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Abstract—This paper is concerned with the periodic solutions
for p−Laplacian differential equation with singular forces of
attractive type. By employing Mawhin’s coincidence degree
theorem and some analytical techniques, some new results on
the existence of periodic solutions are derived. The numerical
results demonstrate the remarkable accuracy and efficiency of
our method compared with other schemes.

Index Terms—Periodic solution, p−Laplacian equation, Con-
tinuation theorem, Singular forces.

I. INTRODUCTION

THE aim of this paper is to consider the solvability
of periodic boundary value problem for p−Laplacian

differential equation with singular forces of attractive type
as follows

(ϕp(x
′(t)))′ + f(x′(t)) + g(t, x(t)) = e(t), (1)

x(0) = x(T ), x′(0) = x′(T ), (2)

where ϕp(s) = |s|p−2s with p > 1, f : R × R → R is
continuous, g : R × (0,+∞) → R is an L2−Cauathéodory
function, g(t, x) is T−periodic with the first variable and can
be singular at x = 0, i.e., g(t, x) can be unbounded as x→
0+. The problem (1)-(2) is of attractive type if g(t, x)→ +∞
for x→ 0+.

In the past few years, there were plenty of results on
the existence of periodic solutions of Duffing, Liénard or
Rayleigh type equation with a singularity, (see [1-8, 11-15]
and the references therein). For example, recently, Zhang [3]
studied the following Liénard equation with singular forces
of repulsive type:

x′′(t) + f(x(t))x′(t) + g(t, x(t)) = 0, (3)

where f : R×R→ R is continuous, g : R× (0,+∞)→ R
is an L2−Cauathéodory function, g(t, x) is T−periodic with
the first variable and can be singular at x = 0, i.e., g(t, x)
can be unbounded as x→ 0+. Equation (3) is repulsive type
if g(t, x)→ −∞ for x→ 0+. Meanwhile, let

ḡ(x) =
1

T

∫ T

0

g(t, x) dt, x > 0.

Assume that

ϕ(t) = lim sup
x→+∞

g(t, x)

x
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exists uniformly a.e. for t ∈ [0, T ]. Where ϕ ∈ C(R, R)
and ϕ(t+ T ) = ϕ(t), ∀t ∈ R.

Assume that the following conditions are satisfied.
(H1) (Balance condition) There exist constants 0 < D1 <
D2 such that if x is a positive continuous T−periodic
function satisfying

1

T

∫ T

0

g(t, x(t)) dt = 0,

then
D1 ≤ x(τ) ≤ D2,

for some τ ∈ [0, T ].
(H2) (Degree condition) ḡ(x) < 0 for all x ∈ (0, D1), and
ḡ(x) > 0 for all x > D2.
(H3) (Decomposition condition) g(t, x) = g0(x) + g1(t, x),
where g0 ∈ C((0,+∞), R) and g1 : [0, T ]× [0, +∞)→ R
is an L2−Carathéodory function, i.e., g1 is measurable
with respect to the first variable, continuous with respect
to the second one, and for any b > 0 there is hb ∈
L2((0, T ); [0, +∞)) such that |g1(t, x)| ≤ hb(t) for a.e.
t ∈ [0, T ] and all x ∈ [0, b].
(H4)(Strong force condition at x = 0)

∫ 1

0
g0(x) dx = −∞.

(H5)(Small force condition at x =∞)

||ϕ+||1 <
√

3

T
, (ϕ+(t) = max(ϕ(t), 0)).

In [3], the following theorem was proved.

Theorem 1. Assume that the conditions (H1)− (H5) are
satisfied. Then Eq. (3) has at least one positive T−periodic
solution.

On the basis of work of Zhang, Wang [4] further studied
periodic solutions for the Liénard equation with a singular-
ity and a deviating argument, which is different from the
literature [2],

x′′(t) + f(x(t))x′(t) + g(t, x(t− σ)) = 0, (4)

where 0 ≤ σ < T is a constant, f : R × R → R is
continuous, g : R × (0, +∞)→ R is an L2−Cauathéodory
function, g(t, x) is T−periodic with the first variable and
can be singular at x = 0, i.e., g(t, x) can be unbounded
as x → 0+. Eq. (4) is repulsive type if g(t, x) → −∞
for x → 0+. By using Mawhin’s continuation theorem, the
authors proved the following theorem.

Theorem 2. Assume that the conditions (H1)− (H4) are
satisfied. If further assumed:
(H ′5) (Small force condition at x =∞)

||ϕ||∞ <
( π
T

)2

.

Then Eq.(4) has at least one positive T−periodic solution.
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Fig. 1: Numerical solutions for Eq. (6)

Inspired by the above mentioned works, in this paper,
we study the existence of positive periodic solution for
p−Laplacian differential equation with singular forces of
attractive type. To the best of our knowledge, there are fewer
papers dealing with the periodic solutions for p−Laplacian
differential equation with singular forces of attractive type in
the literature. By applying Mawhin’s continuation theorem,
we prove the following theorem.

Theorem 3. Assume that the following conditions are
satisfied:
(h1) lim

x→0
inf

t∈[0, T ]
g(t, x) = +∞,

(h2) There exist nonnegative constants m1, m2, f(0) = 0
and α ≤ p− 1 such that

|f(u)| ≤ m1|u|α +m2, ∀u ∈ R.

(h3) There exist constants 0 < D̄1 < D̄2 such that g(t, u)−
e(t) > 0, (t, u) ∈ [0, T ] × (0, D̄1], and g(t, u) − e(t) <
0, (t, u) ∈ [0, T ]× [D̄2, ∞).
Then the problem (1)-(2) has at least one positive T−periodic
solution.

Remark 1. When p = 2, Eq. (1) reduces to the following
second-order differential equation

x′′(t) + f(t, x′(t)) + g(t, x(t)) = 0. (5)

We can construct concrete functions g and f such that all
conditions of Theorem 3 are satisfied. For example, consider
the following equation

x′′(t) + (x′(t))3 − 1

2
(1 + 0.5 sin(1000t))

1

x3(t)
= sin(100t).

(6)
Corresponding to Theorem 3 and (5), we have f(x) = x3,
g(t, x(t)) = − 1

2 + (1 + 0.5 sin(1000t)) 1
x3(t) , e(t) =

sin(1000t), m1 = 1, α = 3, m2 = 1
2 , D̄1 = 0.1,

D̄2 = 2. By using Theorem 3, Eq. (6) has at least one
positive T−periodic solution. It is not difficult to find that
the singular item g0(x) do not include the independent
variables t in Eq. (3) and Eq. (4). But, the singular item
g(t, x) in Eq. (6) has the independent variables t. This
can also be illustrated by numerical simulation. By using
MATLAB (R2013a) toolkit: ode45. Eq. (6) is simulated on
tspan=[90.06, 94.65] with history=[2, 2]. Fig.1 shows that
the equation admits one positive T−periodic solution.

Remark 2. When p 6= 2, We can consider the following

Fig. 2: Numerical solutions for Eq. (7)

equation

(ϕ3(x′(t)))′ + (x′(t))3 − 1

2
− x(t)

+(9 + 0.5 sin(1000t))
1

x17(t)
= sin(1000t). (7)

By Theorem 3 and (1), we have f(x) = x3, g(t, x(t)) =
− 1

2 − x(t) + (9 + 0.5 sin(1000t)) 1
x17(t) , e(t) = sin(1000t),

m1 = 1, α = 3,m2 = 1
2 , D̄1 = 1

2 , D̄2 = 2. According to
Theorem 3, Eq. (7) has at least one positive T−periodic so-
lution. Similarly, Eq. (7) can also be illustrated by numerical
simulation, which is simulated on tspan=[421.7, 422.7] with
history=[1.5, -1.5] see Fig. 2. Therefore, the results achieved
in this paper are significant.

The rest of the paper is organized as follows. In section
II, some necessary definitions and Lemmas are introduced.
In section III, the existence of positive periodic solutions
conditions are presented.

II. PRELIMINARIES

Lemma 1. [9] Let L be a Fredholm operator of index
zero and let N be L−compact on Ω̄. Suppose that the
following conditions are satisfied:
(a1) Lx 6= λNx, ∀(x, λ) ∈ ∂Ω× (0, 1);
(a2) QNv /∈ ImL, ∀x ∈ KerL ∩ ∂Ω;
(a3) deg{JQN, Ω ∩ KerL, 0} 6= 0, where Q : Z → Z is
a projection with ImL = KerQ, J : ImQ → KerL is a
isomorphism with J(θ) = θ, where θ is the zero element of
Z.
Then Lx = Nx has at least one solution in D(L) ∩ Ω̄.

Lemma 2. [10] (Generalized Bellman’s Inequality). Con-
sider the following inequality:

|y(t)| ≤ C +M

∫ t

0

|y(s)|β ds, (8)

where C,M, β are nonnegative constants and t > 0. If β ≤ 1,
then for t ∈ (0, T0], we have |y(s)| ≤ D, where

D =

{
CeMT0 , if β = 1;
(C1−β +MT0(1− β))

1
1−β , if β < 1.

In order to use Mawhin’s continuation theorem, we should
consider the following system:{

x′(t) = ϕq(y(t)),
y′(t) = −f(ϕq(y(t)))− g(t, x(t)) + e(t),

(9)

where ϕq(s) = |s|q−2s, 1
p + 1

q = 1, y(t) = ϕp(x
′(t)).

Obviously, if (x(t), y(t))> is a solution of (9), then x(t)
is a solution of (1)-(2).
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Throughout this paper, let X = Y = {u = (x(t), y(t))> ∈
C(R, R2), u(t) = u(t+T )}, where the norm |u|0 = max{|
x |0, | y |0}, and | x |0= max

t∈[0,T ]
| x(t) |, | y |0= max

t∈[0,T ]
|

y(t) |. It is obvious that X and Y are Banach spaces.
Now we define the operator

L : D(L) ⊂ X → Y,Lu = u′ = (x′(t), y′(t))>,

where D(L) = {u|u = (x(t), y(t))> ∈ C1(R, R2), u(t) =
u(t+ T )}.

Let Z = {u|u = (x(t), y(t))> ∈ C1(R, R × Γ), u(t) =
u(t+ T )}, where Γ = {x ∈ R, x(t) = x(t+ T )}. Define a
nonlinear operator N : Ω̄→ Y as follows:

Nv = (ϕq(y(t)),−f(ϕq(y(t)))− g(t, x(t)) + e(t))
>
,

where Ω ⊂ (X ∩ Z) ⊂ X and Ω is an open and bounded
set. Then problem (1)-(2) can be written as Lv = Nv in Ω̄.

We know

KerL = {u|u ∈ X,u′ = (x′(t), y′(t))> = (0, 0)>},

then x′(t) = 0, y′(t) = 0. Obviously x ∈ R, y ∈ R, thus
KerL = R2, and it is also easy to prove that ImL = {z ∈
Y,
∫ T

0
z(s)ds = 0}. So, L is a Fredholm operator of index

zero.
Let

P : X → KerL, Pv =
1

T

∫ T

0

v(s) ds,

Q : Y → ImQ,Qz =
1

T

∫ T

0

z(s) ds.

Let Kp = L |−1
Kerp∩D(L), then it is easy to see that

(Kpz)(t) =

∫ T

0

G(t, s)z(s) ds,

where
G(t, s) =

{
s−T
T , 0 ≤ t ≤ s;
s
T , s ≤ t ≤ T .

For all Ω such that Ω̄ ⊂ (X ∩ Z) ⊂ X , we have Kp(I −
Q)N(Ω̄) is a relative compact set of X , QN(Ω̄) is a bounded
set of Y . Thus the operator N is L-compact in Ω̄.

III. PROOF OF THEOREM 3

Firstly, let Ω1 = {x ∈ Ω, Lx = λNx,∀λ ∈ (0, 1)}. If
∀λ ∈ Ω1, we have{

x′(t) = λϕq(y(t)),
y′(t) = −λf(ϕq(y(t)))− λg(t, x(t)) + λe(t).

(10)
By substituting y(t) = ϕp(

1
λx
′(t)) into the second equation

of (10), we have

(ϕp(
1

λ
x′(t)))′+λf(

1

λ
x′(t))+λg(t, x(t)) = λe(t), λ ∈ (0, 1)

(11)
Let x(t) be an arbitrary T−periodic solution of (11). Assume
that

x(t1) = max
t∈[0,T ]

x(t), x(t2) = min
t∈[0,T ]

x(t), t1, t2 ∈ [0, T ].

(12)
Then we get

x′(t1) = 0, x′′(t1) ≤ 0. (13)

x′(t2) = 0, x′′(t2) ≥ 0. (14)

From (11), (14), and using (ϕp(x
′(t)))′ = (p −

1)|x′(t)|p−2x′′(t), we obtain

g(t2, x(t2)) = − 1

λ
(ϕp(

1

λ
x′(t2)))′ + e(t) ≤ e(t).

Then from the assumption (h3), we must have that there
exists D̄1 > 0 such that

x(t2) > D̄1. (15)

Similarly, substituting (11) and (13), we can see that there
exist positive D̄2 such that

x(t1) < D̄2. (16)

(15) and (16) implies that x(t) is bounded and

D̄1 < x(t2) ≤ x(t) ≤ x(t1) < D̄2. (17)

Next we show that y(t) is bounded. From the second
equation of (10) and x′(t1) = 0, hence y(t1) = 0. Thus
for any t ∈ [0, T ] such that 0 ≤ t1 ≤ t, by the assumption
(h2), we can write

|y(t)|

=

∣∣∣∣y(t1) +

∫ t

t1

y′(s)ds

∣∣∣∣ =

∫ t

t1

|y′(s)|ds

≤
∫ t

0

|y′(s)|ds

≤
∫ t

0

| − λf(ϕq(y(s)))− λg(s, x(s)) + λe(s)|ds

≤
∫ t

0

|f(ϕq(y(s)))|+ |g(s, x(s))− e(s)|ds

≤
∫ t

0

|f(ϕq(y(s)))|ds+

∫ T

0

|g(s, x(s))− e(s)|ds

≤ T max
t∈[0,T ],x∈(D̄1,D̄2)

|g(t, x)− e(t)|

+Tm2 +m1

∫ t

0

|y(s)|(q−1)αds. (18)

Let D1 = T max
t∈[0,T ],x∈(D̄1,D̄2)

|g(t, x)−e(t)| and β = (q−

1)α = α
p−1 . Then from (18) we get

|y(t)| ≤ D1 +m1

∫ t

0

|y(s)|βds.

Note that 0 ≤ β ≤ 1 since 0 ≤ α ≤ p − 1 from
the assumption (h3). Now from the generalized Bellman’s
inequality (8), we obtain |y(t)| ≤ D2 for all t ∈ [t1, T ],
where

D2 =

{
D1e

m1T , if α = p− 1;

(D
p−1−α
p−1

1 + m1T (p−1−α)
p−1 )

p−1
p−1−α , if α < p− 1.

If 0 ≤ t ≤ t1, we have 0 ≤ t1 ≤ t + T ≤ 2T and from the
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T−periodicity of y(t) and the assumption (h3), we have

|y(t)|

= |y(t+ T )| =
∣∣∣∣y(t1) +

∫ t1

t+T

y′(s)ds

∣∣∣∣
=

∣∣∣∣∫ t1

t+T

y′(s)ds

∣∣∣∣
≤

∫ t+T

t1

|y′(s)|ds

≤
∫ t+T

0

|y′(s)|ds

≤
∫ t+T

0

|λf(ϕq(y(s))) + λg(s, x(s))− e(s)|ds

≤
∫ t+T

0

|f(ϕq(y(s)))|+ |g(s, x(s))− e(s)|ds

≤
∫ t+T

0

|f(ϕq(y(s)))|ds+

∫ 2T

0

|g(s, x(s))− e(s)|ds

≤ 2T max
t∈[0,T ],x∈(D̄1,D̄2)

|g(t, x)− e(t)|+ 2Tm2

+m1

∫ t+T

0

|y(s)|(q−1)αds. (19)

From the above inequality, it follows that for 0 ≤ t ≤ t1,
we have |y(t)| = |y(t + T )| ≤ 2D1 + m1

∫ t+T
0
|y(s)|βds.

This implies that for 0 ≤ t ≤ t1, we have |y(t)| ≤ D3, where

D3 =

{
2D1e

m1T , if α = p− 1;

(2D
p−1−α
p−1

1 + 2m1T (p−1−α)
p−1 )

p−1
p−1−α , if α < p− 1.

Since D2 ≤ D3, the above inequalities imply that

|y|0 := max
t∈[0,T ]

|y(t)| ≤ D3, (20)

which again implies

|x′|0 ≤ Dq−1
3 = D

1
p−1

3 . (21)

Let Ω2 = {u : u ∈ kerL,QNu = 0}. If u ∈ R2 is a
constant vector with{

|y(t)|q−2y(t) = 0,
1
T

∫ T
0

[−f(ϕq(y(t)))− g(t, x(t)) + e(t)]dt = 0.

So y(t) = 0 and by assumption (h2), we can see that there
exist constants M1 > 0 and M2 > 0 such that

M1 < x(t) < M2.

Let us define 0 < A1 = min(M1, D̄1) and A2 =
max(M2, D̄2), then

A1 < x(t) < A2,

which implies Ω2 ⊂ Ω1. Now, if we set Ω = {u : u =
(x, y)> ∈ X,A1 < x < A2, |y|0 < D3 + 1}, then Ω ⊃
Ω1

⋃
Ω2. So from (17) and (20), we see that conditions (a1)

and (a2) of Lemma 1 are satisfied. The remainder is to verify
condition (a3) of Lemma 1. In order to do it, let

z = Kx = K

(
x
y

)
=

(
x− A1+A2

2
y

)
,

then, we have

x = z +

(
A1+A2

2
0

)
.

Define J : ImQ→ KerL is a linear isomorphism with

J(x, y) =

(
y
x

)
,

and define

H(µ, u) = µKu+ (1− µ)JQNu, ∀(u, µ) ∈ Ω× [0, 1].

Then,

H(µ, u) =

(
µx− µ(A1+A2)

2
µy

)
+

1− µ
T

·

(∫ T
0

[−f(ϕq(y(t)))− g(t, x(t)) + e(t)]dt∫ T
0
ϕq(y(t))dt

)
. (22)

Now we claim that H(µ, u) is a homotopic mapping. By
way of contradiction, assume that there exist µ0 ∈ [0, 1] and

u0 =

(
x0

y0

)
∈ ∂Ω such that H(µ0, u0) = 0.

Substituting µ0 and u0 into (22), we have

H(µ0, u0)

=

(
µ0x0 − µ0(A1+A2)

2 Φ
µ0y0 + (1− µ0)ϕq(y0))

)
, (23)

where Φ = −(1− µ0)f(ϕq(y0))− (1− µ0)[g(t, x0)− e(t)].
Since H(µ0, x0) = 0, then we can see that

µ0y0 + (1− µ0)ϕq(y0)) = 0.

Combining with µ0 ∈ [0, 1], we obtain y0 = 0. Thus x0 =
A1 or A2.

If x0 = A1, it follows from (h2) that g(t, x0)− e(t) > 0,
then substituting y0 = 0 into (23), we have

µ0x0 −
µ0(A1 +A2)

2
−(1− µ0)f(ϕq(y0))− (1− µ0)[g(t, x0)− e(t)]

= µ0x0 −
µ0(A1 +A2)

2
− (1− µ0)[g(t, x0)− e(t)]

< µ0(x0 −
(A1 +A2)

2
).

< 0. (24)

If x0 = A2, it follows from (h2) that g(t, x0)− e(t) < 0,
then substituting y0 = 0 into (23), we have

µ0x0 −
µ0(A1 +A1)

2
−(1− µ0)f(ϕq(y0))− (1− µ0)[g(t, x0)− e(t)]

= µ0x0 −
µ0(A1 +A2)

2
− (1− µ0)[g(t, x0)− e(t)]

> µ0(x0 −
(A1 +A2)

2
).

> 0. (25)

Combining with (24) and (25), we can see that
H(µ0, u0) 6= 0, which contradicts the assumption. Therefore
H(µ, u) is a homotopic mapping and u>H(µ, u) 6= 0,
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∀(u, µ) ∈ (∂Ω ∩KerL)× [0, 1]. Then

deg(JQN,Ω ∩KerL, 0)

= deg(H(0, u),Ω ∩KerL, 0)

= deg(H(1, u),Ω ∩KerL, 0)

= deg(Kx,Ω ∩KerL, 0)

=
∑

u∈K−1(0)

sgn|K ′(u)|

= 1 6= 0.

Thus, the condition (a3) of Lemma 1 is also satisfied. So,
by applying Lemma 1, we can conclude that the problem
(1)-(2) has at least one positive T -periodic solution.

REFERENCES

[1] M. Delpino, M. Elgueta, and R. Manásevich, ”A homotopic defor-
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