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Abstract—In this paper, we investigate the behavior of a
modified Burger’s equation in the form

ut + (c+ bu)ux = (µ0 + µ1u)uxx,

where c, b, µ0 and µ1 are arbitrary parameters. Numerical
solutions of this problem is obtained by the finite difference
method in FTCS implicit scheme. The results obtained by
advantages of mathematical software are compared between
the numerical solutions and the exact solutions for some given
initial and boundary conditions.

Index Terms—Burger’s equation, FTCS implicit scheme,
finite difference method.

I. INTRODUCTION

BURGER’S equation is a nonlinear partial differential
equation, describing an evolutionary process in which

a convective phenomenon is in balance with a diffusive
phenomenon. The complete nonlinear Burger’s equation is
given by [13]

∂u

∂t
+ u

∂u

∂x
= µ0

∂2u

∂x2
, (x, t) ∈ D, (1)

where u is fluid velocity, µ0 is viscosity coefficient and D
is a continuous domain.
Equation (1) is a parabolic PDE, which can serve as a model
equation for the boundary-layer equations. For the steady
boundary-layer and ”parabolized” Navier-Stokes equation,
the independent variables t and x can be replaced by x and
y, respectively to give

∂u

∂x
+ u

∂u

∂y
= µ0

∂2u

∂y2
, (x, y) ∈ D, (2)

where x, y are the marching direction. For simplicity, the
linear Burger’s equation

∂u

∂t
+ c

∂u

∂x
= µ0

∂2u

∂x2
, (3)

is often used in place of equation (1). Note that if c = 0,
equation (3) represents the heat equation. The exact steady-
state solution of equation (3) with the boundary conditions,

u(0, t) = u0 ≡ constant, (4)

u(l, t) = 0, (5)

is given by

u = u0

{
1− exp[Rl(

x
l − 1)]

1− exp(−Rl)

}
, (6)
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where

Rl =
cl

µ0
.

The exact unsteady solution of equation (3) and the initial
condition [13] can be expressed as

u(x, 0) = sin(kx),

where k is a constant. The periodic boundary condition is
given by

u(x, t) = exp(−k2µ0t)sink(x− ct). (7)

Equations (1) and (3) can be combined into a generalized
equation as

ut + (c+ bu)ux = µ0uxx, (8)

where c and b are free parameters. Note that if b = 0, the
linear equation is obtained. Moreover if c = 0 and b = 1,
the nonlinear Burger’s equation is obtained. For the case that
c = 1

2 and b = −1, the generalized Burger’s equation has
the stationary solution

u = −c
b

[
1 + tanh

c(x− x0)

2µ0

]
. (9)

Hence, if the initial distribution of u is given by equation
(9), the exact solution does not vary with time but it remains
fixed at the initial distribution. Additional exact solution of
Burger’s equation can be found by Platzman (1972), which
describes 35 different exact solutions.
Equation (8) can be put into conservative form

ut + F x = 0, (10)

where F is defined by

F = cu+
bu2

2
− µ0ux. (11)

Alternatively, equation (8) can be rewritten as

ut + Fx = µ0uxx, (12)

where F is defined by

F = cu+
bu2

2
. (13)

For the linearized case (b = 0), F is reduced into

F = cu.

In 2010, Blandin et al [1] considered the problem of sta-
bilization of the inviscid Burgers equation using boundary
conditions. Wu [2] suggested a fractional Lie group method
to solve fractional partial differential equation. A time-
fractional Burgers equation is used as an example to illustrate
the effectiveness of the Lie group method and a few classes
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of the exact solution were obtained. Pandey and Verma [3]
generated the numerical solutions of the Burger’s equation by
applying the Crank-Nicolson method directly to the Burger’s
equation.

In 2012, Jiwari [4] used uniform Haar wavelet and the
quasilinearization process to propose for the numerical sim-
ulation of time dependent nonlinear Burgers equation. The
following year, the study of a fractional Burgers equation
arising in nonlinear acoustics was presented by Lombard, et
al [5].

In 2014, Wongsaijai et al [6] proposed a compact finite
difference method to solve the Rosenau-RLW equation. A
numerical tool is applied to the model by using a three-level
average implicit finite difference technique.

In 2015, other methods occurred, such as a fourth-order
singly diagonally implicit runge-Kutta method for solving
one-dimensional Burgers’ equation was presented by Deng
and Pan [7]. A hybrid numerical scheme based on the
Euler implicit method and quasilinearization. Uniform Haar
wavelets was developed for the numerical solution of the
Burgers equation by Jiwari [8]. Zhanlav et al [9] proposed
an explicit finite difference scheme to solve the unsteady
Burgers equation. Esen and Tasboza [10] presented a few
numerical examples which supported numerical results for
the time fractional Burgers equation, where various boundary
and initial conditions obtained by collocation method using
cubic B-spline. Bhrawy [11] reported a new space-time
spectral algorithm to obtain an approximate solution for the
space-time fractional Burger’s equation. The algorithm was
based on a spectral shifted Legendre collocation method in
combination with the shifted Legendre operational matrix of
fraction derivatives.

In 2016, Seydaoglu et al [12] used a high order splitting
method to calculate the numerical solution of the Burger’s
equation in one dimensional space with periodic boundary
conditions.

In this work, we study the modified Burger’s equation (8)
with modified coefficient of viscosity as

ut + (c+ bu)ux = (µ0 + µ1u)uxx, (14)

where the parameters c, b, µ0 and µ1 are given. Numerical
solutions of the modified Burger’s equation are obtained by
the finite difference method in FTCS implicit scheme.

II. CONVERGENCE THEORY

Here we consider boundary value problem (BVP) consist-
ing of a partial differential equation with initial and boundary
conditions

Lu = f, in domain D, (15)

and boundary condition is u(x, t) = υ(x, t) for (x, t) ∈ ∂D,
where L is differential operator acting from a space of
continuous functions Ω to a continuous function space H
(L : Ω → H).
We construct the grid Dh ∈ D ∪ ∂D and determine the
linear space of discrete functions Ωh given on grid Dh. Let us
consider a finite difference scheme (FDS) which corresponds
to the BVP (15)

Lhu
h = fh, on Dh, (16)

and boundary condition is

uh(xi, tn) = υh(xi, tn) for (xi, tn) ∈ ∂Dh,

Dh = {(xi, tn)|i = 0,±1,±2, ...,M, n = 0, 1, ..., [T/τ ]− 1} ,

τ is time step, where Lh is difference operator acting from
a discrete function space Ωh to a discrete function space
Hh (Lh : Ωh → Hh). Assuming u is a function of x and t,
we have uni = u(xi, tn) and denote fh, such that

fh =

{
φn
i

ψi
, i = 0,±1,±2, ...,M, n = 0, 1, ..., [T/τ ]− 1,

where φn
i is function on the right hand side of FDS (16)

and ψi is value of initial condition.
To study stability of numerical methods we need to introduce
the norms into the set of discrete functions

∥uh∥Ωh
= maxi,n|uni |,

∥fh∥Hh
= maxi|ψi|+ maxi,n|φn

i |.

Lax’s equivalence theorem [13]
Given a properly posed boundary value problem and a fi-

nite difference approximation to it that satisfies the consistent
condition, stability is the necessary and sufficient condition
for convergence.

1) Consistency: A finite difference representation of a
PDE is said to be consistent [13] if we should be able to
show that the difference between the PDE and its difference
representation vanishes as the mesh is refined, i.e., the
truncation error (T.E.) goes to zero as the mesh size go
to zero. This should always be the case if the order of the
T.E. vanishes under grid refinement.

It is said that FDS (16) approximate with order k of BVP
(15) if

∥T.E.∥Hh
≤ Chk as h→ 0,

where the constant C does not depend on h.
2) Stability: The finite difference scheme defined by (16)

with linear operator Lh is called stable, if there exist h0 > 0
such that for arbitrary h < h0 and for any discrete function
fh ∈ Hh, the solution of FDS, uh, which satisfies

Lhu
h = fh,

exists uniquely and satisfies the inequality

∥uh∥Ωh
≤ C ∥ fh ∥Hh

, (17)

where the constant C does not depend on h. The scheme
defined by (16) is called stable for (x, t) ∈ D∪ ∂D, if there
exist a constant C independent of h and τ such that

maxi,n|uni | ≤ C[maxi|ψi|+ maxi,n|φn
i |], (18)

i = 0,±1,±2, ..,M, n = 0, 1, ..., [T/τ ]− 1.

The inequality (18) has to hold for any functions ψi and φn
i .

For a particular case when φn
i ≡ 0, we have only necessary

condition for stability.
By Fourier or Von Neumann Analysis [13], we will seek
solution to FDS (16) in the form

uni = λn(α)eIαi, i = 0,±1, ..., n = 0,±1, ..., I =
√
−1
(19)
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where eIαi are eigenvectors corresponding to an eigenvalue
λ and α is a wave number.
Necessary condition for stability of FDS (16) will be true
for all α ∈ R which the following inequality (20) holds

| λ(α) |≤ 1. (20)

III. NUMERICAL RESULTS

This section presents the examples of linear and nonlinear
modified Burger’s equation (14).

A. Linear Burger’s equation
In the modified Burger’s equation (14) if b = 0 and µ1 = 0

is called the linear Burger’s equation and written in the form

ut + cux = µ0uxx (21)

In paper [14], B. Jitsom and et. al presented that the
numerical solution by FTCS implicit scheme converge to an
exact solution. They found that FTCS implicit scheme has
properties of consistency with T.E. =

(
O(∆t, (∆x)2)

)
and

unconditional stability with

λ =
1

1 + 4Qsin2
(
α
2

)
+ IP sinα

,

then

|λ| = 1√[
1 + 4Qsin2

(
α
2

)]2
+ P 2sin2α

≤ 1,

where P = c∆t
∆x and Q = µ0∆t

(∆x)2 .
An example of linear Burger’s equation is shown in problem
A1.
Problem A1 : Let us consider linear Burger’s equation (22)

ut +
1

10
ux =

1

2
uxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. (22)

With initial condition :

u(x, 0) =
1

2

[
1− tanh

{
1

2
(x− 15)

}]
,

and boundary conditions :

u(0, t) =
1

2

[
1− tanh

{
1

2
(15− 1

2
t)

}]
,

u(1, t) =
1

2
[1− tanh(−7− t)] .

Grid system :

Dh = {(xi, tn)|xi = (i− 1)∆x, tn = (n− 1)∆t),

i = 1, 2, ...,M, n = 1, 2, ..., T}.

By FTCS implicit scheme, we have

un+1
i − uni

∆t
+

1

10

un+1
i+1 − un+1

i−1

2(∆x)
−1

2

un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0,

(23)

u0i =
1

2

[
1− tanh

{
1

2
(xi − 15)

}]
,

un1 =
1

2

[
1− tanh

{
1

2
(15− 1

2
tn)

}]
,

unM =
1

2
[1− tanh(−7− tn)] .

The exact solution of (22) with the initial and boundary
conditions is

u(x, t) =
1

2

[
1− tanh

{
1

2
(x− 15− 1

2
t)

}]
. (24)

Table I presents the absolute error between exact and nu-
merical solutions of problem A1 with ∆t = ∆x = 0.05
and the graphs of exact solution and numerical solutions
of linear Burger’s equation for FTCS implicit scheme are
shown in Fig. 1 and Fig. 2 respectively. Moreover, The graph
of absolute error between exact and numerical solutions of
problem A1 is shown in Fig. 3. We can see that maximum
of absolute error occurred at the middle space x in each time
step t.

TABLE I
ABSOLUTE ERROR BETWEEN EXACT AND NUMERICAL SOLUTIONS FOR

PROBLEM A1 WITH ∆t = ∆x = 0.05

t x

0.25 0.50 0.505 0.75
0 0.00 0.00 0.00 0.00

0.10 2.16× 10−4 2.76× 10−4 2.77× 10−4 2.55× 10−4

0.20 3.46× 10−4 4.63× 10−4 4.63× 10−4 4.13× 10−4

0.30 4.28× 10−4 5.81× 10−4 5.81× 10−4 5.11× 10−4

0.40 4.78× 10−4 6.54× 10−4 6.53× 10−4 5.71× 10−4

0.50 5.08× 10−4 6.98× 10−4 6.96× 10−4 6.07× 10−4

0.60 5.24× 10−4 7.23× 10−4 7.21× 10−4 6.27× 10−4

0.70 5.33× 10−4 7.36× 10−4 7.34× 10−4 6.37× 10−4

0.80 5.36× 10−4 7.41× 10−4 7.39× 10−4 6.41× 10−4

0.90 5.36× 10−4 7.41× 10−4 7.39× 10−4 6.41× 10−4

1.00 5.34× 10−4 7.38× 10−4 7.36× 10−4 6.38× 10−4

0
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0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0.97

0.98

0.99

1

x

Exact solutions of linear Burger’s equation

t

U
(x

,t)

Fig. 1. The plot of exact solution for Problem A1 with c = 1/10, b = 0 and
µ0 = 1/2.
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Fig. 2. The plot of numerical solutions for Problem A1 with c = 1/10,
b = 0, µ0 = 1/2, ∆t = 0.05 and ∆x = 0.05.
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Fig. 3. The plot of absolute error between exact and numerical solutions
for Problem A1.

TABLE II
MAXIMUM OF ABSOLUTE ERRORS FOR PROBLEM A1 WITH

∆x = ∆t = 0.05, 0.01, 0.005, 0.001

∆x ∆t Maximum of absolute errors

0.05 0.05 7.162× 10−3

0.01 0.01 7.141× 10−3

0.005 0.005 6.979× 10−3

0.001 0.001 7.178× 10−4

Table II presents the maximum of absolute errors, we can
see that maximum of absolute error goes to zero as the grid
sizes ∆x and ∆t go to zero.

B. Nonlinear Burger’s equations
Nonlinear Burger’s equations are investigated by comparing
the results between numerical solutions in FTCS implicit
scheme and exact solutions. We then study the behaviour
of solutions of modified Burger’s equation (14) as follows,

ut + (c+ bu)ux = (µ0 + µ1u)uxx. (25)

In this work, nonlinear Burger’s equation of 3 cases are
studied as follows,

Case B1 : Nonlinear modified Burger’s equation in
conservative forms with µ1 = 0,

Case B2 : Nonlinear modified Burger’s equation

with 0 ≤ µ1 ≤ 1,
Case B3 : Nonlinear modified Burger’s equation for

stationary solution with µ1 = 0.

Case B1 : Nonlinear modified Burger’s equation in conser-
vative form with µ1 = 0.
We consider nonlinear generalized Burger’s equation (8) in
the conservative form,

ut + Fx = µ0uxx where F = cu+
bu2

2
. (26)

To obtain numerical solutions, we use FTCS implicit scheme
as follows,

un+1
i − uni

∆t
+
Fn
i+1 − Fn

i−1

2∆x
−µ0

un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0.

(27)
Where ∆t = τ and ∆x = h, we have
un+1
i − uni + τ

2h

(
Fn
i+1 − Fn

i−1

)
−µ0τ

h2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
= 0

−µ0τ
h2 u

n+1
i−1 −

(
−1− 2µ0τ

h2

)
un+1
i − 2µτ

h2 u
n+1
i+1

= uni − τ
2h

(
Fn
i+1 − Fn

i−1

)
,

or

aiu
n+1
i−1 − biun+1

i − ciun+1
i+1 = uni +di

(
Fn
i+1 − Fn

i−1

)
, (28)

i = 2, ...,M − 1, n = 1, ..., [T/τ ]− 1,
where

ai = −µ0τ
h2 ,

bi = −1− 2µ0τ
h2 ,

ci =
µ0τ
h2 ,

di = − τ
2h , i = 2, ...,M − 1.

The equation (28) can be written as the system of tridiagonal
matrix, which we can solve these system by the sweep
method.

Problem B1 : Let us consider nonlinear modified Burger’s
equation (29) for c = 0, b = 1, and µ0 = 1

4 ,

ut + uux =
1

4
uxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1. (29)

With initial condition : u(x, 0) = 1
1+e2x ,

and boundary conditions :

u(0, t) =
1

1 + e−t
, u(1, t) =

1

1 + e2−t
.

Grid system :

Dh = {(xi, tn)|xi = (i− 1)∆x, tn = (n− 1)∆t),

i = 1, 2, ...,M, n = 1, 2, ..., T}.

By FTCS implicit scheme, we have

un+1
i − uni

∆t
+
Fn
i+1 − Fn

i−1

2∆x
− 1

4

un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0

(30)
u0i =

1

1 + e2xi
,

un1 =
1

1 + e−tn
, unM =

1

1 + e2−tn
.
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The exact solution of (29) with the initial and boundary
conditions is

u(x, t) =
1

1 + e
2x−t
4µ0

.

Table III presents the absolute error between exact and
numerical solutions for problem B1 with ∆t = ∆x = 0.05
and the graphs of an exact and numerical solutions are shown
in Fig. 4 and Fig. 5 respectively. Moreover, the graph of
absolute errors is shown in Fig. 6. We can see that maximum
of absolute error occurred at the middle space x in each time
step t.

TABLE III
ABSOLUTE ERROR BETWEEN EXACT AND NUMERICAL SOLUTIONS FOR

PROBLEM B1 WITH ∆t = ∆x = 0.05

t x

0.25 0.50 0.505 0.75
0 0.00 0.00 0.00 0.00

0.10 4.91× 10−4 4.08× 10−4 3.67× 10−4 1.92× 10−4

0.20 8.32× 10−4 8.21× 10−4 7.59× 10−4 4.39× 10−4

0.30 1.10× 10−3 1.20× 10−3 1.10× 10−3 7.12× 10−4

0.40 1.30× 10−3 1.60× 10−3 1.50× 10−3 9.91× 10−4

0.50 1.40× 10−3 1.90× 10−3 1.80× 10−3 1.30× 10−3

0.60 1.50× 10−3 2.10× 10−3 2.20× 10−3 1.50× 10−3

0.70 1.60× 10−4 2.30× 10−3 2.30× 10−3 1.80× 10−3

0.80 1.60× 10−3 2.50× 10−3 2.50× 10−3 2.20× 10−3

0.90 1.60× 10−3 2.60× 10−3 2.70× 10−3 2.10× 10−3

1.00 1.50× 10−3 2.70× 10−3 2.70× 10−3 2.30× 10−3

Table IV shows the maximum of absolute errors, we can see
that the maximum of absolute error goes to zero as the mesh
sizes ∆x and ∆t go to zero.
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Fig. 4. The plot of exact solution for Problem B1 with c = 0, b = 1 and
µ0 = 1/4.
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Fig. 5. The plot of numerical solutions for Problem B1 with c = 0, b = 1,
µ0 = 1/4, ∆t = 0.05 and ∆x = 0.05.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1

2

3

x 10
−3

x

Error between exact and numerical solutions  of nonlinear Burger’s equation

t

E
rr

or

Fig. 6. The plot of absolute error between exact and numerical solutions
for Problem B1.

TABLE IV
MAXIMUM OF ABSOLUTE ERRORS FOR PROBLEM B1 WITH ∆x = ∆t

= 0.05, 0.01, 0.005, 0.001

∆x ∆t Maximum of absolute errors

0.05 0.05 1.855× 10−3

0.01 0.01 3.794× 10−4

0.005 0.005 1.902× 10−4

0.001 0.001 3.811× 10−5

Case B2 : Nonlinear modified Burger’s equation with
0 ≤ µ1 ≤ 1.
We consider a modified Burger’s equation (14) in the form,

ut +R(u)ux = S(u)uxx, (31)

where R(u) = c+ bu and S(u) = µ0 + µ1u.
FTCS implicit scheme is used in numerical solution, we get
un+1
i − uni

∆t
+R (uni )

un+1
i+1 − un+1

i−1

2∆x

−S (uni )
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0. (32)

Where ∆t = τ and ∆x = h, we have
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un+1
i − uni +R(uni )

τ
2h

(
un+1
i+1 − un+1

i−1

)
−S(uni ) τ

h2

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
= 0[

−R(uni )
τ

2h
− S(uni )

τ

h2

]
un+1
i−1 −

[
−1− 2S(uni )

τ

h2

]
un+1
i

+
[
R(uni )

τ
2h − S(uni )

τ
h2

]
un+1
i+1 = uni ,

or
aiu

n+1
i−1 − biu

n+1
i + ciu

n+1
i+1 = uni , (33)

i = 2, ...,M − 1, n = 1, ..., [T/τ ]− 1,

where

ai = −R(uni ) τ
2h − S(uni )

τ
h2 ,

bi = −1− 2S(uni )
τ
h2 ,

ci = R(uni )
τ
2h − S(uni )

τ
h2 , i = 2, ...,M − 1.

We can see that equation (33) is the system of tridiagonal
matrix. Numerical solutions are obtained by the sweep
method.

Problem B2 : Let us consider nonlinear modified Burger’s
equation (34) for c = 0, b = 1, µ0 = 1

4 and
0 ≤ µ1 ≤ 1 presents in the form,

ut+uux =

(
1

4
+ µ1u

)
uxx, 0 ≤ x ≤ 1, 0 ≤ t ≤ 10 (34)

With initial condition : u(x, 0) = 1
1+e2x ,

and boundary conditions :

u(0, t) =
1

1 + e−t
, u(1, t) =

1

1 + e2−t
.

Grid system :

Dh = {(xi, tn)|xi = (i− 1)∆x, tn = (n− 1)∆t),

i = 1, 2, ...,M, n = 1, 2, ..., T}.

By FTCS implicit scheme, we have
un+1
i − uni

∆t
+R (uni )

un+1
i+1 − un+1

i−1

2∆x

−S (uni )
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0 (35)

u0i =
1

1 + e2xi
,

un1 =
1

1 + e−tn
, unM =

1

1 + e2−tn
.

Numerical solutions of a nonlinear modified Burger’s equa-
tion (34) at fixed µ1 = 0.5 with vary time 0 ≤ t ≤ 10
are presented in Table V. We found that the numerical
solutions will be increased and converge to 1.00 whereas
time increases. In the case of fixed time, t = 5 and vary
0 ≤ µ1 ≤ 1 are shown in Fig. 7, we can see that the
numerical solutions will be slightly decreased when µ1

increased. The graphs of numerical solutions of nonlinear
modified Burger’s equation for µ1 = 0, 0.1, 0.5, 1.0 are
shown in Fig. 8 - Fig. 11.

TABLE V
NUMERICAL SOLUTIONS OF NONLINEAR MODIFIED BURGER’S

EQUATION (34) AT FIXED µ1 = 0.5 AND 0 ≤ t ≤ 10

x = 0.00 x = 0.25 x = 0.50 x = 1.00

t = 0 0.500000 0.377540 0.268941 0.119202

t = 2 0.880797 0.800901 0.708335 0.500000

t = 5 0.999331 0.985310 0.975615 0.952574

t = 10 0.999954 0.999897 0.999827 0.999664
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Fig. 7. The plot of numerical solutions of a nonlinear modified Burger’s
equation (34) with t=5.
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Fig. 8. The plot of numerical solutions of a nonlinear modified Burger’s
equation (34) at µ1 = 0.

Case B3 : Nonlinear modified Burger’s equation for
stationary solution with µ1 = 0.
We consider a modified Burger’s equation (14) in the form,

ut +R(u)ux = S(u)uxx, (36)

where R(u) = c+ bu and S(u) = µ0 + µ1u.
In case c = 1

2 , b = −1 and µ0 = 1
4 and µ1 = 0. We have,

ut + (
1

2
− u)ux =

1

4
uxx, (37)

FTCS implicit scheme is used in numerical solutions, we
have
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Fig. 9. The plot of numerical solutions of a nonlinear modified Burger’s
equation (34) at µ1 = 0.1.
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Fig. 10. The plot of numerical solutions of a nonlinear modified Burger’s
equation (34) at µ1 = 0.5.
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Fig. 11. The plot of numerical solutions of a nonlinear modified Burger’s
equation (34) at µ1 = 1.0.

un+1
i − uni

∆t
+R (uni )

un+1
i+1 − un+1

i−1

2∆x

−S (uni )
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0 (38)

Problem B3 : Let us consider a nonlinear modified Burger’s
equation (39)

ut + (
1

2
− u)ux =

1

4
uxx, 0 ≤ x ≤ 10, 0 ≤ t ≤ 1. (39)

With initial condition : u(x, 0) = 1
2 (1 + tanh(x− 5)) ,

and boundary conditions : u(0, t) = 0 , u(1, t) = 1.

Grid system :

Dh = {(xi, tn)|xi = (i− 1)∆x, tn = (n− 1)∆t)},

i = 1, 2, ...,M, n = 1, 2, ..., T}.

By FTCS implicit scheme, we get
un+1
i − uni

∆t
+R (uni )

un+1
i+1 − un+1

i−1

2∆x

−S (uni )
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2
= 0. (40)

u0i =
1

2
(1 + tanh(xi − 5)) ,

un1 = 0, unM = 1.

The stationary solution of (39) with initial and boundary
conditions has

u =
1

2
(1 + tanh(x− 5)) .

The graph of a stationary solution and absolute error of
problem B3 at t = 1 are shown in Fig. 12, Fig. 13, Fig.
14 respectively.

TABLE VI
MAXIMUM OF ABSOLUTE ERRORS FOR PROBLEM B3 WITH

∆x = ∆t = 0.05, 0.01, 0.005, 0.001 AT t = 1

∆x ∆t Maximum of absolute errors

0.05 0.05 1.054× 10−3

0.01 0.01 5.742× 10−4

0.005 0.005 7.257× 10−5

0.001 0.001 5.832× 10−8
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Fig. 12. The plot of stationary solutions for Problem B3 with c = 1
2

, b =
−1 and µ0 = 1/4 at t = 1.

Table VI shows the maximum of absolute errors, we can see
that the maximum of absolute error goes to zero as the grid
sizes ∆x and ∆t go to zero.
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Fig. 13. The plot of numerical solution for Problem B3 with c = 1
2
,

b = −1, µ0 = 1/4, ∆t = 0.01 and ∆x = 0.01 at t = 1.
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Fig. 14. The plot of absolute error between stationary and numerical
solutions for Problem B3 at t = 1

IV. CONCLUSION

In this work, we have investigated the modified Burger’s
equation in the form,

ut + (c+ bu)ux = (µ0 + µ1u)uxx, (41)

where the parameters c, b, µ0 and µ1 are given. An example
of the linear Burger’ s equation (21) and the solutions were
computed using the MATLAB program. We have found that
the numerical solutions in the FTCS implicit scheme con-
verge to related exact solutions is agreed with the theoretical
convergence results.

Three cases of the numerical solutions for the nonlin-
ear Burger’s equation were obtained by the FTCS implicit
scheme as follows.

Case B1 : Nonlinear modified Burger’s equation in
conservative form with

c = 0, b = 1, µ0 =
1

4
and µ1 = 0.

In the case, we have found that the numerical solutions
obtained by the FTCS implicit scheme converge to the exact
solution and the maximum of absolute error tends to zero
when the grid sizes ∆x and ∆t close to zero.

Case B2 : Nonlinear modified Burger’s equation with

c = 0, b = 1, µ0 =
1

4
and 0 ≤ µ1 ≤ 1.

In the case, we have fixed time and varied the values of
µ1 in 0 ≤ µ1 ≤ 1. The results showed that the numerical
solutions are slightly decreased when µ1 is increasing. More-
over, when µ1 is fixed, we found that the numerical solutions
are increased and they are converged to 1.00 for all x as t
is increasing.

Case B3 : Nonlinear modified Burger’s equation for
stationary solution with

c =
1

2
, b = −1, µ0 =

1

4
and µ1 = 0.

In this case, we obtained the numerical solutions by the
FTCS implicit scheme. All solutions are converged to the
stationary exact solution.
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