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Abstract—In this paper, we construct a new regularized
Fourier series, that is the Gauss-regularized Fourier series.
Moreover, we find this regularized Fourier series can be used to
compute the Fourier transforms of bandlimited signals. When
the regularization parameter tends to zero, we prove that
this regularized Fourier series is uniform and L2-convergence.
Numerical results demonstrate the superiority of the new
method over some previous methods.

Index Terms—Gauss-regularization, ill-posedness, bandlim-
ited signal, Fourier transform.

I. INTRODUCTION

THE computation of Fourier transforms (see Definition
1.1) of signals is a highly ill-posed problem [1–2]. It

is not reliable to compute the Fourier transforms of signals
by their definitions in practice. Therefore, for computing
Fourier transforms of signals, many regularization methods
were raised [1–5]. In particular, in [2], Chen constructed a
polynomial-regularized Fourier series

f̂pα(ω) = h
∑
k∈Z

f(kh)

1 + 2πα+ 2πα(kh)2
e−ikhωχ[−Ω,Ω](ω),

where α > 0, h = π
Ω , f(kh) = fΩ(kh) + η(kh), {η(kh)}

is the noise |η(kh)| ≤ δ and fΩ ∈ L2(R) is the exact ban-
dlimited signal (see Definition 1.2). Moreover, he gave that
this polynomial-regularized Fourier series is more effective
in controlling the noise than Fourier series when we use it to
compute the Fourier transforms of bandlimited signals. When
the regularization parameter tends to zero, the uniform and
L2-convergence of this regularized Fourier series are proved
by Chen.

In this paper, we construct a new regularized Fourier
series, that is the Gauss-regularized Fourier series

f̂α(ω) = h
∑
k∈Z

f(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω).

Moreover, we find this regularized Fourier series can be used
to compute the Fourier transforms of bandlimited signals.
When the regularization parameter tends to zero, we prove
the uniform and L2-convergence of this regularized Fourier
series. Numerical results demonstrate the Gauss-regularized
Fourier series has the better performance in controlling the
noise than the polynomial-regularized Fourier series when
we used it to compute the Fourier transforms of bandlimited
signals.

Next, we review some definitions, notations and basic
results.
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Definition 1.1: For f ∈ L2(R), the Fourier transform of
f is defined by

f̂(ω) =

∫ +∞

−∞
f(t)e−itωdt. (1)

Definition 1.2: Let f ∈ L2(R), if there exists a positive
Ω such that f̂(ω) = 0 for |ω| > Ω, then f is said to be
Ω-bandlimited.

By Shannon sampling theorem [6–13], the Ω-bandlimited
signal f(x) can be exactly reconstructed from its samples
f(kh) and

f(t) =
∑
k∈Z

f(kh)
sin(Ω(t− kh))

(Ω(t− kh))
, (2)

where h = π
Ω and the series (2) converges both uniformly

on R and in L2(R). By (2) and the time invariance of the
bandlimited signals, it follows that

h
∑
k∈Z
|f(kh)|2 = ‖f‖2L2 , (3)

(For the detail throughout see [13]). Taking the Fourier
transform on both sides of (2), we have

f̂(ω) = h
∑
k∈Z

f(kh)e−ikhωχ[−Ω,Ω](ω).

For any f, g ∈ L2(R), define their convolution

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy.

This paper is organized as follows: In section 2, we give
the convergence property of Gauss-regularized Fourier series,
that is the uniform and L2-convergence. Numerical results
are presented in section 3. Section 4 concludes the paper
with some outlook. Finally, in section 5, we provide proofs
of Theorem 2.1 and Theorem 2.2.

II. THE UNIFORM AND L2-CONVERGENCE OF f̂α

In this section, we will give the convergence property
of Gauss-regularized Fourier series, that is the uniform and
L2-convergence. The following theorem gives the uniform
convergence of Gauss-regularized Fourier series.

Theorem 2.1: Assume that fΩ ∈ L2(R) ∩ L1(R) is Ω-
bandlimited. For each fixed 0 < c < Ω, if the regularization
parameter α = α(δ) satisfies α(δ) → 0 and δ√

α(δ)
→ 0

when δ → 0, then f̂α converges to f̂Ω uniformly on [−Ω +
c,Ω− c] when δ → 0.

Proof: See section 5.
Next, we give L2-convergence of Gauss-regularized

Fourier series.
Theorem 2.2: Assume that fΩ ∈ L2(R) is Ω-bandlimited.

If the regularization parameter α = α(δ) satisfies α(δ)→ 0
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and δ2√
α(δ)

→ 0 when δ → 0, then f̂α converges to f̂Ω in

L2([−Ω,Ω]) when δ → 0.
Proof: See section 5.

III. NUMERICAL RESULTS

In this section, we give some numerical results to show
that the Gauss-regularized Fourier series is more effective in
controlling the noise than the polynomial-regularized Fourier
series when we used it to compute the Fourier transforms of
bandlimited signals.

For a large N , we use the next formulas in practical
computation

f̂α(ω) = h
N∑
−N

f(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω), (4)

f̂pα(ω) = h
N∑
−N

f(kh)e−ikhω

1 + 2πα+ 2πα(kh)2
χ[−Ω,Ω](ω) (5)

and

f̂(ω) = h
N∑
−N

f(kh)e−ikhωχ[−Ω,Ω](ω). (6)

Here f(kh) = fΩ(kh) + η(kh) and {η(kh)} is the noise
|η(kh)| ≤ δ.

Example 3.1: Comparison between different regulariza-
tion methods.

Let

fΩ =
1− cos t

πt2
.

It is easy to see that f̂Ω(ω) = (1−|ω|)χ[−1,1](ω). We choose
the noise that is uniformly distributed in [−0.0025, 0.0025]
and N = 200. Figure 1 shows the result using the Gauss-
regularized Fourier series with α = 0.0001, the result using
the polynomial-regularized Fourier series with α = 0.0001
and the result using the Fourier series. Figure 2 presents
the result using the Gauss-regularized Fourier series with
α = 0.00001, the result using the polynomial-regularized
Fourier series with α = 0.00001 and the result using
the Fourier series. By Figure 1 and Figure 2, the Gauss-
regularized Fourier series has good performance at least
in some cases when we used it to compute the Fourier
transforms of bandlimited signals.

IV. CONCLUSION

Computing the Fourier transforms of bandlimited signals
by Fourier series is an ill-posed problem. As a result, many
regularization methods were raised. In this paper, we present
a new regularized Fourier series, that is the Gauss-regularized
Fourier series. Moreover, we prove the uniform and L2-
convergence of this regularized Fourier series when the reg-
ularization parameter tends to zero. Numerical results show
that the Gauss-regularized Fourier series is more effective
in controlling the noise than the known-regularized Fourier
series (the polynomial-regularized Fourier series) when we
used it to compute the Fourier transforms of bandlimited
signals. Studying other regularization methods is the goal of
future work.
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Fig. 1. Comparison of three algorithms with α = 0.0001. (a) is the result
using Gauss-regularized Fourier series (formula (4)). (b) is the result using
polynomial-regularized Fourier series (formula (5)). (c) is the result using
Fourier series (formula (6)).

V. PROOFS OF THEOREM 2.1 AND THEOREM 2.2

A. Proof of Theorem 2.1

To prove Theorem 2.1, we need the following lemma.
Lemma 5.1: Suppose that g ∈ L2(R) is Ω-bandlimited.

Then for each fixed 0 < c < Ω and for any −Ω + c < ω <
Ω− c, we have∣∣∣∣∣h∑

k∈Z
g(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−
∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

∣∣∣∣2
≤
‖g‖2L2

3hπα
e−c

2/8π2α +
4h‖g‖2L2

π

(∫ +∞

c/4π
√
α

e−t
2

dt

)2

.

Proof: For −Ω+c < ω < Ω−c, by Shannon’s sampling
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Fig. 2. Comparison of three algorithms with α = 0.00001. (d) is the
result using Gauss-regularized Fourier series (formula (4)). (e) is the result
using polynomial-regularized Fourier series (formula (5)). (f) is the result
using Fourier series (formula (6)).

formula (2), we obtain that∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

=
∑
k∈Z

g(kh)

∫ +∞

−∞

sin(Ω(t− kh))

Ω(t− kh)
e−4π2αt2e−itωdt

= h
∑
k∈Z

g(kh)
1

2π
e−iωkhχ[−Ω,Ω](ω) ∗ 1

2
√
πα

e−ω
2/16π2α

= h
∑
k∈Z

g(kh)e−ikhω
1

4π
√
πα

∫ ω+Ω

ω−Ω

e−t
2/16π2αeitkhdt.

Therefore

h
∑
k∈Z

g(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−
∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

= h
∑
k∈Z

g(kh)e−ikhω
(
e−4π2α(kh)2

− 1

4π
√
πα

∫ ω+Ω

ω−Ω

e−t
2/16π2αeitkhdt

)
.

Note that e−4π2α(kh)2 = 1
4π
√
πα

∫ +∞
−∞ e−t

2/16π2αeitkhdt (see
[15]), we have

h
∑
k∈Z

g(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−
∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

= h
∑
k∈Z

g(kh)
e−ikhω

4π
√
πα

(∫ ω−Ω

−∞
e−t

2/16π2αeitkhdt

+

∫ +∞

ω+Ω

e−t
2/16π2αeitkhdt

)
.

Therefore, for ω ∈ [−Ω + c,Ω − c], by Cauchy-Schwarz’s
inequality and the inequality ‖a+ b‖2 ≤ 2

(
‖a‖2 + ‖b‖2

)∣∣∣∣∣h∑
k∈Z

g(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−
∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

∣∣∣∣2
≤ h2

8π3α

(∑
k∈Z
|g(kh)|

∣∣∣∣∣
∫ ω−Ω

−∞
e−t

2/16π2αeitkhdt

∣∣∣∣∣
)2

+
h2

8π3α

(∑
k∈Z
|g(kh)|

∣∣∣∣∫ +∞

ω+Ω

e−t
2/16π2αeitkhdt

∣∣∣∣
)2

≤ h2

8π3α

∑
k∈Z
|g(kh)|2

∑
k∈Z

∣∣∣∣∣
∫ ω−Ω

−∞
e−t

2/16π2αeitkhdt

∣∣∣∣∣
2

+
∑
k∈Z

∣∣∣∣∫ +∞

ω+Ω

e−t
2/16π2αeitkhdt

∣∣∣∣2
)
.

Since ∑
k∈Z,k 6=0

∣∣∣∣∣
∫ ω−Ω

−∞
e−t

2/16π2αeitkhdt

∣∣∣∣∣
2

=
∑

k∈Z,k 6=0

∣∣∣∣∫ +∞

Ω−ω
e−t

2/16π2αe−itkhdt

∣∣∣∣2

=
∑

k∈Z,k 6=0

∣∣∣∣∣ e−itkh−ikh
e−t

2/16π2α

∣∣∣∣+∞
Ω−ω

−
∫ +∞

Ω−ω
e−t

2/16π2α te−itkh

ikh8π2α
dt

∣∣∣∣2
=

∑
k∈Z,k 6=0

∣∣∣∣e−i(Ω−ω)kh

ikh
e−(Ω−ω)2/16π2α

−
∫ +∞

Ω−ω
e−t

2/16π2α te−itkh

ikh8π2α
dt

∣∣∣∣2
≤

∑
k∈Z,k 6=0

2e−(Ω−ω)2/8π2α

(kh)2

+2

∣∣∣∣∫ +∞

Ω−ω
e−t

2/16π2α te−itkh

ikh8π2α
dt

∣∣∣∣2
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≤
∑

k∈Z,k 6=0

[
2e−(Ω−ω)2/8π2α

(kh)2

+
2

(kh8π2α)2

(∫ +∞

Ω−ω
e−t

2/16π2αtdt

)2
]

=
∑

k∈Z,k 6=0

[
2e−(Ω−ω)2/8π2α

(kh)2

+
2

(kh)2

(
e−t

2/16π2α
∣∣∣Ω−ω
+∞

)2
]

=
∑

k∈Z,k 6=0

[
2e−(Ω−ω)2/8π2α

(kh)2
+

2e−(Ω−ω)2/8π2α

(kh)2

]

=
∑

k∈Z,k 6=0

4e−(Ω−ω)2/8π2α

(kh)2

≤
∑

k∈Z,k 6=0

4e−c
2/8π2α

(kh)2
,

then we have∑
k∈Z

∣∣∣∣∣
∫ ω−Ω

−∞
e−t

2/16π2αeitkhdt

∣∣∣∣∣
2

≤
∑

k∈Z,k 6=0

4e−c
2/8π2α

(kh)2
+

(∫ +∞

Ω−ω
e−t

2/16π2αdt

)2

≤
∑

k∈Z,k 6=0

4e−c
2/8π2α

(kh)2
+

(∫ +∞

c

e−t
2/16π2αdt

)2

.

Similarly, we have∑
k∈Z

∣∣∣∣∫ +∞

Ω+ω

e−t
2/16π2αeitkhdt

∣∣∣∣2

≤
∑

k∈Z,k 6=0

4e−c
2/8π2α

(kh)2
+

(∫ +∞

c

e−t
2/16π2αdt

)2

.

Therefore, for ω ∈ [−Ω + c,Ω− c],∣∣∣∣∣h∑
k∈Z

g(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−
∫ +∞

−∞
g(t)e−4π2αt2e−itωdt

∣∣∣∣2
≤ h2

8π3α

∑
k∈Z
|g(kh)|2

 ∑
k∈Z,k 6=0

8e−c
2/8π2α

(kh)2

+2

(∫ +∞

c

e−t
2/16π2αdt

)2
]

=
h

8π3α
‖g‖2L2

 ∑
k∈Z,k 6=0

8e−c
2/8π2α

(kh)2

+2

(∫ +∞

c

e−t
2/16π2αdt

)2
]

=
‖g‖2L2

3hπα
e−c

2/8π2α +
h‖g‖2L2

4π3α

(∫ +∞

c

e−t
2/16π2αdt

)2

=
‖g‖2L2

3hπα
e−c

2/8π2α +
4h‖g‖2L2

π

(∫ +∞

c/4π
√
α

e−t
2

dt

)2

,

the first equality holds by (3).
Proof of Theorem 2.1: Since for any ω ∈ [−Ω+c,Ω−c]

f̂α(ω)− f̂Ω(ω)

= h
∑
k∈Z

(fΩ(kh) + η(kh))e−4π2α(kh)2e−ikhω − f̂Ω(ω)

= h
∑
k∈Z

fΩ(kh)e−4π2α(kh)2e−ikhω

+h
∑
k∈Z

η(kh)e−4π2α(kh)2e−ikhω

−
∫ +∞

−∞
fΩ(t)e−itωdt,

therewith, by Lemma 5.1

|f̂α(ω)− f̂Ω(ω)|

≤
∣∣∣∣∫ +∞

−∞
fΩ(t)e−4π2αt2e−itωdt−

∫ +∞

−∞
fΩ(t)e−itωdt

∣∣∣∣
+

∣∣∣∣∣h∑
k∈Z

η(kh)e−4π2α(kh)2e−ikhω

∣∣∣∣∣
+
‖fΩ‖L2√

3hπα
e−c

2/16π2α

+
2
√
h‖fΩ‖L2√
π

∫ +∞

c/4π
√
α

e−t
2

dt

= I + II +
‖fΩ‖L2√

3hπα
e−c

2/16π2α

+
2
√
h‖fΩ‖L2√
π

∫ +∞

c/4π
√
α

e−t
2

dt,

where

I =

∣∣∣∣∫ +∞

−∞
fΩ(t)

(
1− e−4π2αt2

)
e−itωdt

∣∣∣∣
and

II =

∣∣∣∣∣h∑
k∈Z

η(kh)e−4π2α(kh)2e−ikhω

∣∣∣∣∣ .
We treat I first: Since

∣∣∣fΩ(t)
(

1− e−4π2αt2
)∣∣∣ ≤ |fΩ(t)|

and fΩ(t) ∈ L1(R), by Lebesgue’s dominated convergence
theorem (see [16])

I ≤
∫ +∞

−∞

∣∣∣fΩ(t)
(

1− e−4π2αt2
)∣∣∣ dt→ 0, as α→ 0.

We now treat II: Since

II ≤ h
∑
k∈Z
|η(kh)|e−4π2α(kh)2

≤ hδ
∑
k∈Z

e−4π2α(kh)2

= hδ + 2hδ
+∞∑
k=1

e−4π2α(kh)2

≤ hδ + 2hδ
+∞∑
k=1

∫ k

k−1

e−4π2α(th)2dt

= hδ + 2hδ

∫ +∞

0

e−4π2α(th)2dt

= hδ +
2hδ√
α

∫ +∞

0

e−4π2(th)2dt,

IAENG International Journal of Applied Mathematics, 48:1, IJAM_48_1_06

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



then II converges to 0 uniformly on R if the regularization
parameter α = α(δ) is chosen such that δ√

α(δ)
→ 0 when

δ → 0.
Finally, since

‖fΩ‖L2√
3hπα

e−c
2/16π2α +

2
√
h‖fΩ‖L2√
π

∫ +∞

c/4π
√
α

e−t
2

dt→ 0

when α→ 0, the proof is finished.

B. Proof of Theorem 2.2
Since

f̂α(ω)− f̂Ω(ω)

= h
∑
k∈Z

η(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

−h
∑
k∈Z

fΩ(kh)
(

1− e−4π2α(kh)2
)
e−ikhωχ[−Ω,Ω](ω),

using the inequality ‖a+ b‖2 ≤ 2
(
‖a‖2 + ‖b‖2

)
, we obtain

‖f̂α(ω)− f̂Ω(ω)‖2L2

≤ 2h2

∥∥∥∥∥∑
k∈Z

η(kh)e−4π2α(kh)2e−ikhωχ[−Ω,Ω](ω)

∥∥∥∥∥
2

L2

+2h2

∥∥∥∥∥∑
k∈Z

fΩ(kh)×

(
1− e−4π2α(kh)2

)
e−ikhωχ[−Ω,Ω](ω)

∥∥∥2

L2

= 8Ω2h2
∑
k∈Z

∣∣∣η(kh)e−4π2α(kh)2
∣∣∣2

+8Ω2h2
∑
k∈Z

∣∣∣fΩ(kh)
(

1− e−4π2α(kh)2
)∣∣∣2 .

It follows similar lines of the treatment of II in the proof of
Theorem 2.1 that

8Ω2h2
∑
k∈Z

∣∣∣η(kh)e−4π2α(kh)2
∣∣∣2 → 0,

if the regularization parameter α = α(δ) satisfies

δ2√
α(δ)

→ 0

when δ → 0.
By (3), we have

8Ω2h2
∑
k∈Z

∣∣∣fΩ(kh)
(

1− e−4π2α(kh)2
)∣∣∣2

≤ 8Ω2h2
∑
k∈Z
|fΩ(kh)|2

= 8Ω2h‖f‖2L2 <∞.

Using Lebesgue’s dominated convergence theorem

8Ω2h2
∑
k∈Z

∣∣∣fΩ(kh)
(

1− e−4π2α(kh)2
)∣∣∣2 → 0

when α → 0. Hence we obtain ‖f̂α(ω) − f̂Ω(ω)‖L2 → 0 if
the regularization parameter α = α(δ) is chosen such that
α(δ) → 0 and δ2√

α(δ)
→ 0 when δ → 0. This finishes the

proof.
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