non-commutative residuated lattice C. Then

1) There exists a semi-morphisms set T satisfies the
following conditions:

i) S ⊆ T ;
ii) the map ιTL : (L, G,H) −→ (LT , Ĝ, Ĥ) which sends x

to ιTL(x) is order reflecting, where ιTL(x)(t) = t(x), for all
x ∈ L, t ∈ T.

2) There exists a frame (T,R) satisfies:
for all s, t ∈ T, (s, t) ∈ R iff ∀x ∈ L, s(G(x)) ≤ t(x).

Moreover,
s(G(x)) =

∧
{t(x) | sRt}.

Proof: Let T be the smallest set consisting of semi-
morphisms into C such that S ⊆ T and s ◦ G, s ◦ H ∈ T.
Let R = {(s, t) ∈ T × T | s(G(x)) ≤ t(x)}.

1) For all x, y ∈ L, s ∈ S, we have

x ≤ y =⇒ s ◦G(x) ≤ s ◦G(y), s ◦H(x) ≤ s ◦H(y).

(s◦G)(x)∗ (s◦G)(y) ≤ s◦ (G(x)∗G(y)) ≤ (s◦G)(x∗ y).

s ◦G(0) = s(G(0)) = s(0) = 0,

s ◦G(1) = s(G(1)) = s(1) = 1.

This concludes s ◦G ∈ T.
Similarly, s ◦H ∈ T.
2) For all x, y ∈ L, t ∈ T, since S is a full set and S ⊆ T,

we have

x ≤ y ⇐⇒ t(x) ≤ t(y) ⇐⇒ ιTL(x)(t) ≤ ιTL(y)(t)
⇐⇒ ιTL(x) ≤ ιTL(y).

Hence, ιTL is order reflecting.
Since (ιTL(x)∗ ιTL(y))(t) = t(x)∗ t(y) ≤ t(x∗y) = ιTL(x∗

y)(t), we have ιTL(x) ∗ ιTL(y) ≤ ιTL(x ∗ y). Hence, ιTL is an
order reflecting semi-morphisms into C.

3) For all s ∈ T, there is t ∈ T such that ts = s ◦ G.
Therefore,

s(G(x)) = ts(x) ≥
∧

{t(x) | sRt} ≥ s(G(x)).

This implies that ιTL(G(x)) =
∧
{t(x) | sRt}. That is,

ιTL(G(x)) = Ĝ(ιTL(x)). Also, we have

s(G(x)) =
∧

{t(x) | sRt}.

Similarly, we can give the representation theorem for strict
strong non-commutative residuated lattices.

IV.3 Theorem. Let (L, G,H) be a strict strong non-
commutative residuated lattice with a full set S of strict
semi-morphisms into a non-commutative residuated lattice
C and (L satisfy condition (C). Then

1) There exists a strict semi-morphisms set T satisfies the
following conditions:

i) S ⊆ T ;

ii) the map ιTL : (L, G,H) −→ (LT , Ĝ, Ĥ) which sends x
to ιTL(x) is order reflecting, where ιTL(x)(s) = s(x), for all
x ∈ L, s ∈ S.

2) There is a frame (T,R) satisfies:
for all s, t ∈ R, (s, t) ∈ R iff ∀x ∈ L, s(G(x)) ≤ t(x).

Moreover,

s(G(x)) =
∧

{t(x) | sRt},

s(H(x)) =
∧

{t(x) | tRs}.

Proof: Firstly, we show that, if s and t are morphisms,
we have

s(G(x)) ≤ t(x) ⇐⇒ t(H(x)) ≤ s(x), ∀x ∈ L.

For all x ∈ L, suppose s(G(x)) ≤ t(x), then

s(∼ x) ≤ s(◦GP¬(∼ x))) ≤ t(P¬(∼ x)) ≤∼ tP¬(x).

Since P¬(x) = ¬H(∼ x) = ¬ ∼ H(x) ≥ H(x), we have
t(H(x)) ≤ t(P¬(x)), hence,

∼ t(H(x)) ≥∼ t(P¬(x)) ≥ s(∼ x) =∼ s(x).

It follows t(H(x)) ≤ s(x). Similarly, we can prove the other
direction.

Define

R = {(s, t) ∈ T × T | s(G(x)) ≤ t(x)}
= {(s, t) ∈ T × T | t(H(x)) ≤ s(x)}.

Analogously to the above theorem, we can get the desired
result.
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V. CONGRUENCES ON COMMUTATIVE RESIDUATED
LATTICES

There is a bijection correspondence between normal filters
of L and congruences on L. In [1], the author proves that
there is a bijection correspondence between tense normal
filters of L and tense congruences on L. In this section, we
will prove that there is a bijection correspondence between
filters of L and congruences on L when G(x ∗ y) = G(x) ∗
G(y), H(x ∗ y) = H(x) ∗H(y), for x, y ∈ L.

Recall that a filter F of (L, G,H) is called to be a tense
filter, if G(x),H(x) ∈ F, for all x ∈ F.

A congruence θ on (L, G,H) is called to be a tense
congruence, if xθy, then G(x)θG(y) and H(x)θH(y), for
x, y ∈ L.

In paper [14], the author gives the one to one corre-
spondence between the ideals in quasi-Mv algebras and
ideal congruences on quasi-Mv algebras. Inspired this fact,
we will define a relation on L, which can be used to
construct congruences on L. Further, we can give the one
to one correspondence between tense filters in L and tense
congruences on L under certain conditions.

Let F be a subset of L. The relation C(F ) on L is defined
as following: for x, y ∈ L,

xC(F )y ⇐⇒
G(x → y) ∧G(y → x),H(x → y) ∧H(y → x) ∈ F.(R)

V.1 Proposition. Let (L, G,H) be a tense commutative
residuated lattice such that G(x ∗ y) = G(x) ∗G(y),H(x ∗
y) = H(x)∗H(y) and F be a tense filter of L. The relation
C(F ) is a tense congruence on L.

Proof: 1) Since F is a filter, we have 1 ∈ F. For all
x ∈ L,

G(x) → G(x) = 1 ∈ F

holds. This concludes that C(F ) is reflexive.
2) The symmetry is obvious.
3) Suppose xC(F )y and yC(F )z. We have

G(x → y), G(y → x), G(y → z), G(z → y) ∈ F.

Hence,

cG(x → z) ≤ G((x → y) → (z → y))

≤ G(x → y) → G(z → y) ∈ F.

Similarly, G(z → x) ∈ F. So C(F ) is transitive.
4) Suppose xC(F )y and aC(F )b. We have

x ∗ (x → y) ≤ y, a ∗ (a → b) ≤ b.

Hence,
x ∗ a ∗ (x → y) ∗ (a → b) ≤ y ∗ b.

It concludes that

(x → y) ∗ (a → b) ≤ x ∗ a → y ∗ b.

Then
G(x → y) ∗G(a → b) = G((x → y) ∗ (a → b))

≤ G((x ∗ a) → (y ∗ b)).

By x → y ≤ (x → z) → (y → z), we get

G(x → y) ≤ G(x → z) → (y → z)).

Then (x → z)C(F )(y → z).

5) Suppose xC(F )y. Then G(x → y), G(y → x) ∈ F.
By G(x → y) ≤ G(x) → G(y), we have G(G(x → y)) ≤
G(G(x) → G(y)). Since F is a tensor filter, we concludes
G(G(x → y)) ∈ F and so G(G(x) → G(y)) ∈ F. Similarly,
G(G(y) → G(x)) ∈ F. This proves that G(x)C(F )G(y).

By above, we get that C(F ) is a tense congruence on L.

V.2 Proposition. Let (L, G,H) be a tense commutative
residuated lattice and F be a subset of L. If C(F ) is a
tensor congruence on L, then C(F )(1) is a filter of L.

Proof: For x, y ∈ C(F )(1), we have

G(1) = G(x → 1), G(x) = G(1 → x) ∈ F.

Hence,

G(1 → (x ∗ y)) = G(x ∗ y) = G(x) ∗G(y) ∈ F,

G((x ∗ y) → 1) = G(1) ∈ F.

This implies that x ∗ y ∈ C(F )(1).
If x ∈ CF (1) and x ≤ y, we have (1 → x) ≤ (1 → y)

and so G(1 → x) ≤ G(1 → y) ∈ F. Since G(x → 1) =
G(y → 1) = 1 ∈ F, we get y ∈ CF (1).

V.3 Proposition. Let θ be a tense congruence on (L, G,H).
Then θ(1) is a tense filter.

Proof: Let x, y ∈ θ(1). We have G(x), G(y) ∈ θ(1).
By xθ1, yθ1, we concludes that x ∗ yθ1, i.e. x ∗ y ∈ θ(1).
If x ≤ y and xθ1, then x → yθ1 → y, i.e. 1θy. Hence,

θ(1) is a tensor filter.

V.4 Theorem. Let (L, G,H) be a tense commutative resid-
uated lattice. There is a bijection between the tense filters of
L and tense congruences on L.

Let A be a subset of L. Denote by Fil(A) the filter
generated by A. Ciung [3] proved that

Fil(A) = {x ∈ L | x ≥ a1 ∗ a2 ∗ · · · ∗ an, n ∈ N,
a1, a2, · · · , an ∈ A}.

If F is a filter of L and a ∈ L, then

Fil(F, a) = {x ∈ L | x ≥ (f1 ∗ an1) ∗ (f2 ∗ an2) ∗ · · · ∗
(fm ∗ anm),m ∈ N,n1, n2, · · · , nm ∈ N+,

f1, f2, · · · , fm ∈ F}.
Similar to Proposition 5.1 of [12], we have the following

proposition.

V.5 Proposition. Let L be a tense residuated lattice and
a ∈ L such that G(a) = H(a) = a. Then Fil(F, a) is a
tense filter of L.

Proof: For x ∈ Fil(F, a), there exist y1, y2, · · · , yt ∈ F,
m1,m2, · · · ,mt ∈ N+ such that x ≥ y1 ∗ am1 ∗ y2 ∗ am2 ∗
· · · ∗ yt ∗ amt . Thus

cG(x) ≥ G(y1 ∗ am1 ∗ y2 ∗ am2 ∗ · · · ∗ yt ∗ amt)

≥ G(y1) ∗G(a)m1 ∗G(y2) ∗G(am2) ∗ · · · ∗
G(yt) ∗G(a)mt .

This proves that G(x) ∈ Fil(F, a).
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