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Abstract—A time-dependent water infiltration problem in
homogeneous soil with water absorption is considered. The
problem involves infiltration from periodic trapezoidal chan-
nels. Four different root distributions are incorporated into
the problem. The governing equation of the problem is the
Richards equation, which can be studied more conveniently by
transforming the equation into a modified Helmholtz equation.
The modified Helmholtz equation may be solved numerically
using a Dual Reciprocity Boundary Element Method (DRBEM)
and a predictor-corrector scheme simultaneously. Numerical
results obtained are to give the distribution of matric flux
potential (MFP) and suction potential. The results indicate the
influence of the distance of points from the channels to reach
their steady state values of MFP and suction potential.

Index Terms—dual reciprocity boundary element method,
infiltration, root-water uptake, predictor-corrector, modified
Helmholtz equation.

I. INTRODUCTION

THE study of water infiltration through homogeneous
soil involving single or periodic channels has been

considered by a number of researchers. For instance, Batu
[3], Gardner [6], Mandal and Waechter [11], Philip [12],
and Lobo et. al. [9] considered steady infiltration problems.
Time dependent infiltration problems have been studied by,
for example, Lomen and Warrick [10], Warrick and Lomen
[19], and Clements and Lobo [5].

The infiltration problems are governed by Richards equa-
tions. To study the problems, like other engineering prob-
lems, numerical methods are employed, as analytical meth-
ods may only be applied to solve simple problems. There
are numerical methods that are used to solve engineering
problems. For instance, Finite Difference Method (FDM), Fi-
nite Element Method (FEM), and Boundary Element Method
(BEM). An FDM is used by Wongsaijai et al [20] for
solving the general Rosenau-RLW equation. Hollis et al [7]
employed an FEM to compare the accuracy of the direct
and MDEV inversion algorithms in MR elastography. In this
paper, we solve infiltration problems using a DRBEM.

In this current study, we consider time-dependent infil-
tration problems from periodic trapezoidal channels with
water absorption by plant roots. Four different types of root-
water uptake are incorporated in the problems. To study
the problems, the governing equation of the problems is
transformed into a modified Helmholtz equation using a
set of transformations, including the Laplace transform. A
numerical procedure, DRBEM with a predictor corrector
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scheme, is then applied to solve the modified Helmholtz
equation numerically to provide numerical values of matric
flux potential (MFP) and suction potential.

II. PROBLEM FORMULATION

Study in this paper is a continuation of the study in
Solekhudin [16]. Thus, the problem formulation is similar.
Referred to a cartesian coordinate OXY Z with OZ pos-
itively downward consider a homogeneous soil, Pima Clay
Loam (PCL). On the surface of soil, periodic trapezoidal irri-
gation channels are constructed. The cross-sectional perime-
ter of the channels is 2L. The channels are completely filled
with water. It is assumed that the channels are sufficiently
long, and there is a large number of such channels. Between
two channels, a row of crops, with roots of depth Zm and
width 2Xm, are planted. The distance between two adjacent
rows of plants is 2(L+D). It is assumed that the geometry of
the channels and root zone do not vary in the OY direction
and are symmetric about the planes X = ±k(L + D), for
k = 0, 1, 2, . . .. Hence, flow directions are two dimensions.
The cross section of the geometry of the problem is shown
in Figure 1.
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Fig. 1: Periodic trapezoidal channels with crops.

Since the geometry is symmetrical about X = 0, it is
sufficient to consider a semi infinite region defined by 0 ≤
X ≤ L+D and Z ≥ 0, which is denoted by R bounded by
C = C1 ∪ C2 ∪ C3 ∪ C4 as shown in Figure 2. Fluxes over
the surface of channels are assumed to be constant, that is
v0. On the surface of soil outside the channels, there are no
fluxes across it. The fluxes over X = 0 and X = L + D
are also 0, as the problem symmetric about them. Following
Batu in [3], the derivatives ∂Θ/∂X → 0 and ∂Θ/∂Z → 0
as X2 + Z2 → ∞, where Θ is the Matric Flux Potential
(MFP).
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Fig. 2: Region R bounded by curve C.

Four different types of root-water uptake are considered,
denoted by Root A, Root B, Root C, and Root D. These types
of roots are as reported by Vrugt et al [18]. It is required to
determine the matric flux potential and the suction potential.
A comparison between the MFP from different types of root-
water uptake is presented as well as the suction potentials.

III. BASIC EQUATIONS

Time-dependent infiltration in a homogeneous soil is gov-
erned by Richards equation of the form

∂θ

∂T
=

∂

∂X

(
K
∂ψ

∂X

)
+

∂

∂Z

(
K
∂ψ

∂Z

)
−∂K
∂Z
− S(X,Z, ψ), (1)

where θ is water content in the soil, T is the time of
infiltration, K is the hydraulic conductivity, ψ(X,Z) is the
suction potential, and S is the root-water uptake function.
Here, S is adopted from the model proposed by Vrugt et al
[18], that is

S(X,Z, ψ) = γ(ψ)
Ltβ(X,Z)Tpot

Zm∫
0

L+D∫
L+D−Xm

β(X,Z)dXdZ

, (2)

where Lt is the width of the soil surface associated with
transpiration process, β is the spatial root-water uptake
distribution, Tpot is the transpiration potential, and γ is the
root-water stress response function reported by Utset et al
[17]. The spatial root-water uptake, β, is formulated as

β(X,Z) =

(
1− L+D −X

Xm

)(
1− Z

Zm

)
×e−( pZZm |Z

∗−Z|+ pX
Xm
|X∗−(L+D−X)|),

for L+D −Xm ≤ X ≤ L+D, 0 ≤ Z ≤ Zm,

where pX , pZ , X∗, and Z∗ are fitting parameters.
Using the Kirchhoff transformation

Θ =

ψ∫
−∞

K(t)dt, (3)

where Θ is the MFP, and an exponential relationship between
K and ψ,

K = Kse
αψ, (4)

where Ks is the saturated hydraulic conductivity, Equation
(1) can be written as

∂θ

∂T
=
∂2Θ

∂X2
+
∂2Θ

∂Z2
− α∂Θ

∂Z
− S(X,Z, ψ), (5)

and the suction potential

ψ =
1

α
ln
(αΘ

Ks

)
(6)

Equation (5) can also be written as

1

D(θ)

∂Θ

∂T
=
∂2Θ

∂X2
+
∂2Θ

∂Z2
− α∂Θ

∂Z
− S(X,Z, ψ), (7)

where D(θ) is the diffusivity. In field situations, the diffu-
sivity may be assumed as a constant d [2].

Substituting dimensionless variables

x =
α

2
X; z =

α

2
Z; Φ =

πΘ

v0L
; t =

α2d

4
T

u =
2π

v0αL
U ; v =

2π

v0αL
V ; f =

2π

v0αL
F, (8)

into Equation (7) we obtain

∂Φ

∂t
=
∂2Φ

∂x2
+
∂2Φ

∂z2
− 2

∂Φ

∂z
− γ∗(Φ)s∗(x, z), (9)

where

s∗(x, z) =
2π

αL

ltβ
∗(x, z)

zm∫
0

b∫
b−xm

β∗(x, z)dxdz

Tpot
v0

, (10)

γ∗(Φ) = γ

(
1

α
ln

(
αv0LΦ

πKs

))
,

and

β∗(x, z) =

(
1− b− x

xm

)(
1− z

zm

)
×e−

(
pz
zm
| 2z∗α − 2z

α |+ px
xm

∣∣ 2x∗
α −

2(b−x)
α

∣∣)
. (11)

Here lt = α
2Lt, x

∗ = α
2X
∗, z∗ = α

2Z
∗, xm = α

2Xm,
zm = α

2Zm, px = α
2 pX , pz = α

2 pZ and b = α
2 (L+D).

Now, the suction potential can be written as

ψ =
1

α
ln
(αv0LΦ

πKs

)
(12)

To tansform Equation (9) into a modified Helmholtz
equation, we use the method described in [15], as follows.
We first treat the nonlinear term, γ∗(Φ), as a constant.

Making use of Laplace transform

Φ∗ =

∞∫
0

e−stΦdt, (13)

subject to initial condition

Φ(x, z, 0) = 0, (14)

into Equation (9) yields

sΦ∗ =
∂2Φ∗

∂x2
+
∂2Φ∗

∂z2
− 2

∂Φ∗

∂z
− 1

s
γ∗(Φ)s∗(x, z). (15)

Applying transformation

Φ∗ = φez, (16)

into Equation (15) yields

∂2φ

∂x2
+
∂2φ

∂z2
= (1 + s)φ+

1

s
γ∗(Φ)s∗(x, z). (17)

Equation (17) is a modified Helmholtz equation.
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Using the set of transformations above, the boundary
conditions described in Section II can be written as
∂φ

∂n
=

2π

αLs
e−z − n2φ, on the surface of the channel,

(18)
∂φ

∂n
= −φ, on the surface of soil outside the channel,

(19)
∂φ

∂n
= 0, x = 0 and z ≥ 0, (20)

∂φ

∂n
= 0, x = b and z ≥ 0, (21)

∂φ

∂n
= −φ, 0 ≤ x ≤ b and z =∞. (22)

The term n2 in Boundary condition (18) is the vertical
component of normal vector pointing out region R.

An integral equation for solving Equation (17) is

λ(ξ, η)φ(ξ, η, s) =

∫∫
R

ϕ(x, z; ξ, η)
[
(1 + s)φ(x, z, s)

+
1

s
γ∗(φ)s∗(x, z)e−z

]
dx dz

+

∫
C

[
φ(x, z, s)

∂

∂n

(
ϕ(x, z; ξ, η)

)
−ϕ(x, z; ξ, η)

∂

∂n

(
φ(x, z, s)

)]
ds,

(23)

where ϕ(x, z; ξ, η) = 1
4π ln[(x − ξ)2 + (y − η)2] is the

fundamental solution of Laplace equation, and

λ(ξ, η) =

{
1/2 , for (ξ, η) on smooth part of C
1 , for (ξ, η) ∈ R .

Equation (23) may be solved using a DRBEM and a
predictor-corrector simultaneously. Readers may refer to [14]
for the detail of the method.

To compute numerical values of the dimensionless MFP,
we first employ Equation (23) to obtain numerical values
of φ, and then use the Stehfest formula to determine the
numerical values of their inverse Laplace transform. The
formula is as follows

Φ(x, z, t) ' log 2

t

2N∑
n=1

KnΦ∗(x, z, sn), (24)

where

sn = n
log 2

t
,

Kn = (−1)(n+N) ×
min(n,N)∑
m=(n+1)/2

mN (2m)!

(N −m)!m!(m− 1)!(n−m)!(2m− n)!

IV. RESULTS AND DISCUSSION

In this section, some numerical results for steady suction
potential associated with infiltration from periodic trape-
zoidal channels with root-water uptake in Pima Clay Loam
(PCL) are presented. The values of α and Ks of PCL are
0.014 cm−1 and 9.9 cm/day, respectively [1], [4]. The values
of L and D are set to be the same, L = D = 50 cm. The

width and the depth of the channels are 4L/π and 3L/2π,
respectively. The potential transpiration rate is that used by Li
et al [8] and Šimunek and Hopmans [13], that is 4 mm/day.

Four different types of root-water uptake models are
considered, namely Root A, Root B, Root C, and Root D.
Parameters of the root-water uptake models are summarized
in Table I.

TABLE I: Parameter values for four different root-water
uptake.

fitting parameters
Root type Zm Xm Z∗ X∗ pZ pX
Root A 100 cm 50 cm 0 cm 0 cm 1.0 1.0
Root B 100 cm 50 cm 20 cm 0 cm 1.0 1.0
Root C 100 cm 50 cm 0 cm 25 cm 1.0 4.0
Root D 100 cm 50 cm 20 cm 25 cm 5.0 2.0

To employ the DRBEM, the domain of the problem must
be bounded by a simple closed curve. An appropriate value
of z for boundary conditions to be applied without significant
impact to values of φ in the domain is z = 4. Therefore, the
domain is set to be between z = 0 and z = 4. The boundary
is divided into 404 constant elements, and 892 interior points
are chosen.

After obtaining numerical values of φ, values of Φ∗ can
be computed using Equation (16). Finally, employing the
Stehfest formula (24) with N = 3, dimensionless MFP, Φ,
are obtained. Some of the results are presented in Tables II
- VII, and Figures 3 and 4.

TABLE II: Values of dimensionless MFP, Φ, at (0.1,0.5).

t Root A Root B Root C Root D
0.8 2.02857736 2.02972843 2.02539080 2.02145953
1.0 2.13827636 2.13943751 2.13412796 2.13017752
2.0 2.34567542 2.34700183 2.34081485 2.33652156
3.0 2.39097238 2.39233939 2.38595902 2.38161918
4.0 2.40365782 2.40503665 2.39859328 2.39424435
5.0 2.40753647 2.40891926 2.40245327 2.39810319

TABLE III: Values of dimensionless MFP, Φ, at (0.1,2.0).

t Root A Root B Root C Root D
0.8 0.85211076 0.85287730 0.84096029 0.84431240
1.0 1.13074747 1.13158442 1.11559336 1.11920974
2.0 1.86576136 1.86725319 1.84641029 1.84928421
3.0 2.09026653 2.09196709 2.06985183 2.07249748
4.0 2.16574491 2.16751736 2.14497224 2.14754514
5.0 2.19319539 2.19499652 2.17229139 2.17483733

TABLE IV: Values of dimensionless MFP, Φ, at (0.35,0.5).

t Root A Root B Root C Root D
0.8 1.79871882 1.79955480 1.79507132 1.79065268
1.0 1.90946308 1.91042604 1.90514156 1.90064892
2.0 2.11841794 2.11959560 2.11346024 2.10863147
3.0 2.16397572 2.16519995 2.15886639 2.15398627
4.0 2.17672192 2.17795978 2.17156180 2.16667113
5.0 2.18061496 2.18185745 2.17543629 2.17054406
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TABLE V: Values of dimensionless MFP, Φ, at (0.35,2.0).

t Root A Root B Root C Root D
0.8 0.85069505 0.85114437 0.83922682 0.84234599
1.0 1.12931030 1.13004565 1.11448494 1.11780797
2.0 1.86431033 1.86575390 1.84545244 1.84805360
3.0 2.08881798 2.09047426 2.06889600 2.07127276
4.0 2.16429758 2.16602621 2.14401724 2.14632094
5.0 2.19174845 2.19350527 2.17133622 2.17361356

TABLE VI: Values of dimensionless MFP, Φ, at (0.5,0.5).

t Root A Root B Root C Root D
0.8 1.65297969 1.65369249 1.64974500 1.64552561
1.0 1.76438716 1.76512293 1.76014343 1.75578644
2.0 1.97442812 1.97537693 1.96944241 1.96466413
3.0 2.02017404 2.02117525 2.01503188 2.01018334
4.0 2.03296559 2.03398211 2.02777166 2.02290741
5.0 2.03686987 2.03789177 2.03165721 2.02678981

TABLE VII: Values of dimensionless MFP, Φ, at (0.5,2.0).

t Root A Root B Root C Root D
0.8 0.85018689 0.85067262 0.83869871 0.84188164
1.0 1.12881720 1.12952621 1.11377464 1.11719860
2.0 1.86383430 1.86523616 1.84471214 1.84739942
3.0 2.08834271 2.08995780 2.06815718 2.07061906
4.0 2.16382246 2.16550980 2.14327893 2.14566747
5.0 2.19127341 2.19298901 2.17059806 2.17296024

Tables II-VII show numerical values of the dimensionless
MFP, Φ, for various values of t at selected points in the soil
with four different root-water uptake models. Specifically,
Tables II and III show values of Φ at (0.1, 0.5) and (0.1, 2.0)
respectively. Values of Φ at (0.35, 0.5) and (0.35, 2.0) are

shown in Tables IV and V respectively. For points (0.5, 0.5)
and (0.5, 2.0), values of Φ at these two points are shown in
Tables VI and VII. From Table II and Table III, it can be
seen that the infiltration problem with Root B results in the
highest values of Φ. On the other hand, Root D results in
the lowest values of Φ. It is observed in all cases that the
percentages of increase in Φ from a time level to another time
level are about the same. From t = 0.8 to t = 1.0, values of
Φ at (0.1, 0.5) and (0.1, 2.0) increase about 5.4% and 32.7%
respectively. Increase in values of Φ at these two points are
about 9.7% and 65%, from t = 1 to t = 2, about 1.9% and
12% from t = 2 to t = 3, about 0.5% and 3.6% from t = 3
to t = 4, and about 0.2% and 1.3% from t = 4 to t = 5.
These results indicate that percentages of the increase in Φ
at deeper position are higher than those at lower position.
The results also indicate percentages of the increase in Φ at
the beginning of infiltration are higher than those at other
times of infiltration.

Table IV and Table V show values of Φ at (0.35, 0.5)
and (0.35, 2.0). It can be seen that the results have the same
fashion as the results in Table II and Table III. From t = 0.8
to t = 1.0, values of Φ at these two points increase about
6.2% and 32.8% respectively. Percentage increase in values
of Φ at these two points are about 10.9% and 65.1%, from
t = 1 to t = 2, about 2.2% and 12% from t = 2 to t = 3,
about 0.6% and 3.6% from t = 3 to t = 4, and about 0.2%
and 1.3% from t = 4 to t = 5.
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Fig. 3: Values of ψ at different values of X at t = 0.8 along Z-axis.
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 Fig. 4: Values of ψ at different values of X at various time t along Z-axis for infiltration with Root D.

Values of Φ at (0.5, 0.5) and (0.5, 2.0) are shown in Table
VI and Table VII, respectively. As before, Root B results in
the highest values of Φ, and Root D results in the lowest
values of Φ. From t = 0.8 to t = 1.0, values of Φ at these two
points increase about 6.7% and 32.8% respectively. Values
of Φ at these two points increase about 11.9% and 65.1%,
from t = 1 to t = 2, about 2.3% and 12.1% from t = 2 to
t = 3, about 0.6% and 3.6% from t = 3 to t = 4, and about
0.2% and 1.3% from t = 4 to t = 5. The results presented
above indicate that percentages of the increase of Φ at deeper
locations are higher than those at shallower. Moreover, the
percentage of increase in Φ at points near the channels is
lower than those further.

Figure 3 shows values of ψ from infiltration with four
different types of root-water uptake at t = 0.8 along Z-axis.
There are five different values of X . The values of X are 10

cm, 30 cm, 50 cm, 70 cm, and 90 cm. It can be seen from
the figure that values of ψ at positions nearer the channels is
higher than those further. This result indicates that soils close
to the channels more moist than those away. However, for
any depth level of soil of c cm, where c > 150, the moisture
contents at the horizontal level of z = c are about the same.

Figure 3 also shows that there are almost no distinguishes
between the four graph. This means that the differences in the
values of ψ are relatively small. Hence, to show the values
of ψ at different times t, only results from infiltration with
Root D are presented in Figure 4.

Figure 4 contains a series of graphs that show the values
of ψ, for several different time levels, that is t =0.8, 1.0,
2.0, 3.0, 4.0 and 5.0, at various values of X along Z-axis.
The graphs illustrate the change in the values of ψ as the
dimensionless time t increased. From t = 0.8 to t = 1.0, it
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can be seen clearly that the value of ψ increases along Z-
axis. This also occur from t = 1 to t = 2. It is observed that
the increase in ψ at deeper level of soil is more significant
than those shallower. These mean that there may significant
increase in water content in the soil from t = 0.8 to t = 1.0,
as well as from t = 1.0 to t = 2.0, especially at deeper level
of soil.

From t = 2 to t = 3, it seems that there are no significant
increase in the distribution of ψ at the surface of the channel,
but at other locations, significant changes are observed. After
t = 3, the distribution of ψ remains more or less constant
over the region. These observations indicate that points at
shallower level achieve maximum water content earlier than
those deeper. These results obtained are physically meaning-
ful, as irrigation water passes through a shallower level of
soil first, before going deeper. At the shallower level, some
of the water is absorbed, and then the rest moves through to
deeper levels.

The results show that water content in soil increases over
time until they reach their maximum levels. The results also
indicate that at any given point in time, the amount of water
absorbed by the soil at a fixed depth may be the same in
all horizontal direction, provided sufficient time is given for
infiltration. The results also show that a point at a shallow
level of soil depth reaches its maximum water content more
rapidly than those at deeper levels.

V. CONCLUDING REMARK

A problem involving time-dependent inltration from peri-
odic trapezoidal channels with four different types of root
uptake has been solved by applying a set of transformations
involving Laplace transform and a DRBEM with a predictor-
corrector scheme. The method is applied to obtain numerical
values of dimensionless MFP and suction potential.

The results obtained indicate that increase in the dimen-
sionless MFP is not affected by the types of root uptake. The
results also indicate the variation in time needed to approach
the steady state value of the dimensionless MFP and suction
potential at different points below the trapezoidal channels.
Points at a level need more time than that at shallower levels,
which means that points at shallower levels of soil depth
reach their maximum water contents faster than those deeper.
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