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Abstract—Managing spatial reservoirs of malaria infection
plays a crucial role in effective disease control. In this paper,
a reservoir of infection refers to one or more interconnected
subpopulations that sustain the epidemic at the level of the
metapopulation to which applying a (linear) control strategy
suffices to eradicate the disease in the whole system. We propose
a numerical method to explain the steps for identifying reser-
voirs of malaria infection within n connected regions with the
explicit movement of human population from the previous theo-
retical results in order to design an efficient computational tool.
Furthermore, we determine the minimal percentage (critical
vaccination fraction) of susceptible individuals in the reservoirs
that should be protected to eliminate malaria. The costs and
cost-effectiveness of malaria control interventions were analysed
considering two strategies of control. (i) protecting the minimal
fraction of susceptible individual; (ii) protecting any fraction
greater than the minimal fraction. Cost-effectiveness analysis
shows that the less cost and more effective strategy is to
vaccinate (or protect) the minimal fraction of susceptible human
in the reservoir of infection to halt outbreak. A numerical
example provides insight into the efficiency of this approach.

Index Terms—Control, Optimization, Metapopulation, Basic
reproductive number, cost-effectiveness analysis.

I. INTRODUCTION

Malaria is a mosquito-borne infections disease caused by
protozoa of the genus plasmodium (parasite). It is estimated
that about 1.5–3 million of people, mostly children, die of
malaria every year [29]. Malaria control requires an inte-
grated approach, including prevention and prompt treatment
[30].

The parasites are transmitted indirectly from human to
human by the bite of infected female mosquitoes of the genus
Anopheles. There is some natural acquired partial immunity
to the pathogen in humans developed after many years of
repeated infections [4], [8], [16], [24].

Models have already been proposed to provide an explicit
framework for understanding malaria transmission dynamics
in human population for over 100 years [6], [10], [20], [22]
and references there in. Human movement has rarely been
taken into account in models. Recently, it was shown that
the role of human movement plays a signif cant role on
disease reemergence and persistence [2], [5], [23]. There
are two standard approaches to study the spatial dynamics
of vector borne disease such as malaria: partial differential
equations [19], [31], [32], [33] and meta-population models
[3], [18], [31]. More precisely, in [3], a metapopulation
malaria model was proposed using SI and SIRS models for
the vectors and hosts, respectively. The mobility of human
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population has been proved to have a signif cant impact
on the epidemic behavior. For example, the impact of the
movement of human population on malaria transmission in
different realistic situations: from rural into urban areas and
colonization of heretofore unused territories was performed.
Using type reproduction numbers approach developed in
[14], [26], the authors identify the reservoirs of infection and
evaluate the effect of control measures. We point out that the
reservoirs of infection remain variously and loosely def ned
in the literature [12], [13], [27], [28]. In this paper, a reservoir
of infection is a subpopulation to which applying a (linear)
control strategy suff ces to eradicate the disease in the whole
system [3], [14], [26]. A reservoir may comprise multiple
connected subpopulation of human and/or mosquitoes. Thus
to reduce or eliminate malaria over time, a control should be
applied simultaneously in the different reservoirs of infection,
but the minimal fraction of susceptible individuals of each
reservoir to be protected is not specif ed, thus a control like
that should be cost a great deal of money. Therefore arise the
following question, what minimal fraction of each group of
the reservoir should be protected to eliminate malaria? This
minimal fraction can be interpreted as the critical vaccination
fraction (fraction of population to vaccinate to halt outbreak).

The main purpose of this paper is threefold: (i) to explain
the steps for identifying reservoirs of malaria infection from
the theoretical results derived in [3] in order to design
an eff cient computational tool; (ii) determine the minimal
percentage of susceptible individuals in the reservoir namely,
those that should be protected to eliminate the malaria
over time in the whole of the region; (iii) analysis the
cost and cost-effectiveness when controlling infection within
the reservoir from the minimal percentage of susceptible
individuals to protect. Cost-effectiveness analysis is very
important because it compares the costs and health effects
of an intervention to assess the extent to which it can be
regarded as providing value for money [1], [25]. This informs
decision-makers who have to determine where to allocate
limited healthcare resources.

II. DESCRIPTION OF MODEL FORMULATION

In this section we give a summary of the model as already
discussed in [3] before to extend it. The space was split
into n geographical regions. For each geographical unity
i, i = 1, . . . , n, human population was divided into three
subclasses: susceptible SH,i(t), infectious IH,i(t) and semi-
immune RH,i(t). Total size of the human population Hi(t) =
SH,i(t)+IH,i(t)+RH,i(t) and the mosquito population into
two subclasses: susceptible SV,i(t) and infectious IV,i(t).
Total mosquito population Vi(t) = SV,i(t)+IV,i(t). Table III
summarizes the model parameters as well as their biological
interpretation and Table I summarizes the state variables.
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TABLE I
THE STATE VARIABLES

State variables for humans

SH,i(t): susceptible class

IH,i(t): infectious class

RH,i(t): semi-immune class

Hi(t): total size of the human population

ΦH,i force of infection from mosquitoes to humans

State variables for mosquitoes

SV,i(t): susceptible class

IV,i(t): infectious class

Vi(t): total mosquito population

ΦV,i: force of infection from humans to mosquitoes

Humans were assumed move from patch to patch but the
movement of mosquitoes was neglected, so humans were
assumed do not change their epidemiological status during
travel. The model was read as follows: for eachi = 1, . . . , n,

dSH,i

dt
= ΛH,i + βH,iRH,i + ρH,iIH,i − µH,iSH,i

− ΦH,iSH,i +
n∑

j=1

mS
ijSH,j −

n∑

j=1

mS
jiSH,i,

dIH,i

dt
= ΦH,iSH,i − ǫH,iIH,i +

n∑

j=1

mI
ijIH,j

−

n∑

j=1

mI
jiIH,i,

dRH,i

dt
= αH,iIH,i − δH,iRH,i +

n∑

j=1

mR
ijRH,j

−

n∑

j=1

mR
jiRH,i,

dSV,i

dt
= ΛV,i − µV,iSV,i − ΦV,iSV,i,

dIV,i

dt
= ΦV,iSV,i − µV,iIV,i

(1)

with initial conditions SH,i(0), SV,i(0) > 0,
IH,i(0), RH,i(0), IV,i(0) ≥ 0, ǫH,i = αH,i + γH,i +
ρH,i + µH,i, δH,i = βH,i + µH,i. In the above formulation,
mπ

ij , π = S, I, R, denote the constant rate of travel of
humans from patchj to patch i, for all i, j = 1, . . . , n,
i 6= j. Mπ = [mπ

ij ], π = S, I, R, is the travel rate matrices.
The matricesMπ, π = S,R, was assumed to be irreducible
andmπ

ii = 0, for π = S, I, R andi = 1, . . . , n. In this paper,
we use the force of infection derived in [6] as follows:

ΦH,i =
aV,iaH,iVi

aV,iVi + aH,iHi

σViHi

IV,i

Vi

, (2a)

ΦV,i =
aV,iaH,iHi

aV,iVi + aH,iHi

(
σHiVi

IH,i

Hi

+ σ̂HiVi

RH,i

Hi

)
.

(2b)

A. Disease free state

An equilibrium solution of system (1) at which there is
no disease in any of the patches is called a disease-free
equilibrium. The local stability of this point is governed by

the basic reproduction number denoted byR0. This latter
is the expected number of secondary cases produced by
a typical infective individual introduced into a completely
susceptible population, in the absence of any control measure
[7]. Next generation approach was used to deriveR0 (see
[9]). When R0 < 1 the infection will die out in the long
run. But if R0 > 1 the infection will be able to spread in a
population. It was shown that when disease induce mortality
is large, a backward bifurcation may occur atR0 = 1, that to
say, reduceR0 below1 is not always sufficient to eliminate
malaria.

B. Reservoir of infection

In this paper, a subgroup of patches is said to be a reservoir
of infection when only targeting a control strategy which
linearly reduce the number of susceptible is sufficient to
eliminate the malaria in the whole of the patches. Define
by Jh = {H1, H2 . . . , Hn} the set of humans population, it
was shown that a control only targeted on human population
was possible to eliminate malaria. In this paper we focus on
a control type targeted only to the human population. A new
next generation operatorMJh

was defined by

MJh
= [RHiHj

]1≤i,j≤n, (3)

whereRHiHj
can be interpreted as the expected number of

secondary infected humans in patchj that would arise from
a single infected human case in patchi, in a situation where
all the patches contain a completely susceptible population.
Moreover we have

ρ(MJh
) < 1 ⇔ R0 < 1 (4)

whereρ(A) is the spectral radius of a matrixA (see [3]
for details).

C. Sufficient condition for a patch to be a reservoir of
infection

In [3], it was shown that if there exists some patchℓ
in the subset{1, 2, . . . , n} such thatRHℓHℓ

≥ 1, then
patch ℓ is an infection reservoir. In this case, we need to
target simultaneously a control to the whole of susceptible
population of the reservoir to eliminate malaria over time.

III. M INIMAL AND EFFICIENT CONTROL

From results obtained in [3], arise the followingquestion:
What minimal fraction of each group of the reservoir should
be protected to eliminate malaria?

Let Jres be the set of reservoirs of infection. From
section II-C, we have

Jres = {ℓ ∈ {1, 2, . . . , n} : RHℓHℓ
≥ 1} (5)

In the sequel, denotes byp the number of patches reservoirs,
it is clear thatp = cardinal(Jres) so that(n− p) represents
the number of un-reservoirs patches whilen is the number
of patches.

From [14], one can define a new next generation matrix
as follows:

MJres
= ET

Jh
MJh

[In − (In − PJh
)MJh

]
−1

EJh
, (6)
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where EJh
and PJh

are, respectively,n × p and n × n

projection matrices satisfying(EJh
)jj = (PJh

)jj = 1 for
j ∈ Jres and (EJh

)jj = (PJh
)jj = 0 otherwise.MJres

is
a p × p matrix satisfyingρ(MJres

) < 1 ⇔ R0 < 1. In the
sequel, we set

MJres
= [Mij ]1≤i,j≤p. (7)

The entries ofMJres
are similar in concept to the entries of

MJh
.

A. Formulation of the objective function

Let S∗
Hℓ

be the number of susceptible individuals within
each patchℓ at the disease free equilibrium,ℓ = 1, . . . , p.
this number is obtained from Theorem (10) in [3].

Let fℓ denotes the fraction of these susceptible that should
be protected in patchℓ. Then, S∗

Hℓ
fℓ (resp.S∗

Hℓ
(1 − fℓ))

represents the number of protected (resp. not protected) in-
dividuals at the disease-free state in the patchℓ, ℓ = 1, . . . , p.

The fraction of susceptible in the whole population is
denoted byF = (f1, f2, . . . , fp) and those who will not need
to be protected is denoted byF = (1−f1, 1−f2, . . . , 1−fp).

From now, one can define a new next generation matrix
with variableF denoted byMJres

(F ) :

MJres
(F ) =




(1 − f1)M11 (1− f2)M12 · · · (1 − fp)M1p

(1 − f1)M21 (1− f2)M22 · · · (1 − fp)M2p

...
...

...
...

(1− f1)Mp1 (1 − f2)Mp2 · · · (1− fp)Mpp




Note that whenF = 0 thenMJres
(F ) = MJres

.

To determine the minimal fractions of susceptible individ-
uals, we set

ρ(MJres
(F )) = 1 ⇔ ρ(MJres

) = 1 ⇔ R0 = 1. (8)

Now, one can formulate the objective function to mini-
mized as follows:

min
0≤F≤1

J (F ) =

p∑

ℓ=1

S∗
Hℓ

fℓ, (9a)

subject to the constraintρ(MJres
(F )) = 1 (9b)

Existence of an unique solution of Eqs (9 can be easily
derived by a similar argument as in [15].

A powerful tool for numerical solving of Eqs (9) is the
method of Lagrange multipliers [17]. In the sequel we denote
by F ∗ = (f∗

1
, . . . , f∗

p )
T the solution of Eq (9).

B. Dynamics of system(1) with control over time

We recall that the minimal control is obtained by solving
Eqs. (9). To test its effect on the dynamic of the system (1),
we define a new force of infection,̂ΦH,i(t), with the value
of the minimal control as follows:

Φ̂H,i(t) =

{
(1− f∗

i )ΦH,i(t) if i ∈ Jres
ΦH,i(t) otherwise.

(10)

for all i = 1, . . . , n. In the above equation,ΦH,i(t) represents
the initial force of infection defined in Eq. (2),Jres repre-
sents the set of reservoirs of infection defined by Eq (5), the
control is only introduced within the reservoir of infection.

C. Analysis of Optimal control

We point out that the minimal control derived in the
previous section is not an optimal control. The minimal
control does not depend on the time, it is constant over time.
An optimal control can be considered when we would like to
apply a prevention depending of the time with a given final
time T for disease eradication as well as budget constraint,
this type of control was already investigated in [35]. In that
case an optimal control problem can be formulated in the set
of the identified reservoirs{1, . . . , p} ⊂ {1, . . . , n} with the
following objective (cost) functional:

J(f) =

p∑

i=1

∫ T

0

(
IH,i(t) +RH,i(t) +

ai

2
f2

i (t)
)
dt

−

p∑

i=1

CiSH,i(T )

(11)

where f = (f1, f2, . . . , fp). IH,i and RH,i represent the
number of infectious and semi-immune in patchi respec-
tively, p is the number of reservoirs patches,(n − p) rep-
resents the number of unreservoirs patches whilen is the
number of patches. The termai

2
f2

i (t) is the cost of prevention
with ai > 0 are the weight factor in the cost of control.
CiSH,i(T ) is the fitness of the susceptible at the end of the
process as a result of the prevention efforts implements for
the patchi = 1, . . . , p. Using a similar argument as in [35]
and under suitable condition one can prove the existence of
an optimal control.

D. Methodology for numerical implementation

Here, we present the steps for numerical implementation.
Step 1:Compute principal next generator matrixK from [3,
Theorem 3].
Step 2:Compute next generator matrix extractedK̃ from [3,
Corollary 1].
Step 3: ComputeMJh

from in [3, Eq. (17)].
Step 4: ComputeMJres

from Eq. (6).
Step 5: Solving Eq. (9) to find minimal control.
Step 6: Solving Eqs. (1) using the minimal control obtained
in step 5 to represent the dynamic of malaria model.

IV. COSTS AND COST-EFFECTIVENESS OF MALARIA

CONTROL FOR TWO STRATEGIES

Cost-effectiveness analysis compares the costs and health
effects of an intervention to assess the extent to which it
can be regarded as providing value for money [1], [25]. This
informs decision-makers who have to determine where to
allocate limited healthcare resources. It is performed in this
section to assess the effectiveness of a control targeted on
the minimal fraction obtained in previous section considering
two strategies of control over a reference periodT − TI ,
whereTI is the initial time for which the control is intro-
duced andT the final time.

Strategy 1 : Protecting the minimal fraction of susceptible
individuals to eliminate malaria in the reservoir of infection
over the periodT − TI .

Strategy 2 : Protection of any fraction of susceptible
individuals greater than the minimal fraction for eradicate
malaria at the same over the periodT − TI .
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To achieve this purpose for our above strategies, we need
to compare the differences between the cost and health
outcome. This is done by calculating the incremental cost
effectiveness ratio (ICER) defined as follows:

ICER =
C∗ − C

HE∗ −HE
(12)

whereHE∗ (resp.HE) denotes the health effect of strategy
1 (resp. strategy 2) andC∗ (resp.C) denotes the present
value (at timet = 1) of costs for the whole project of strategy
1 (resp. strategy 2). A similar method is used in [21].

A. Method to calculate costsC (resp. C∗) for strategy 2
(resp. strategy 1)

Let ctℓ denotes financial cost of protecting one individual
for one unit of timet (here one month) in patchℓ. Because
flS

∗
Hl

is the number of individuals to be protect in patchℓ
then ctℓfℓS

∗
Hℓ

is the total required financial cost to protect
all individuals in patchℓ = 1, . . . , p. It follows that the total
cost allowed to strategy 2 (resp. strategy 1) is given by

Ct =

p∑

l=1

ctlflS
∗
Hl
, and C∗t =

p∑

l=1

ctlf
∗
l S

∗
Hl

t = 1, . . . , T

When cost effectiveness ratios are reported with discounting
of future costs and benefits due to the longer-term imple-
mentation time, if we denote byr s the social discount rate,
we have

C∗ :=

T∑

t=1

C∗t

(1 + r)t−1

and

C :=

T∑

t=1

Ct

(1 + r)t−1
,

B. Method to calculate health effect of strategy 1HE (resp.
of strategy 2HE∗)

HE =
1

T − TI

∫ T

TI

p∑

l=1

S
f
Hl
(t)dt

and

HE∗ =
1

T − TI

∫ T

TI

p∑

l=1

S
f∗

Hl
(t)dt,

where S
f
Hl
(t) denote the number of susceptible at timet

when Φ̂H,i(t) = ΦH,i and S
f∗

Hl
(t) denote the number of

susceptible at time t when̂ΦH,i(t) = (1− f∗
i )ΦH,i.

V. SIMULATION EXPERIMENTS

A. Parameters values

To test the method, we have assumed that the travel rates
of humans depend on the distance between cities. We set

MS = M I = MR =
10−3

n− 1
· [|i − j|], 2 ≤ i, j ≤ n; (13)

the maximum number of mosquito bites a human can receive
per unit time,aH and the number of time one mosquito
would bite humans per unit timeaV are shown in Table II.
The rest of parameters values of model are shown in Ta-
ble III.

TABLE II
THE MINIMAL FRACTION F ∗ AND THE MAXIMAL FRACTION F

DEPENDING OF THE PARAMETERS VALUES OFaH AND aV .

City 1 2 3 4 5 6 7

aH 1.6 2 2.5 1.5 2.1 2.3 1.2

aV 0.6 0.65 0.35 0.4 0.3 0.5 0.2

F ∗ 0 0.6 0.80 0 0.63 0.70 0

F 0 1 1 0 1 1 0

City 8 9 10 11 12 13 14

aH 1.9 1.7 2.4 1.6 2 2.5 1.5

aV 0.55 0.8 0.45 0.6 0.65 0.35 0.4

F ∗ 0.48 0 0.70 0 0.51 0.72 0

F 1 0 1 0 1 1 0

City 15 16 17 18 19 20

aH 2.1 2.3 1.2 1.9 1.7 2.4

aV 0.3 0.5 0.2 0.55 0.8 0.45

F ∗ 0.56 0.65 0 0 0 0.71

F 1 1 0 0 0 1

TABLE III
BASELINE VALUES FOUND IN THE LITERATURE [3], [10], [6], [34]. WE

HAVE ASSUMED THAT THE PARAMETERS ARE IDENTICAL IN ALL THE
PATCHES EXCEPTEDaH,i THAT VARIES FROM A PATCH TO ANOTHER

AND THE RATE OF TRAVELmπ
ij

THAT DEPENDS ON THE DISTANCE

BETWEEN PATCHES.

Symbol Description Values

ΛH,i: recruitment into the susceptible class 0.4

αH,i: rate of progression from the

infectious to the semi-immune class 0.0035

ρH,i: rate of recovery from being infectious 0.035

βH,i: rate of recovery from being semi-immune 5.5× 10−4

γH,i: disease induced death rate 9× 10−5

µH,i: natural death rate 5× 10−4

ΛV,i: recruitment into the susceptible class 500

µV,i : natural death rate 0.04

σHiVi
: probability of transmission from an infect-

ious human to a susceptible mosquito 0.48.

σ̂HiVi
: probability of transmission from a semi-

immune human to a susceptible mosquito 0.048

σViHi
: probability of transmission from an infec-

tious mosquito to a susceptible human 0.022

aH,i: maximum number of mosquito bites

a human can receive per unit time Table II

aV,i: number of times one mosquito would

bite humans per unit time Table II

Mπ : π = S, I, R rate of travel

of humans from patchj to patchi Eq. (13)

B. Results and Discussion

The computation provides the basic reproductive number
value:R0 = 1.3239. That to say, without control, one has
malaria that persists in the human population.

1) Reservoir of infection:Numerical implementation of
the method shown in Appendix allowed to identify the set
of reservoirs shown on Table II and Figure 1. Cities num-
ber 2,3,5,6,8,10,12,13,15,16 and 20 represent the reservoirs
of infection based on the value of the minimal fraction
F ∗ := (f∗

1
, . . . , f∗

20
). Indeed, one considers that a cityℓ is a

reservoir whenf∗
ℓ 6= 0.
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Fig. 1. This figure shows the cities which represent reservoirsof infection
when we use the data in Table III and the algorithm presented in this paper.
Cities number 2,3,5,6,8,10,12,13,15,16 and 20 represent the reservoirs of
infection while cities 1,4,7,9,11,14,17,18,19 are not. Moreover this figure
provides the minimal percentage (i.e.100F ∗, whereF ∗ := (f∗

1
, . . . , f∗

20
)

is shown on Table (II)) of human within each reservoir that should be
protected to eliminate malaria in the whole of the population (human and
mosquitoes).

[(a)]

[(b)]

[(c)]

Fig. 2. Simulation of the evolution over month of the density ofhuman
in infectious class(IH,i) and semi-immune class(RH,i), as well as
the density of infectious mosquitoes(IV,i) for 20 cities when we have
no control measures. Initial condition:SH,i(0) = 500, i = 1, . . . , 20,
IH,1(0) = 10, andIH,i(0) = 0, i=2,. . . , 20;RH,i(0) = 0, i = 1, . . . , 20;
SV,i(0) = 100, i = 1, . . . , 20; IV,i(0) = 0, i = 1, . . . , 20.

2) Dynamics of system (1) with/ or without minimal
control: Figure 2 show the endemicity of malaria without
control. Indeed, Although others cities are not reservoirs of

[(a)]

[(b)]

[(c)]

Fig. 3. Simulation of the evolution over month of the density ofhuman
in infectious class(IH,i) and semi-immune class(RH,i), as well as the
density of infectious mosquitoes(IV,i) for 20 cities when the minimal
percentage of susceptible human shown in Table II are protected 100 months
post-infection. Initial condition:SH,i(0) = 500, i = 1, . . . , 20, IH,1(0) =
10, andIH,i(0) = 0, i=2,. . . , 20;RH,i(0) = 0, i = 1, . . . , 20; SV,i(0) =
100, i = 1, . . . , 20; IV,i(0) = 0, i = 1, . . . , 20.

infection, they are supported by the mobility of infectious and
semi-immune human coming from the reservoirs patches.
This process gives rise an endemic disease in the 20 cities.
When we introduce the minimal percentage to control
malaria after 100 months post-infection, one can see on
Figure 3 the reduction overtime of the disease.

3) Cost-infectiveness results: Numerical cost-
effectiveness analysis was performed by settingTI = 100
months andT = 200 months.

Strategy number of susceptibles Total cost
Strategy 1 7801,2 56422
Strategy 2 7812,3 88000

ICER(1) =
56422

7801, 2
= 7, 2325

and

ICER(2) =
88000− 56422

7812, 3− 7801, 2
= 2844, 8649

The comparison between ICER(1) and ICER(2) shows a
cost saving of 7,2325 for strategy 1 over strategy 2. The
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ICER for strategy 1 indicates the strategy 2 is ”strongly
dominated”. Strategy 2 is then more costly and less effective
than strategy 1. With this result, we therefore conclude that
strategy 1 is the less cost and most effective.

VI. CONCLUSION

In this article, we have extended the model derived in
[3] to give a numerical method to explain the steps for
identifying reservoirs of malaria infection withinn connected
regions with the explicit movement of human population.
This method is intended to design an efficient computational
tool.

In the one hand, we have shown how to determine the min-
imal percentage of susceptible individuals in the reservoirs
that should be protected to eliminate malaria over time in
the whole population. The minimal percentage quantifies the
degree of malaria risk in the reservoirs areas. It is regulated
by the mobility flux of human population between patches.
Thus for the public health decision makers, when datasets on
human migration flux, demographic and epidemic are known,
this method can aid to estimate the minimal percentage of
susceptible individuals to be protected. We have explained
that the minimal percentage is not necessarily an optimal
control but allows to reduce the cost of intervention. It is
constant over time. An optimal control can be considered
when we would like to apply a preventative depending of
the time with a given final timeT for disease eradication as
well as a budget constraint. In that case we have shown how
to formulate such a problem.

In the second hand, the costs and cost-effectiveness of
malaria control interventions is performed considering two
strategies of control: (i) protecting the minimal fraction of
susceptible individual; (ii) protecting any fraction greater
than the minimal fraction. Cost-effectiveness analysis shows
that the less cost and more effective strategy is to pro-
tect the minimal fraction of susceptible individual in the
reservoir of infection. Biologically relevant parameters have
been estimated and used to fulfill numerical simulations of
the model. These simulations was implemented through an
example using Matlab (www.matlab.org). Simulation of the
evolution over month of the density of human in infectious
class(IH,i) and semi-immune class(RH,i), as well as the
density of infectious mosquitoes(IV,i) for 20 cities was
shown on Figure 2-3. Together with the both Figures and
the Cost-infectiveness results, we argue that Strategy (ii) is
then more costly and less effective than strategy (i). With
this result, we therefore conclude that strategy (i) is the
less cost and most effective, namely the minimal fraction
of population to vaccinate (or protect) to halt outbreak is
efficient.

Our study will be useful for spatial vaccination programs
in which optimization methods are needed to minimize the
costs. Moreover thanks to this study, when the datasets on
human migration flux, demographic and epidemic are known,
one can estimate the minimal percentage of susceptible
individuals to be protected. The method developed in this
paper may be allow to the implementation of a software for
monitoring spatio-temporal variations in malaria epidemic
risk.
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