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Abstract—Using artificial intelligence algorithms, providers
of news analytics calculate the sentiment score of almost every
economic and financial news in real time. The sentiment score
of negative, neutral, positive news are assigned to be -1, 0, 1,
respectively. We constructed time series of news sentiments as
follows: a nine-month period of 2015 was divided into non-
overlapping consecutive intervals of equal length, and then we
calculated the sum of sentiment scores of all news within each
time interval. In this paper we examine long-range dependance
and self-similarity of time series of sentiments of economic
and financial news using the Fluctuation Analysis (FA), the
Detrended Fluctuation Analysis of order 1 (DFA), Rescaled
Range Analysis (R/S), Average Wavelet Coefficient Method
(AWC) and Fourier Transform Method (FTM). Moreover, in
this paper we use Multifractal Detrended Fluctuation Analysis
(MDFA) to examine multifractality of time series of news
sentiments. In addition, we analyzed three time series of news
sentiments for companies traded on the London Stock Exchange
(LSE), the New York Stock Exchange (NYSE) and The Stock
Exchange of Hong Kong (SEHK). Empirical results obtained by
this methods show that time series of news sentiments exhibit
self-similarity (as well as a long memory property). The Hurst
exponent (as well as the long-range correlation exponent) is
greater than 0.55 over four orders of magnitude in time ranging
from several minutes to dozen of days. Moreover, we show that
both NYSE and LSE time series of news sentiments exhibit
multifractality. On the other hand, we demonstrate that the
SEHK time series have monofractal behavior.

Index Terms—long-range correlation, time series, detrended
fluctuation analysis, Hurst exponent.

I. INTRODUCTION

A multifractal system could be considered as a general-
ization of a fractal system. Multifractal is an extension of
a fractal in which a single Hurst exponent is not sufficient
to characterize its behavior, and therefore we need a con-
tinuous spectrum of Hurst exponents. Many papers defined
a multifractal structure as a superposition of homogeneous
monofractal structures.

Multifractal analysis was initially introduced for the study
of turbulence and was applied for the measurement of the tur-
bulent flow velocity in the study of energy dissipation. Over
the last thirty years, multifractal as well as fractal analysis
have been applied extensively for analysis of medical signals
[1], [2], [3], fluid flow [4], time series [5], [6], [7], [8], traffic
signals [9], images [10], earthquake signals [11], [12], and
in many other areas. The survey of multifractal spectrum
computing methods can be found in [13].

Long range dependance and self-similarity of financial
time series have been the focus of attention for many
researchers in the last several years [14]–[25]. The recent
years have seen interest in multifractality analysis of financial
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time series [19], [20], [22]–[30]. However, there are very few
works devoted to the self-similarity or multifractality analysis
of the statistical properties of the news flow. Following
papers [31], [32], [33] and [34], in this work we analyze
time series of news sentiments.

News analytics is an unconventional approach to the anal-
ysis of news flow based on artificial intelligence techniques.
Introduction to the news analytics tools and techniques can
be found in [35] and [36]. For each piece of news, news
analytic providers find its sentiment score using artificial
intelligence algorithms [35]. The sentiment score of a neutral
news is assumed to be 0. Every positive piece of news has
sentiment score 1. If news is negative then its sentiment score
is assigned to be -1. Then we constructed time series of
news sentiments as follows. We use the final data sample
and divide the whole period into non-overlapping consecutive
intervals of equal length δ = 1 minute and calculated the sum
of all news sentiments within each time interval. Note that
the sentiment extraction from news is a difficult task and in
many real applications it is necessary to use sophisticated
technics [37] and big data approaches [38].

This work uses five estimators
• Fluctuation Analysis (FA),
• Detrended Fluctuation Analysis of orders 1 (DFA),
• Rescaled Range Analysis (R/S),
• Average Wavelet Coefficient Method (AWC),
• Fourier transform method

to detect long-range auto-correlation and self-similarity of
time series of news sentiments. In addition to the work
[31], in this paper we use Multifractal Detrended Fluctuation
Analysis (MDFA) to examine multifractality of time series
of news sentiments.

Our analysis is based on a 189 trading days period
from news analytic data taken from January 1, 2015 to
September 22, 2015. In addition to analyzing time series
of intensity for all available news from all stock exchanges,
the following research question was of our interest: is the
multifractal structure of news sentiments similar for different
stock exchanges? We examine time series of news sentiments
related to different time zones. We consider news affecting
companies trading on the European, American and Asian
stock exchanges separately. More precisely, we analyzed
companies trading on the London Stock Exchange (LSE), the
New York Stock Exchange (NYSE) and The Stock Exchange
of Hong Kong (SEHK). As the paper [39] we excluded from
our analysis periods of low news intensity, e.g. weekends and
holidays as well as night hours at local time.

In different time zones, hours of high and low news
activity do not coincide, although overlap partially. It may
be explained by the partial intersection of the lists of trading
companies and agents that generate news. We assume that
the fractal structure of time series of news sentiments is
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more complex for bigger stock exchanges and for larger
differentiation of the agents generated news.

The results of this work show that the long-range power-
law correlation takes place in time series of news sentiments.
All methods showed the presence of a long-range correlation
in the time series of news sentiments (the Hurst exponent is
greater than 0.5). Moreover, this paper shows that time series
of news sentiments exhibit multifractality.

II. METHODS FOR DETECTING AUTO-CORRELATION

A. Auto-correlation types

Let X = (xt)
n
t=1 be a time series with large n and let s ∈

N, s � n. Let C(s) denote the (auto) correlation between
X1 = (xt)

n−s
t=1 and X2 = (xt+s)

n−s
t=1 . The correlation can be

of several types:
1) xt are uncorrelated; it is obvious that if X1 and X2

are uncorrelated then C(s) must be zero, C(s) = 0;
2) short-range correlations of (xt)

n
t=1 results in exponen-

tially declining of C(s), i.e. C(s) ∼ e−s/s0 , where s0
is a parameter of decay;

3) long-range correlation of the (xt)
n
t=1, C(s) should fol-

low a power-law dependence: C(s) ∼ s−γ , 0 < γ < 1.
We use the following methods for estimation of the

correlation.

B. Fluctuation analysis (FA)

FA algorithm consists of two steps:
1) Integration. We calculate the cumulative deviate series

as follows

yk =
k∑
t=1

(xt − x), k = 1, 2, . . . , n, (1)

where x =
∑n
t=1 xt.

2) The FA fluctuation function is defined by

F (s) = FFA(s) =

(
1

n− s

n−s∑
k=1

(yk+s − yk)2

)1/2

.

(2)
Note that (2) is actually a special case of the structure
function in turbulence [40].

C. DFA method

DFA was proposed in the papers [41], [42]. This method
is used for studying the indirect scaling of the long-range
dependence. DFA method was effectively applied for analysis
of economical and finance time series in papers [14]–[18].
While DFA has some drawbacks [43], the work [44] remarks
that DMA and DFA stay the options of choice for evaluating
the long-range correlation of time series. DFA algorithm
includes five stages:

1) Integration. We calculate yk, k = 1, 2, . . . , n, using
(1).

2) Cutting. We divide the (yk)nk=1 into ns = [n/s] non-
crossing intervals, each of length s, starting with y1.

3) Fitting. For each interval l = 1, . . . , ns we construct
a fitting linear function Pl (trend) by means of least-
square fit of the data (yk)lsk=(l−1)s+1. Denote y∗k =
Pl(k).

4) Detrending. The detranded time series are obtained by
εk(s) = yk − y∗k.

5) We calculate variance of residuals εi:

F 2
l (s) =

1

s

s∑
i=1

ε2(l−1)s+i(s), l = 1, . . . , ns.

6) DFA fluctuation function is defined by

F (s) = F
[m]
DFA(s) =

(
1

ns

ns∑
l=1

F 2
l (s)

)1/2

.

Derivation of DFA can be found in the work [45].

D. The auto-correlation parameter

The fluctuation functions F (s) deduced in DFA let us
examine the s-dependance of F . In the case of long-range
power-law correlation of xt, the F must follow a power-law

F (s) ∼ sα

for large enough s. The fluctuation parameter α is connected
with the value of correlation exponent γ in the following
way (see [46]) α = 1 − γ/2, 0 < γ < 1. The correlation
parameter α reflects the auto-correlation properties of time
series as follows:

1) α = 1/2, the time series uncorrelated (white noise) or
short-range correlated;

2) α < 1/2, it is anti-correlated;
3) α > 1/2, it is long-range power-law correlated;
4) α = 1, pink noise (1/f noise).

E. Rescaled Range Analysis (R/S)

The R/S algorithm is one of the most widely used methods
for scale exponent estimation. R/S algorithm estimates the
value of the Hurst exponent based on an empirical data set
for the long-range dependent process that generated the data
set. R/S-analysis uses a heuristic approach developed in [47],
[48], [49], [50], [51].

R/S algorithm consists of the following steps:
1) Cutting. We divide the (xk)nk=1 into ns = [n/s] non-

overlapping intervals X(i)(s) := {x(i−1)s+1, . . . , xis},
i = 1, . . . , ns, each of length s, starting with x1.

2) Accumulation. We calculate the accumulated series for
each window X(i)(s), i = 1, . . . , ns, as follows

y
(i)
j (s) =

j∑
t=(i−1)s+1

(xt − x(s)), (3)

where x(s) = 1/s
∑is
t=(i−1)s+1 xt is the mean of ith

window of size s, and j = (i− 1)s+ 1, . . . , is.
3) Range calculation. We compute the range of devia-

tion within each window for the accumulated series
as follows R(i)(s) = max(i−1)s+1≤j≤is{y

(i)
j (s)} −

min(i−1)s+1≤j≤is{y
(i)
j (s)}.

4) Standard deviation calculation. For each window i =
1, . . . , ns we find the standard deviation:

S(i)(s) =

√√√√1

s

is∑
t=(i−1)s+1

(xt − x(s))2.

IAENG International Journal of Applied Mathematics, 48:1, IJAM_48_1_13

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



5) Computation of R/S statistics:

〈R(s)/S(s)〉 :=
1

ns

ns∑
i=1

R(i)(s)

S(i)(s)
, s = s1, . . . , sL.

6) Estimation of Hurst exponent. We solve the following
least mean square problem

L∑
j=1

(log (〈R(sj)/S(sj)〉)−H log sj − b)2 → min
H,b

R/S algorithm computes the R/S-statistic for different s
and plots the resulting estimates versus the s on loglog scale.
Then the Hurst parameter can be estimated via the slope of
the resulting log-log plot. As it pointed out in [52], classical
R/S-analysis is not suitable for small samples, but can be
highly effective for quite large samples and it often provides
a rather accurate picture of the presence or absence of long-
range dependence in a given empirical data sets. Moreover,
R/S-analysis demonstrates relative robustness under heavy
tails with infinite variance in the marginal distribution of the
data [47]–[50].

On the other hand, R/S-analysis is quite sensitive relative
to the presence of explicit short-range dependence structures
and its bias. Therefore, these shortcomings of R/S analysis
lead to the fact that many researchers do not consider this
algorithm as a rigorous statistical method.

III. WAVELET-BASED METHODS

A. The Hurst exponent

The self-similarity parameter 0 < H < 1 of self-affine
processes is also called the Hurst (or roughness) exponent
[53]. The Hurst exponent is commonly used for measuring
the duration of long-range dependence of a stochastic pro-
cess.

There are three possibilities:
• If H = 0.5 then C(s) = 0 which means that past and

future increments are uncorrelated (Brownian motion);
• In case H > 0.5 we have C(s) > 0 and the increments

are positively correlated (the process {X(t)}t is called
persistent).

• If H < 0.5 then C(s) < 0 and increments are negatively
correlated (the process {X(t)}t is called anti-persistent
or anti-correlated).

B. The Average Wavelet Coefficient Method

The Average Wavelet Coefficient Method (AWC) was
proposed in papers [54] and [55].

The method is used for measuring the temporal self-affine
correlations of a time series by estimating its Hurst exponent.
The AWC method is based on the wavelet transform (good
review of the wavelet transform can be found in books [56]
and [57]).

The strategy for the data-analysis by the AWC method
consists of three main steps:

1) Wavelet transformation of the data X(t) into the
wavelet domain, W[X](a, b), where a, b are scale and
location parameters, respectively [56], [57].

2) Then for a given scale a we can find a representative
wavelet amplitude for that particular scale, and to study

its scaling. To do so we calculate the averaged wavelet
coefficient W [X](a) according to the equation

W [X](a) = 〈|W[X](a, b)|〉b,

where 〈·〉b denotes the standard arithmetic mean value
operator with respect to the b.

3) For a self-affine process X(t) with exponent H , the
spectrum W [X](a) should scale as aH+0.5 [55]. There-
fore, to find H + 0.5 we should plot W [h](a) against
scale a in a log-log plot. As it is pointed out in [55], a
scaling regime consisting of a straight line in this plot
implies a self-affine behavior of the data.

C. Fourier transform method

Let us recall that the Fourier transform of the function f
and inverse transform are defined by

f̂(ζ) =
∑
t

e−iζtf(t), (4)

f(t) =
∑
ζ

eiζtf̂(ζ). (5)

Fourier inversion theorem states that f can be reconstructed
from f̂ .

If ρx(s) is autocorrelation function of x(t), ρx(s) =∑
t x(t)x(t+ s), then the Fourier transform of ρx(s) is

ρ̂(ζ) = |x̂(ζ)|2. (6)

Therefore, to find the value of ρx(s) one should make the
following steps

1) Find x̂(ζ), the Fourier transform of x(t), using (4).
2) Find ρ̂(ζ), the Fourier transform of ρx(s), using (6)
3) Compute ρx(s) as the inverse transform of ρ̂x(ζ) using

(5).
Fourier transform is a classical way of correlation expo-

nent estimation γ, but it is often not appropriate due to noisy
nature, non-stationarity and imperfect measurement of data
xt.
ρ̂(ζ) is a power spectrum P (ω) of the Fourier transform.

ω = 0 : Fs/n : Fs/2 is a frequency increment (angular
frequency), where Fs is sampling frequency, and n - number
of samples.

IV. MULTIFRACTAL DETRENDED FLUCTUATION
ANALYSIS (MDFA)

The multifractal generalization of DFA [30] can be briefly
sketched as follows.

It is well-known that the self-similarity of fractal structures
can be described by the global exponent Hölder, or the local
Hurst exponent α. If the fractal is monofractal, then it can be
described by only one Hölder exponent, and in the case of a
multifractal, different parts of the structure are characterized
by different values of α, which means the existence of a
spectrum f(α).

MDFA algorithm includes seven stages:
1) Integration. We calculate yk =

∑k
t=1(xt − x), k =

1, 2, . . . , n, where x =
∑n
t=1 xt.

2) Cutting. We divide the (yk)nk=1 into ns = [n/s] non-
crossing intervals, each of length s, starting with y1.
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3) Fitting. For each interval l = 1, . . . , ns we construct
a fitting linear function Pl (trend) by means of least-
square fit of the data (yk)lsk=(l−1)s+1. Denote y∗k =
Pl(k).

4) Detrending. The detranded time series are obtained by
εk(s) = yk − y∗k.

5) We calculate variance of residuals εi:

F 2
l (s) =

1

s

s∑
i=1

ε2(l−1)s+i(s), l = 1, . . . , ns.

6) MDFA fluctuation function is defined by

Fq(s) =

(
1

ns

ns∑
l=1

F ql (s)

)1/q

,

where q can take any real value except for q = 0.
When q = 0, we have

F0(s) = exp

(
1

4ns

ns∑
l=1

ln[F 2
l (s)]

)
≈ sh0 ,

according to L’Hospital’s rule.
7) Changing the size of the segment s, we can find a

power relation between the function Fq(s) and the size
s:

Fq(s) ∼ sh(q).

Then we calculate the multifractal scale factor τ(q)
which can be considered as a characteristic of multi-
fractality:

τ(q) = qh(q)−Df

where Df denotes the fractal dimension of the geo-
metric support of the multifractal measure [30], h(q) is
generalized Hurst exponent or Holder exponent, which
coincides with Hurst exponent for q = 2, h(q). When
analyzing time series, we have Df = 1. If τ(q) is a
nonlinear function of q then the signal is multifractal.

Another characteristic of multifractality for time series may
be the singularity spectrum f(α), which is connected with
α(q) through the Legendre transformation as follows [58]:{

α(q) = dτ(q)/dq

f(q) = qα− τ(q)

where α(q) is Holder singular index which is also called
singular strength and f(α) is a multifractal spectrum which
determines dimensions of subsets of the time series that are
characterized by α(q).

The curve α ∼ f(α) is a single-humped function for a
multifractal and is a single point for a mono-fractal. The
shape and length of the curve f(α) give us an important
information on characteristics of the distribution of the data
set. First, we can determine the width of the spectrum ∆α =
αmax−αmin. The parameter ∆α describes the inhomogeneity
of the probability distribution measured by the total fractal
structure and determines the degree of multifractality. The
function f(α) has the maximum value fmax at some point
α0, fmax = f(α0), which corresponds to the peak of the
multifractal spectrum [12]. Larger values of ∆α and fmax
correspond to a stronger degree of multifractality.

0 8 16 24

0

20

40

60

80

hours

Fig. 1. Dynamics of sentiments (February 2, 2015)

V. EMPIRICAL RESULTS

A. Time series of news sentiments

Providers of news analytics obtain and aggregate data
from different sources (including news agencies and business
reports) and social media. Our data cover the period from
January 1, 2015 to September 22, 2015 (i.e. 189 trading
days). We consider all the news released during this period.
Initially we performed data selection and cleaning process
as described in [32] or [34].

For each piece of news, news analytic providers find its
sentiment score using artificial intelligence algorithms. The
sentiment score of neutral news is assumed to be 0. Every
positive piece of news has sentiment score 1. If news is
negative then its sentiment score is assigned to be -1.

Then we constructed time series of news sentiments as
follows. We divided 189-day period ∆ into n non-crossing
consecutive segments ∆1, . . . ,∆n of the same longevity δ
minutes, ∆ = ∆1 ∪ . . . ∪∆n. We found xt, the sum of all
sentiment scores of all economical and finance news reported
in the world during each interval ∆t, t = 1, 2, . . . , n. The
sequence x1, x2, . . . , xn is the time series of news sentiments
with the δ minutes window. The overall sentiment of news for
the 189-day period is 2011463. Table I shows the summary
statistics. We used the time window δ = 1.

TABLE I
SUMMARY STATISTICS OF TIME SERIES, δ = 1 MINUTES

All news LSE NYSE SEHK
n 2.7 · 105 1.3 · 104 1.5 · 104 1.5 · 104

Sum sentiment 279750 90253 32127 8940
Mean 1.03 0.69 0.22 0.06
Minimum -45 -214 -254 -25
Maximum 237 97 138 24
St. deviation 4.03 3.00 3.18 1.08
Median 0 0 0 0
Skewness 11.54 6.25 -8.31 0.37
Kurtosis 282.18 426.22 601.95 29.67

Fig. 1 plots an example of time series of news senti-
ments with 1-min window. Time series are quite volatile
and demonstrate a non-stationary behavior. The amount of
positive news is much greater than the amount of negative
news during the period for all stock exchanges.
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B. Self-Similarity Analysis
In this subsection we demostrate the auto-correlation and

self-similarity analysis with the use of FA, DFA, R/S analy-
sis, AWC and Fourier transform method.

First we use FA and DFA (of order 1) methods to evaluate
the correlation and Hurst exponent. Then, we obtained values
of F (si) for different interval lengths si ∈ [101, 104.5] using
FA and DFA. The task of selecting a needed length for
scaling range has been examined in the papers [59], [60],
[61]. The influence of scaling range on the efficiency of
some detranding techniques has been investigated in the same
works. We used two ranges [101, 104.5] (for 1-min data) and
[101, 104] (for 5-min data) in our analysis. This values belong
to the scaling range suggested by these papers.

Figures 2, 3, 4 and 5 plot the results of FA and DFA
application to all news, NYSE news, LSE news and SEHK
time-series of news sentiments respectively (with δ = 1).
Results of DFA show that the estimates of the Hurst exponent
are equal to 0.69 (all news), 0.64 (NYSE), 0.55 (LSE), 0.69
(SEHK) which indicates the presence of long-range correla-
tion in the corresponding time series. Linear regressions are
highly significant, since the determination coefficients R2 are
close to 1. It must be pointed out that Detranded Fluctuation
Analysis let us discover the crossover effect shown in the
study [46].

AWC method gives similar results with DFA method in
identical estimates of the Hurst exponent on the whole scale
of s both for all time series and NYSE news, LSE news
and SEHK time-series of news sentiments (Table II). The
differences between estimates of the Hurst exponent obtained
by means of different methods are less than 0.1. It should
be noted that regression errors are very small and the value
of R2 is close to 1 for FA, DFA and AWC methods. We
noted that AWC method also allowed to detect the so called
crossover effect (Fig. 7). It should be mentioned that the
crossover effect matches with 1 day period (or 24 hours).
Estimates of the Hurst exponent, for small (about one day)
as well as large scales (more than a day) using DFA and
AWC methods yield similar results, the difference being less
than 0.1, on the whole scale of for all news, NYSE news,
LSE news and SEHK time-series of news sentiments.

Fig. 6 demonstrates the log-log plot of dependance R/S
statistics of s for all news time series with δ = 1 obtained
by R/S analysis. In this case, though the value of the Hurst
exponent is less than H = 0.63, it still demonstrates that
there are positive long-range correlations in time series.
Linear regressions are also highly significant. In contrast to
the DFA, R/S analysis as well as FA failed to reveal the
presence of the crossover effect.

The Fourier transform analysis of the all news time series
of news sentiments (with δ = 1) are presented in Fig. 8.
The figure shows the raw power spectrum, P (w) vs. angular
frequency w for the news sentiments data. We can see that
the raw power spectrum is too noisy, which does not allow
us to accurately estimate the Hurst exponent and certainly
prevents us from detecting the effect of the crossover. We can
apply the log-binning technique [62] to reduce its noise. The
result of the log-binning smoothing is shown in Fig. 9. The
dashed lines of figures correspond to the slope of (−2H−1)
with the value of H = 0.61 for all news time series with time
window δ = 1. It should be noted that while the regression is

significant, it is considerably worse than regressions obtained
by FA, DFA, AWC and R/S analysis. Moreover, it is not
possible to identify the effect of the crossover even after the
smoothing of power spectrum.

Table II presents the estimates of the Hurst exponent
obtained by FA, DFA, R/S, AWC and Fourier transform
methods for our time series.

1 1.5 2 2.5 3 3.5 4 4.5

1

2

3

log s

0.69 log s− 0.2, R2 = 0.98

DFA, all news

Fig. 2. logF (s) versus log s for the DFA estimation method, all news

1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

log s

0.63 log s+ 0.58, R2 = 0.99

FA, NYSE news
0.64 log s− 0.28, R2 = 0.99

DFA, NYSE news

Fig. 3. logF (s) versus log s for the FA and the DFA estimation methods,
NYSE

1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

log s

0.54 log s+ 0.56, R2 = 0.99

FA, LSE news
0.55 log s− 0.22, R2 = 0.99

DFA, LSE news

Fig. 4. logF (s) versus log s for the FA and the DFA estimation methods,
LSE
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1.5 2 2.5 3 3.5
0

1

2

3

log s

0.71 log s− 0.07, R2 = 0.99

FA, SEHK news
0.69 log s− 0.95, R2 = 0.99

DFA, SEHK news

Fig. 5. logF (s) versus log s for the FA and the DFA estimation methods,
SEHK

2 10 15 18

5

10

log s

0.63 log s+ 0.83, R2 = 0.99

R/S, All news

Fig. 6. logR/S versus log s for the R/S method, all news

1.5 2 2.5 3 3.5 4 4.5

2

4

6

log s

1.18 log s+ 0.28, R2 = 0.99

AWC, All news

Fig. 7. logW [X](a) versus log a for AWC estimation method, all news

-4 -3 -2 -1 0
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10

frequency

Power spectrum, all news

Fig. 8. Results for the Fourier transform method, all news

-1 -0.5 0 0.5 1

6

6.2

6.4

6.6

6.8

frequency

Power spectrum, all news
−0.22 logw + 6.13, R2 = 0.79

Fig. 9. Results for the Fourier transform method, all news

TABLE II
ESTIMATES OF THE HURST EXPONENT

Method All NYSE LSE SEHK
FA 0.711 0.627 0.543 0.710
DFA 0.690 0.638 0.554 0.693
R/S analysis 0.631 0.618 0.521 0.710
AWC 0.683 0.722 0.648 0.687
Fourier transform 0.609 0.643 0.588 0.611

C. Multifractality Analysis

In this subsection we examine the multifractality of time
series of news sentiments using the MDFA algorithm. Fig-
ure 10 shows the dependence of log-values of fluctuation
function on the length of non-crossing intervals for different
values of q := −5 : 0.5 : 5. One can see that slopes are
different at distinct points q, which is evidence of multi-
fractality. For periods longer than one day, the alignment of
points and slopes can be observed.

1 1.5 2 2.5 3 3.5 4 4.5

0

2

4

6

log s

Fig. 10. logF (s) versus log s for the MDFA estimation method, δ = 1

In addition, Fig. 11 shows the multifractal spectrum of
news sentiments time series. It should be noted that f(α) is
in a wide range (α = 0.82), and curves are concentrated over
a sufficiently large range, which is the indication of multi-
fractality. NYSE and LSE time series exhibit multifractality
as well, however their degree of multifractality is less than for
the time series generated by all news. At the same time f(α)
for SEHK time series is in a narrow range (α = 0.38) and
the curve is concentrated on a small range, which indicates
mono-fractality.
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VI. CONCLUSION

In this paper we use the FA, DFA, R/S analysis, AWC
method and Fourier transform technique to examine the
presence of long-range correlation of financial and economic
time series of news sentiments. The results of this paper
show that the long-range power-law correlation take place
in time series of news sentiments. The paper shows that
the behavior of long range dependence for time series of
sentiment intensity most similar to the news flow intensity
[32]. The results show that the self-similarity property is a
stable characteristic of the sentiment of news information
flow which serves the financial industry and stock markets.
All methods showed the presence of a long-range correlation
in the time series of news sentiments (the Hurst exponent is
greater than 0.5) both for time series of all news sentiments
and for three time series of news sentiments for three major
stock exchanges (NYSE, LSE, SEHK). Results obtained
by the DFA and AWC for sufficiently large scale have
revealed the effect of crossover (corresponding to one day).
Shortcomings of the classic FA method, R/S analysis and
Fourier technique do not allow us to determine the effect of
crossover.

Moreover, we show that the time series of news sentiments
exhibit multifractality. This statement can also be attributed
to the time series of news sentiments related to individual
stock exchanges (NYSE and LSE). On the other hand, we
demonstrate that the SEHK time series have monofractal
behavior. We can conclude that the fractal structures of
time series of sentiments are more complex for large stock
exchanges with a wide differentiation of operating agents. At
the same time, the presence of multifractality in the time se-
ries of news sentiments can be explained by the fact that news
is formed in the process of information interaction within
a complex system with a large number of subsystems and
participants. The elements of the system are more than 34000
largest companies located around the world, financial market
participants, investors, traders, analytical and news agencies,
media, etc. In our opinion, these are the main reasons why the
time series of news sentiments are multifractal and have long-
range memory. This paper also revealed a long-range power
dependence in high-frequency data for relatively limited time
periods (up to 1 week). In our opinion, at such relatively
short intervals of time, the correlation between news events

is caused more by the delay in the reaction of different agents
to events (the time sequence of interactions between agents)
than the temporal correlation between news events.
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