
 

 

Abstract—This paper contributes a numerical method for 

solving a class of fractional convection diffusion equations with 

time-space variable coefficients. By implementing Legendre 

polynomials and also the associated operational matrix, the 

considered equations will be reduced to the corresponding 

systems of algebraic equations, which can be solved by 

computer programming. Also, the error analysis of the 

suggested method to the exact solutions is provided. Finally, 

numerical examples are provided to show the efficiency of the 

presented method. 
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I. INTRODUCTION 

RACTIONAL calculus is a field of science and engineering 

that deals with derivatives and integrals of any arbitrary 

complex or real order. Since many dynamical systems can be 

described by fractional-order equation, fractional calculus 

has drawn the attention of many famous researchers [1-3]. 

During the last 10 years, with the rapid development of 

nonlinear science, fractional theory has developed 

progressively and researchers have found that derivatives and 

integrals of fractional order are suitable for the description of 

various physical phenomena such as control, dampling law, 

acoustic, edge detection, convection diffusion and many 

other problems [4-8]. Fractional calculus of convection 

diffusion equations has been widely considered in recent 

years. Some theoretical works have been done [9,10]. Chang 

and Nieto [11] proved the existence of solutions for a certain 

class of fractional differential inclusions with boundary 

conditions. Stojanovic and Gorenflo [12] proved the 

existence and the uniqueness of a nonlinear two-term time 

fractional diffusion wave problem with Cauchy conditions. 

However, more numerical solutions also are paid attention. 

Lin et al. [13] applied an explicit finite difference method to 

investigate stability and convergence of approximation for 

the variable order nonlinear fractional diffusion equation. 

Zhuang et al. [14] proposed explicit and implicit Euler 
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method for the variable order fractional advection-diffusion 

equation. Meerschaert et al. [15] applied finite difference 

method to solve the numerical solution of fractional equation 

with integrated differential of t . 

In this study, we consider a class of two term time 

fractional convection diffusion equations with time-space 

variable coefficients as following: 
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with initial and boundary conditions 

( ,0) ( ),u x f x                                                              (2) 

(0, ) (1, ) 0,u t u t                                                             (

3) 

where 1 1u t   and 2 2u t 
  are fractional derivative of 

Caputo sense, u x   and u x   are fractional 

derivative Riemann-Liouville sense. Here we assume that 

( , )q x t , ( , ) ( ) ( )c x t a x v t , ( , ) ( ) ( )d x t b x v t are the 

known continuous functions, ( , )u x t is the unknown 

function, 1 2 1 20 , , , , 1      , 1 2   and 

1 2 1   . 

This paper is organized as follows: In section 2, we 

introduce some necessary definitions and mathematical 

preliminaries of fractional theory. In section 3, after 

describing the basic formulation of Legendre polynomials, 

we give the Legendre polynomials matrix of fractional 

integration. In section 4, we derive the solute procession of 

the method. In section 5, we give the error analysis of the 

method. In section 6, we present several results and 

discussion to show the efficiency and simplicity of the 

proposed method. Finally some conclusions are given in 

section 7. 

II. FRACTIONAL CALCULUS 

In this section, we introduce some necessary definitions 

and mathematical preliminaries of fractional calculus theory 

which are required for establishing our results [1]. 

Definition 2.1. The Riemann-Liouville fractional integral 

operator of order  is given by 
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where ( )  denotes gamma function. And its fractional 

derivative of order 0  is defined as 
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Definition 2.2. The Caputo definition of fractional 

differential operator is given by 
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The Caputo fractional derivatives of order  is also defined 

as 
*( )( ) ( )( )n n

t tD u t I D u t  , the relationship between 

Riemann-Liouville operator and Caputo operator is given by: 
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III. LEGENDRE POLYNOMIALS AND THEIR OPERATIONAL 

MATRIX OF THE FRACTIONAL INTEGRATION 

The shifted Legendre polynomials of order i which are 

defined on the interval [0,1] can be given by [16] 
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where 
0 1( ) 1, ( ) 2 1P t P t t    . Now, we define 

( ) 2 1 ( )i iP t i P t                                                               

   (9) 

Any function 
2( ) [0,1)u t L can be expressed by 

Legendre polynomials 

0

( ) ( )i i

i

u t c P t
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 If ( )u t is piecewise constant and approximated as 

piecewise constant, Eq.(10) can be rewritten with finite 

terms, which is  

0
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(11) 

where ( ), ( )i ic u t P t , 0[ , , ]T

mC c c , 

0( ) [ ( ), , ( )]T

mt P t P t  . 

A function 
2( , ) ([0,1] [0,1])u x t L   can be expressed 

in terms of the Legendre basis. In practice, only the first 

( 1) ( 1)n n   term of Legendre polynomials are 

considered. Hence 

0 0
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, 

( ), ( , ), ( )ij i ja P x u x t P t .  

The operational matrix of integration of a vector ( )t is 

defined as 

0
( ) ( )

t

mx dx J t                                                       (13) 

For the vector of Legendre basis polynomials, the operational 

matrix mJ can be written as [17] 
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The fractional integration of vector ( )t can be 

approximated as 

( )( ) ( )t mI t J t                                                          (15) 

where 
mJ

is the Riemann-Liouville fractional operational 

matrix of integration defined in[16] as 

[ ] , 1 , 1m ij m mJ i j m                                           (16) 

where  
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and 

1 1, 1 , 1ij i jB i j m                                                    (18) 

IV. METHOD FOR THE NUMERICAL SOLUTION OF THE 

FRACTIONAL CONVECTION DIFFUSION EQUATIONS WITH 

TIME-SPACE VARIABLE COEFFICIENTS 

In this part, the Legendre polynomials operational matrix 

of fractional order is used to solve Eq.(1). We assume that 
3

2
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x U t

x t


  

 
                                                 

(19) 

where [ ]ij m mU u  is an unknown matrix. By integrating 

Eq.(19) with respect to t , we get 
2
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 By integrating Eq.(20) with respect to x , we obtain 
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Combining Eq.(15), Eq.(20) and Eq.(21), we have 
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By integrating the Eq.(21) with respect to x from 0 to 1, we 

obtain 

0
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Substituting Eq.(3) and Eq.(25) into Eq.(24), we have 
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Similarly, by integrating Eq.(19) with respect to x twice, we 

get 
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Then we have 
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where 1  or 2 . 

The value of 
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Substituting Eq.(3) and Eq.(29) into Eq.(28), we have 
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Substituting Eq.(23), Eq.(26), Eq.(30) into Eq.(1), we have 
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Dispersing Eq.(31) by the points 

( 0.5) /s sx t s m   , 0,1,2, , 1s m  , the 

coefficients ( )a x , ( )b x , ( )v t  and x can be transferred 

into some diagonal matrices as , , ,A V B X , respectively, 

such as 

0

1

1

0 0

0 0

0 0 m

a

a
A
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.  

The function ( , )g x t is also transferred into 

[ ( , )]i j m mG g x t  . Then Eq.(31) can be transformed into a 

Sylvester equation which is solved by computer software. 

Using Eq.(22), we can acquire the approximation of ( , )u x t . 

V. ERROR ANALYSIS 

Suppose that ( , )x t is a bivariate polynomial that 

interpolate ( , )u x t at points ( , )i jx t that defined in Eq.(12), 

we conclude that [18] 
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where , ,   and  are in [0,1] . Let 

[0,1] [0,1]   and 

1 1 2 2
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Theorem 1. Let ( , )u x t be a sufficiently smooth function on 

2[0,1]L that approximated by Legendre polynomial as 

( , ) ( ) ( )u x t x A t   , then an upper bound to estimate 

the error is as 

2

1
( , ) ( ) ( ) 2

2 ( 1)! 2 ( 1)!mE

M
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m m
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Proof. ( , )x t , we can get[16] 
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Using Eq.(33), we can obtain 
2

2

1 1

20 0

2

2

( , ) ( ) ( )

1
2

2 ( 1)! 2 ( 1)!

1
2

2 ( 1)! 2 ( 1)!

E

m

m

u x t x A t

M
dxdt

m m

M

m m

 

  
   

   

  
   

   

 
                   (37) 

Therefore 
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This completes the proof. 

VI. NUMERICAL EXAMPLE 

Example 1: Consider the following space time fractional 

convection-diffusion equation [19] 
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b x a x q x t
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2( ,0) (1 ), 0 1

(0, ) (1, ) 0, 0

u x x x x

u t u t t

   

  
, 

where ( ) (2.8) / 2a x x  , 
0.8( )b x x , 

2 1.2 1.8 2( , ) 2 (1 ) / (2.2) 0.2 (1 )q x t x x t x t     , the 

exact solution is 
2 2( , ) (1 )(1 )u x t x x t   when 

0.8  , 1.5  .  

The comparison between the numerical solutions and the 

exact solution by Legendre polynomials method (LPM, 

0.2t  , 3m  ) and Haar wavelets method (HWM, 

ˆ 64m  ) are shown in Fig.1.  

 

   
Fig. 1. The comparison between Num. sol. and Exa. Sol. of HWM and LPM. 

 

 

 

Table I 

The absolute errors for 0.2t  and different m , m̂ . 

x  
ˆ 16m   2m   ˆ 32m   3m   

HWM LPM HWM LPM 

0.1 4.6e-003 3.5e-008 1.0e-004 1.4e-008 

0.2 2.6e-003 4.1e-008 2.6e-003 3.1e-008 

0.3 1.6e-002 6.0e-007 6.0e-003 7.9e-008 

0.4 8.9e-003 6.8e-006 8.8e-003 9.0e-007 

0.5 1.6e-003 5.3e-006 1.5e-003 4.5e-007 

0.6 7.6e-003 6.3e-008 2.8e-003 2.4e-006 

0.7 3.6e-003 7.2e-007 1.5e-003 8.1e-008 

0.8 1.1e-002 9.4e-008 4.8e-003 8.9e-009 

0.9 1.6e-002 1.0e-005 1.6e-002 1.7e-007 

 

 

We have calculated the absolute errors by using our 

method and Haar wavelets method and tabulated the results 

in the Table I. Through Table I, we can also see that the errors 

are smaller and smaller when m  and m̂ increase, and the 

errors based on our method are less than the errors in 

Ref.[19]. 

From the comparison between two methods for the first 

example, we conclude that Legendre polynomials method is 

more accurate when solving the same equations. 

Example 2: Consider Eq.(1) and choose 1 2 0.5   , 

1 0.8  , 2 0.5  , 0.9  , 1.8  and 

0.9 1.8( ) (3.1) , ( ) (2.2) , ( )a x x b x x v t t     , the 

function 
2 0.2

2 0.5

( , ) (1 ) / (1.2)

(1 ) / (1.5) 2.07 (1 )

q x t x x t

x x t xt t

   

   
 

and 
2( ) (1 )f x x x  . The exact solution of the problem is 

2( , ) (1 )(1 )u x t x x t   . We applied the Legendre 

polynomials method to solve this problem for various values 

of m . The numerical solutions for 3, 4m   and the exact 

solution are shown in Fig. 2, Fig.3 and Fig. 4. 

 

 

 

Fig.2. The numerical solutions for 3m  . 
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Fig.3. The numerical solutions for 4m  . 

 
Fig.4. The exact solution. 

The absolute errors between the exact solution and the 

numerical solution are displayed as follows: 

 
Fig. 5. The absolute error for Example 2 of 3m  . 

 

From Fig. 2-4, we can see clearly that the numerical 

solutions are very good agreement with the exact solution. It 

can be also seen that the proposed method is very efficient 

and accurate for solution of this problem. From Fig. 5, we can 

find that the absolute errors are very tiny and only a small 

number of Legendre polynomials are needed when 3n  . 

VII. CONCLUSION 

In this paper, the authors have proposed a numerical 

algorithm based on Legendre polynomials operational matrix 

to solve a class of two term time fractional 

convection-diffusion equations with initial condition. The 

Legendre polynomials operational matrix of fractional 

integration has been used for transforming the time fractional 

convection-diffusion equation into a Sylvester equation that 

can be solved easily. The error analysis of the method has 

been shown in section 5. The accuracy of the proposed 

method is shown for numerical examples.  
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