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Abstract—In previous works we proposed a method for the
study of systems with one renewable resource. The separation of
the individual and the group parameters and the discretization
of time led us to scalar linear functional equations with
shift. Cyclic models, in which the initial state of the system
coincides with the final state, were considered. In this work, we
present cyclic models for systems with two renewable resources.
In modelling, the interactions and the reciprocal influences
between these two resources are taken into account. Analysis
of the models is carried out in weighted Holder spaces. For
the solution of the balance integral equation with degenerate
kernels and inverse operators, a modified Fredholm method
is proposed. The modified Fredholm method is applied to the
analysis of balance equation. The equilibrium state of the system
with renewable resources is found.

Index Terms—renewable resources, degenerate kernel,
Holder space, invertibility, equilibrium state.

I. INTRODUCTION

Systems whose state depends on time and whose resources
are renewable form an important class of general systems. A
great number of works has been dedicated to systems with
renewable resources [1], [2]. Cyclic models presented in this
work are intended for the identification of periodic equilib-
rium states of these systems. Usually, in the study periodic
processes and in finding of equilibrium states equations are
used in which the sought for function is dependent on time.
[3], [4], [5].

Our approach presupposes discretization of the processes
with respect to time.We move away from tracking the
changes in the system continuously to tracking the changes
at fixed time points. This discretization and the identification
of the individual parameter and the group parameter lead us
to functional equations with shift.

This paper is a continuation and expansion of article [6].
Here for the solution of the balance integral equations with
degenerate kernels and inverse operators, a modified Fred-
holm method is proposed. The modified Fredholm method
is applied to the analysis of balance equations and to finding
the equilibrium state of the system with renewable resources.
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II. CYCLIC MODEL OF A SYSTEM WITH TWO RENEWABLE
RESOURCES.

Let S be a system with two resources λ1, λ2 and let T be a
time interval. The choice of T is related to periodic processes
taking place in the system and to human interferences.

Let these resources λ1, λ2 have the same individual pa-
rameter but scales of measurement of values of the individual
parameter may be different:

xmin = x1 < x2 < ... < xn1 = xmax,

ymin = y1 < y2 < ... < yn2 = ymax.

We introduce the group parameters by functions v(xi, t) ,
w(yi, t) which express a quantitative estimate of the elements
of resources λ1, λ2 with the individual parameter xi, i =
1, 2, ..., n1 and yi, i = 1, 2...., n2 at the time t.

Let t0 be the initial time and S the system under consid-
eration.

As in our previous works [7], [8] on modelling the
system, we will hold the following principles:

I. The description of changes that occur on the interval
(t0, t0 + T ) will be substituted by the fixing of the final
results at the moment t0 + T ;

II. The separation of parameters into individual
parameters, group parameters and the study of dependence
of group parameters from individual parameters.

The initial state of the system S at time t0 is represented
as density functions of a distribution of the group parameter
by the individual parameter for each resource

v(x, t0)=v(x), 0<x <xmax,

w(y, t0)=w(y), 0 <y< ymax.

We will now analyze the system’s evolution. In the course of
time, the elements of the system can change their individual
parameter - e.g. fish can change their weight and length.

Modifications in the distribution of the group parameters
by the individual parameters is represented by a displace-
ment. The state of the system S at the time t = t0 + T
is:

v(x, t0 + T ) =
d

dx
α(x) · v(α(x)), (1)

w(y, t0 + T ) =
d

dy
β(y) · w(β(y)). (2)
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In the article [7], the appearance of derivatives in (1), (2)
was explained.

Over the period j0 = [t0, t0 + T ], extractions might be
taken from the system as a result of human economic activity;
these are represented by summands ρ(x), δ(y) . If an artificial
entrance of elements into the system has taken place, it shall
be accounted for by adding terms ζ(x), ξ(y).

We take natural mortality into account with the coefficients
c(x), d(y).

The process of reproduction will be represented by
n∑

i=1

Pipi(x),

where

P1 =
∫ ν1

ν0

v(x)dx, P2 =
∫ ν2

ν1

v(x)dx, ..., Pn =
∫ νn

νn−1

v(x)dx,

0=ν0 < ν1 <...<νn =xmax,

and
m∑

i=1

Qiqi(y),

where

Q1=
∫ µ1

µ0

w(y)dy, Q2 =
∫ µ2

µ1

w(y)dy, ..., Qm=
∫ µm

µm−1

w(y)dy,

0=µ0 <µ1 < ... <µm =ymax.

We obtain

v(x, t0 + T ) =

c(x)
d

dx
α(x)v(α(x)) + ρ(x) + ζ(x) +

n∑

i=1

Pipi(x)

and

w(y, t0 + T ) =

w(y, t0+T )=d(y)
d

dy
β(y)w(β(y))+δ(y)+ξ(y)+

m∑

i=1

Qiqi(y).

Resources λ1 and λ2 are not independent. We will account
for reciprocal influence by terms

k∑

i=1

Riri(x),

where

R1 =
∫ γ1

γ0

w(y)dy,R2 =
∫ γ2

γ1

w(y)dy, ..., Rk =
∫ γk

γk−1

w(y)dy,

0=γ0 <γ1 <, ..., <γk =ymax,

and
l∑

i=1

Fifi(y),

where

F1 =
∫ ε1

ε0

v(x)dx, F2 =
∫ ε2

ε1

v(x)dx, ..., Fl =
∫ εl

εl−1

v(x)dx,

0=ε0 <ε1 <, ..., < εl =xmax.

Thereby, the final state of the system at the moment [t0 +T ]
is described as follows:

v(x, t0 + T ) =

c(x)
d

dx
α(x)v(α(x))+ρ(x)+ζ(x)+

n∑

i=1

Pipi(x)+
k∑

i=1

Riri(x),

(3)

w(y, t0 + T ) =

d(y)
d

dy
β(y)w(β(y))+δ(y)+ξ(y)+

m∑

i=1

Qiqi(y)+
l∑

i=1

Fifi(y).

(4)

Let our goal be to find the equilibrium state of system S,
that is, to find such an initial distribution of group parameters
by the individual parameter v(x, t0), w(x, t0), that after all
transformations during the time interval (t0, t0+T )), it would
coincide with the final distribution:

v(x) = v(x, t0 + T ), (5)

w(y) = w(y, t0 + T ). (6)

From here, substituting relations (3) and (4) into (5), (6), it
follows that

v(x) =

c(x)
d

dx
α(x)v(α(x))+ρ(x)+ζ(x)+

n∑

i=1

Pipi(x)+
k∑

i=1

Riri(x),

(7)

w(y) =

d(y)
d

dy
β(y)w(β(y))+δ(y)+ξ(y)+

m∑

i=1

Qiqi(y)+
l∑

i=1

Fifi(y).

(8)

Equations (7), (8) are called equilibrium proportions or
balance equations. A model is called cyclic if the state of
system S at the initial time t0 coincides with the state of
system S at the final time t0 + T .

The application of principles I and II leads us to functional
operators with shift.

We recall the definition of spaces of Holder functions with
weight and the conditions of invertibility for scalar linear
functional operators with shift.
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III. CONDITIONS OF INVERTIBILITY IN THE SPACE OF
HOLDER FUNCTIONS WITH WEIGHT

The norm in weighted Holder spaces is defined as follows
[9]. A function ϕ(x) that satisfies the condition on
J = [0, xmax]:

| ϕ(x1)− ϕ(x2) |≤ C | x1 − x2 |ς ,
x1 ∈ J, x2 ∈ J, ς ∈ (0, 1),

is called a Holder function with exponent ς and constant
C on J .

Let % be a function which has zeros at the endpoints x = 0,
x = xmax:

%(x) = xς0(xmax − x)ς1 ,

ς < ς0 < 1 + ς, ς < ς1 < 1 + ς.

The functions that become Holder functions and turn into
zero at the points x = 0, x = xmax, after being multiplied by
%(x), form a Banach space. Functions of this space H0

ς (J, %),
are called Holder functions with weight %.

The norm in the space H0
ς (J, %) is defined by

‖ f(x) ‖H0
ς (J,%) =‖ %(x)f(x) ‖Hς(J),

where

‖ %(x)f(x) ‖Hς(J)= ‖ρ(x)f(x)‖C + ‖ρ(x)f(x)‖ς ,

‖%(x)f(x)‖C = max
x∈J

|%(x)f(x)|,

‖%(x)f(x)‖ς = sup
x1,x2∈J,x1 6=x2

|%(x)f(x)|ς ,

|%(x)f(x)|ς =
|%(x1)f(x1)−%(x2)f(x2)|

| x1 − x2 |ς .

Let β(x) be a bijective orientation-preserving displacement
on J:
if x1<x2 then β((x1)<β(x2) for any x1∈J, x2∈J ;
and let β(x) have only two fixed points: β(0) = 0,
β(xmax) = xmax, β(x) 6= x, when x 6= 0, x 6= xmax.

In addition, let β(x) be a differentiable function and
d
dxβ(x) 6= 0, x ∈ J .

We consider the equation

(Aν)(x) = f(x),

(Aν)(x) ≡ a(x)(Iν)(x)− b(x) (Γβν) (x), x ∈ [0, xmax]
(9)

where I is the identity operator and Γβ is the shift operator:

(Iν) (x) = ν(x).

(Γβν) (x) = ν[β(x)].

Let functions a(x), b(x) from the operator A belong to
Hς(J).

We will now formulate conditions of ivertibility for the
operator A from (9) in the space of Holder class functions
with weight [7].

Theorem
Operator A, acting in the Banach space H0

ς (J, %), is
invertible if the following condition is fulfilled:

θβ [a(x), b(x),H0
ς (J, %)] 6= 0, x ∈ J,

where the function σβ is defined by:

θβ [a(x), b(x),H0
ς (J, %)]=





a(x), when | a(0) |> [β′(0)]−ς0+ς | b(0) |;

and, | a(xmax) |> [β′(xmax)]−ς1+ς |b(xmax) |;

b(x), when | a(0) |< [β′(0)]−ς0+ς | b(0) |;

and, | a(xmax) |< [β′(xmax)]−ς1+ς |b(xmax) |;

0 in other cases.

Corollary
If the following condition is fulfilled:

θβ [a(x), b(x),H0
ς (J, %)] 6= 0, x ∈ J,

then the operator

U = I − uΓβ

is invertible in the space Ho
ς (J, %) and its inverse operator is

U−1 =


I + uΓβ +...+




n−2∏

j=0

u[βj(x)]


Γn−1

β


 ·


I −




n−1∏

j=0

u[βj(x)]


 Γn

β



−1

.

where
βj(x) = (Γj

βx)(x)

and the number n is selected so that

∣∣∣∣∣∣

∣∣∣∣∣∣




n−1∏

j=0

u[βj(x)]


 Γn

β

∣∣∣∣∣∣

∣∣∣∣∣∣
Ho

ς (J,%)

< 1.

IV. ANALYSIS OF SOLVABILITY OF THE BALANCE
EQUATIONS AND FINDING OF THE EQUILIBRIUM STATE

Let S be a system with two resources, considered in
Section 2. We find the equilibrium state of the system in
which the initial distribution of the group parameters by the
individual parameters v(x), w(y), x ∈ (0, xmax) coincide
with the final distribution, after all transformations during
the time interval T .

Rewrite the balance equations of the cyclic model (7), (8)
for system S

(V v)(x) =
n∑

i=1

Pipi(x) +
k∑

i=1

Riri(x) + g(x), (10)
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(Ww)(y) =
m∑

i=1

Qiqi(y) +
l∑

i=1

Fifi(y) + h(y), (11)

where

(V v)(x) = v(x)− cα(x)v(α(x)),

g(x) = ρ(x) + ζ(x), x ∈ (0, xmax),

(Ww)(y) = w(x)− dβ(y)w(β(y)),

h(y) = δ(y) + ξ(y), y ∈ (0, ymax)

and

cα(x) = c(x)
d

dx
α(x),

dβ(y) = d(y)
d

dy
β(y).

Let us study the model in the space of Holder class
functions with weight:

Ho
ς (J, %), J =0, xmax], %(x)=xς0(xmax − x)ς1 ,

ς <ς0 < 1 + ς, ς <ς1 <1 + ς.

H0
ϑ(L, σ), L=[0, ymax], σ(y)=yϑ0(ymax − y)ϑ1 ,

ϑ<ϑ0 <1 + ϑ, ϑ<ϑ1 <1 + ϑ,

considering conditions of invertibility of operators V and W
fulfilled

θα[1, cα(x),H0
ς (J, %)] 6= 0, x ∈ J,

θβ [1, dβ(y), H0
ϑ(L, σ)] 6= 0, y ∈ L.

Additionally, let us consider as known the integer positive
constants N , M , for which the following inequalities are
fulfilled:

∣∣∣∣∣∣

∣∣∣∣∣∣




N−1∏

j=0

cα(x)[αj(x)]


ΓN

α

∣∣∣∣∣∣

∣∣∣∣∣∣
Ho

ς (J,%)

< 1,

where
(Γαϕ) (x) = ϕ[α(x)],

αj(x) = (Γj
αx)(x)

and ∣∣∣∣∣∣

∣∣∣∣∣∣




M−1∏

j=0

dβ [βj(y)]


 ΓM

β

∣∣∣∣∣∣

∣∣∣∣∣∣
H0

ϑ
(L,σ)

< 1,

where
(Γβϕ) (y) = ϕ[β(y)],

βj(y) = (Γj
βy)(y)

From Theorem and Corollary from Section 3, operators
inverse to operators V and W are:

V −1 =


I + cαΓα +...+




N−2∏

j=0

cα[αj(x)]


ΓN−1

α


 ·


I −




N−1∏

j=0

cα[αj(x)]


 ΓN

α



−1

,

W−1 =


I + dβΓβ +...+




M−2∏

j=0

dβ [βj(y)]


ΓM−1

β


 ·


I −




M−1∏

j=0

dβ [βj(y)]


 ΓM

β



−1

.

For solving the system of equations (10), (11), we use the
idea for solution of integral equations of Fredholm of the
second type with degenerate kernel [10], [11].

First, let us apply on the left side operators V −1, W−1

to equations (10), (11); we have obtained a system of linear
equations:

v(x) =

n∑

i=1

Pi(V −1pi)(x) +
k∑

i=1

Ri(V −1ri)(x) + (V −1g)(x),

w(y) =

m∑

i=1

Qi(W−1qi)(y) +
l∑

i=1

Fi(W−1fi)(y) + (W−1h)(y).

Having integrated the first equation of system over inter-
vals [νj−1, νj ], j = 1, 2, ..., n corresponding to constants

Pj =
∫ νj

νj−1

v(x)dx,

and over intervals [εj−1, εj ], j = 1, 2, ..., l corresponding
to constants

Fj =
∫ εj

εj−1

v(x)dx,

and having subsequently integrated the second equation of
system over intervals [µj−1, µj ], j = 1, 2, ...,m correspond-
ing to constants

Qj =
∫ µj

µj−1

w(y)dy,

and over intervals [γj−1, γj ], j = 1, 2, ..., k corresponding
to constants
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Rj =
∫ γj

γj−1

w(y)dy

we have

Pj =

n∑

i=1

Pi

∫ νj

νj−1

(V −1pi)(x)dx +
k∑

i=1

Ri

∫ νj

νj−1

(V −1ri)(x)dx+

∫ νj

νj−1

(V −1g)(x)dx, j =1, 2, ..., n,

Fj =
n∑

i=1

Pi

∫ εj

εj−1

(V −1pi)(x)dx +
k∑

i=1

Ri

∫ εj

εj−1

(V −1ri)(x)dx+

∫ εj

εj−1

(V −1g)(x)dx, j =1, 2, ..., l,

Qj =

m∑

i=1

Qi

∫ µj

µj−1

(W−1qi)(y)dy +
l∑

i=1

Fi

∫ µj

µj−1

(W−1fi)(y)dy+

∫ µj

µj−1

(W−1h)(y)dy, j =1, 2, ...,m,

Rj =
m∑

i=1

Qi

∫ γj

γj−1

(W−1qi)(y)dy +
l∑

i=1

Fi

∫ γj

γj−1

(W−1fi)(y)dy+

∫ γj

γj−1

(W−1h)(y)dy, j =1, 2, ..., k.

With the following notation of integrals

pν
ji =

∫ νj

νj−1

(V −1pi)(x)dx, j =1, 2, ..., n,

rν
ji =

∫ νj

νj−1

(V −1ri)(x)dx, j =1, 2, ..., n,

gν
j =

∫ νj

νj−1

(V −1g)(x)dx, j =1, 2, ..., n,

pε
ji =

∫ εj

εj−1

(V −1pi)(x)dx, j =1, 2, ..., l,

rε
ji =

∫ εj

εj−1

(V −1ri)(x)dx, j =1, 2, ..., l,

gε
j =

∫ εj

εj−1

(V −1g)(x)dx, j =1, 2, ..., l,

qµ
ji =

∫ µj

µj−1

(W−1qi)(y)dy, j =1, 2, ..., m,

fµ
ji =

∫ µj

µj−1

(W−1fi)(y)dy, j =1, 2, ..., m,

hµ
ji

∫ µj

µj−1

(W−1h)(y)dy, j =1, 2, ..., m,

qγ
ji =

∫ γj

γj−1

(W−1qi)(y)dy, j =1, 2, ..., k

fγ
ji =

∫ γj

γj−1

(W−1fi)(y)dy, j =1, 2, ..., k

hγ
j =

∫ γj

γj−1

(W−1h)(y)dy, j =1, 2, ..., k

we have

Pj =
n∑

i=1

pν
ji Pi +

k∑

i=1

rν
ji Ri + gν

j , j = 1, 2, ..., n,

Qj =
m∑

i=1

qµ
ji Qi +

l∑

i=1

fµ
ji Fi + hµ

j , j = 1, 2, ..., m,

(12)

Fj =
n∑

i=1

pε
ji Pi +

k∑

i=1

rε
ji Ri + gε

j , j = 1, 2, ..., l

Rj =
m∑

i=1

qγ
jiQi +

l∑

i=1

fγ
jiFi + hγ

j , j = 1, 2, ..., k.

For convenience, we interchanged the position of the
second equation and the third equation. We obtain a system
of linear r = n + m + l + k algebraic equations with the
same number of unknowns

Pi =
∫ νi

νi−1

v(x)dx, i = 1, 2, ..., n,

Qi =
∫ µi

µi−1

w(y)dy, i = 1, 2, ..., m,
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Fi =
∫ εi

εi−1

v(x)dx, i = 1, 2, ..., l,

Ri =
∫ γi

γi−1

w(y)dy, i = 1, 2, ..., k.

Let us introduce vectors Z, G with r components Zj , and
Gj ,

Zi = Pi, i = 1, 2, ..., n,

Zn+i = Qi, i = 1, 2, ..., m,

Zn+k+i = Fi, i = 1, 2, ..., l,

Zn+k+m+i = Ri, i = 1, 2, ..., k

Gi = gν
j , i = 1, 2, ..., n,

Gn+i = hµ
i , i = 1, 2, ..., m,

Gn+k+i = gε
i , i = 1, 2, ..., l,

Gn+k+m+i = gγ
i , i = 1, 2, ..., k.

We rewrite the system of equations (12) in the standard
matrix form

∆Z = −G,

where ∆ is (
A11 A12

A21 A22

)
,

and

A11 =




pν
11−1 pν

12 . . . pν
1n 0 0 . . . 0

pν
21 pν

22−1 . . . pν
2n 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

pν
n1 pν

n2 . . . pν
nn−1 0 0 . . . 0

0 0 . . . 0 qµ
11−1 qµ

12 . . . qµ
1m

0 0 . . . 0 qµ
21 qµ

22−1 . . . qµ
2m

...
...

. . .
...

...
...

. . .
0 0 . . . 0 qµ

m1 qµ
m2 . . . qµ

mm−1




,

A12 =




0 0 . . . 0 rν
11 rν

12 . . . rν
1k

0 0 . . . 0 rν
21 rν

22 . . . rν
2k

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 rν
n1 rν

n2 . . . rν
nk

fµ
11 fµ

12 . . . fµ
1l 0 0 . . . 0

fµ
21 fµ

22 . . . fµ
2l 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

fµ
m1 fµ

m2 . . . fµ
ml 0 0 . . . 0




,

A21 =




pε
11 pε

12 . . . pε
1n 0 0 . . . 0

pε
21 pε

22 . . . pε
2n 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

pε
l1 pε

l2 . . . pε
ln 0 0 . . . 0

0 0 . . . 0 qγ
11 qγ

12 . . . qγ
1m

0 0 . . . 0 qγ
21 qγ

22 . . . qγ
2m

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 qγ
k1 qγ

k2 . . . qγ
km




,

A22 =




−1 0 . . . 0 rε
11 rε

12 . . . rε
1k

0 −1 . . . 0 rε
21 rε

22 . . . rε
2k

...
...

. . .
...

...
...

. . .
...

0 0 . . . −1 rε
l1 rε

l2 . . . rε
lk

fγ
11 fγ

12 . . . fγ
1l −1 0 . . . 0

fγ
21 fγ

22 . . . fγ
2l 0 −1 . . . 0

...
...

. . .
...

...
...

. . .
...

fγ
k1 fγ

k2 . . . fγ
kl 0 0 . . . −1




,

Let us assume that the determinant is different from zero
det∆ 6= 0.

The vector Z can be calculated using known formulas
or algorithms. After finding the constants Zi, we write the
solution of the balance system (10), (11). Thus, we have
found the equilibrium state of the cyclic model of the system
S. We obtain a state of the system to which it returns after
the time interval T :

v(x) =
n∑

i=1

Zi(V −1pi)(x)+
k∑

i=1

Zn+m+l+i(V −1ri)(x)+(V −1g)(x),

w(y) =
m∑

i=1

Zn+i(W−1qi)(y)+
l∑

i=1

Zn+m+i(W−1fi)(y)+(W−1h)(y).

V. RESULTS

We present cyclic models for systems with two renewable
resources. In modelling, the interactions and the reciprocal
influences between these two resources are taken into ac-
count. Analysis of the models is carried out in weighted
Holder spaces. A method for the solution of the balance
system of equations is proposed. The equilibrium state of
the system is found.

VI. CONCLUSIONS

On modelling systems with renewable resources, equations
with shift appear [7], [8]. The theory of linear functional
operators with shift is the adequate mathematical instrument
for the investigation of such systems. In this work, we study
systems with two renewable resources and our approach is
based on functional operators with shift. We constructed the
inverse operators with shift acting in the weighted Holder
spaces and used these operators to find the equilibrium state
of the considered systems.
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