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Abstract—This article considers the problem of evaluating
infinite-time (or finite-time) ruin probability under a given
compound Poisson surplus process. By approximating the
claim size distribution by a finite mixture exponential, say
Hyperexponential, distribution. It restates the infinite-time (or
finite-time) ruin probability as a solvable ordinary differential
equation (or a partial differential equation). Application of our
findings has been given though a simulation study.

Index Terms—Ruin probability, Compound Poisson Pro-
cesses, mixture exponential (Hyperexponential) distribution,
Heavy-tailed distributions.

I. INTRODUCTION

CONSIDER the following compound Poisson process

Ut = u+ ct−
N(t)∑
j=1

Xj , (1)

where X1, X2, · · · are a sequence of i.i.d. random variables
with common density function fX(·), N(t) is a Poisson
process with intensity rate λ, u and c stand for initial
wealth/reserve and premium of the process, respectively.

The finite-time and infinite-time ruin probabilities for the
above compound Poisson process are, respectively, denoted
by ψ(u;T ) and ψ(u) and defined by

ψ(u;T ) = P (τu ≤ T )

ψ(u) = P (τu <∞), (2)

where τu is the hitting time, i.e., τu := inf{t : Ut ≤ 0|U0 =
u}.

Ref. [15] among others, established that an infinite-time
ruin probability ψ(u) under a compound Poisson process can
be restated as the following integro-differential equation

cψ̃(1)(u)− λψ̃(u) + λ

∫ u

0

ψ̃(u− x)fX(x)dx = 0,(3)

where ψ̃(u) = 1− ψ(u) and lim
u→∞

ψ(u) = 0.

Ref. [24] showed that a finite-time ruin probability ψ(u;T )
under a compound Poisson process can be restated as the
following partial integro-differential equation

c

(
∂ψ̃(u;T )

∂u
−
∂ψ̃(u;T )

∂T

)
− λψ̃(u;T )

+λ

∫ u

0
ψ̃(u− x;T )fX(x)dx = 0, (4)

where ψ̃(u;T ) = 1 − ψ(u;T ) lim
u→∞

ψ(u;T ) = 0 for all
T > 0 and ψ(u; 0) = 0 for all u ≥ 0.
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Since the compound Poisson surplus process plays a vital
role in many actuarial models, several authors studies ruin
probability under surplus process (1). An excellent review for
infinite-time ruin probability can be found in [3]. For finite-
time ruin probability: [24] showed for exponential claim size
distribution partial integro-differential equation (4) can be
transformed into a second-order partial differential equation.
Ref. [1] considered a compound Poisson surplus process with
constant force of real interest. Then, they restated finite-time
ruin probability ψ(u;T ) as a gamma series expansion. Ref.
[14] provided a global Lagrange type approximation in the
z-space for ψ(u;T ) under surplus process (1). Ref. [2] and
[30] employed the Padé approximant method to approximate
ψ(u;T ) under surplus process (1). Ref. [18] using a mixture-
exponential approximated method to approximate infinite-
time and finite-time ruin probability.

This article in the first step approximates claim size density
function fX(·) with a finite mixture exponential, say Hyper-
exponential, density function f∗X(·). Then, it transforms two
integro-differential equations (3) and (4), respectively, into an
ordinary differential equation (ODE) and a partial differential
equation (PDE). A simulation study has been conducted to
show practical application of our findings.

The rest of this article is organized as follows. Some
mathematical background for the problem has been collected
in Section 2. Section 3 provides the main contribution of this
article. Applications of the results have been given in Section
4.

II. PRELIMINARIES

From hereafter now, we set
∑b
j=aAj = 0, for b < a.

The following recalls the exponential type T functions
which plays a vital role in the rest of this article.

Definition 1. An L1(R)∩L2(R) function f is said to be of
exponential type T on C if there are positive constants M
and T such that |f(ω)| ≤M exp{T |ω|}, for ω ∈ C.

The Fourier transforms of exponential type functions are
continuous functions which are infinitely differentiable ev-
erywhere and are given by a Taylor series expansion over
every compact interval, see [6], [19], [20], and [31] for more
details.

From the Hausdorff-Young Theorem, one can observe that
if {sn} is a sequence of functions converging, in L2(R)
sense, to s. Then, the Fourier transforms of sn converge,
in L2(R) sense, to the Fourier transform of s, see [17] for
more details. Using [13]’s method, [12] and [21] showed
that most of the common distributions do have characteristic
functions that can be extend to meromorphic functions.
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The following from [16] and [27] recalls Hausdorff-Young
inequality for the Laplace transform.

Lemma 1. Suppose h(·) is a given and nonnegative function
that f ∈ L1(R+)∩L2(R+). Then, ||h||2 ≤ 1√

π
||L(h)||2, where

L(h) stands for the Laplace transform.

The Schwarz integrability condition states that in situation
that all partial derivatives of a bivariate function exist and are
continuous, one may change order of partial derivatives, see
[4] for more details.

The following lemma provides useful results for the next
section.

Lemma 2. Suppose k(·) is a given and differentiable func-
tion and y(·) is an unknown function that satisfy∫ x

0

y(t)

(
n∑
i=1

ωiµie
−µi(x−t)

)
dt = k(x), x ≥ 0, (5)

where ωi, µi and µi are some given and nonnegative con-
stants. Then, the above integral equation can be transformed
into differential equation

0 =
n∑
i=1

ωiµiy
(n−1)(x) +

n∑
i=1

n∑
i ̸=i

ωiµiµjy
(n−2)(x)

−
n∑
i=1

n∑
i ̸=i

n∑
k>j,̸=i

ωiµiµjµky
(n−3)(x)

+

n∑
i=1

n∑
i ̸=i

n∑
k>j,̸=i

n∑
l>k,̸=i

ωiµiµjµkµly
(n−4)(x)

− · · ·+ (−1)n
n∑
i=1

n∏
j ̸=i

µjy
(0)(x)

−k(n)(x)−
n∑
i=1

µik
(n−1)(x)−

n∑
i=1

n∑
j ̸=i

µiµjk
(n−2)(x)

−
n∑
i=1

n∑
j ̸=i

n∑
k>j ̸=i

µiµjµkk
(n−3)(x)− · · · −

n∏
i=1

µik
(0)(x).

Proof. For n = 1 see [24]. For n > 1, set Ai = ωiµi
and hi(x) =

∫ x
0
y(t) exp{−µi(x− t)}dt. Using the fact that

the nth derivatives hi(x) with respect to x is h(n)i (x) =
(−µi)nhi(x) +

∑n−1
j=0 (−µi)n−1−jy(j)(x), one may restate

all first n derivatives of (5) as the following system of
equation.

k(n)(x) =
n∑
i=1

Ai

[
y(n−1)(x)− µiy

(n−2)(x) + · · ·

+(−µi)n−1y(0)(x) + (−µi)nhi(x)
]
,

k(n−1)(x) =

n∑
i=1

Ai

[
y(n−2)(x)− µiy

(n−3)(x) + · · ·

+(−µi)n−2y(0)(x) + (−µi)n−1hi(x)
]
,

k(n−2)(x) =
n∑
i=1

Ai

[
y(n−3)(x)− µiy

(n−4)(x) + · · ·

+(−µi)n−3y(0)(x) + (−µi)n−2hi(x)
]
,

...
...

...

k(0)(x) =
n∑
i=1

Aihi(x)

Multiplying both sides of: the first equation by
1, the second equation by

∑n
i=1 µi; the third

equation by
∑n
i=1

∑n
j>i µiµj ; the forth equation by∑n

i=1

∑n
j>i

∑n
k>j>i µiµjµk; and so on until the last

equation which multiplying its both sides by
∏n
i=1 µi, then

adding together all equations leads to the desired results. �

Hyperexponential distributions

The Hyperexponential (or mixture exponential) distribu-
tion is characterized by the number of n exponential dis-
tributions with means 1/µi and associated wight ωi ∈ R 1

(i.e.
∑n
i=1 ωi = 1). The density function for a n−component

Hyperexponential distribution is given by

f∗X(x) =
n∑
i=1

ωiµie
−µix, x ≥ 0. (6)

Ref. [7] showed that, one may approximate a large class of
distributions, including several heavy tail distributions such
as Pareto and Weibull distributions, arbitrarily closely, by
Hyperexponential distributions. Ref. [8] established that a
survival function at xγ , for all x > 0, is a completely
monotone function if and only if its corresponding density
function is a mixture of Weibull distributions with fixed
shape parameter 1/γ. Ref. [9] showed that any Weibull
distribution with shape parameter less than 1 can be restated
as a Hyperexponential distributions.

Using the Hausdorff-Young Theorem, the following pro-
vides error bound for approximating the claim size density
function fX(·) by Hyperexponential density function f∗X(·),
given by (6).

Lemma 3. Suppose random claim size X is surplus process
(1) has density function fX(·) and characteristic function
θX(·). Moreover, suppose that characteristic function θX(·)
is (or can be extend to) a meromorphic function. Then, (1)
density function of compound sum S(t) =

∑N(t)
i=1 Xi, say

fS(t)(·), can be approximated by density function fS∗(t)(·),
where S(t) =

∑N(t)
i=1 Yi and Yi is a n−component Hyper-

exponential distribution; (2) Error bound for such approxi-
mation satisfies ||fS(t) − fS∗(t)||2 ≤ λte−λt||θX − θY ||2, where
θY (s) =

∑n
j=1 ωiµj/(µi + s

√
−1).

Proof. Using the Hausdorff-Young Theorem, one may can
conclude that ||fS(t) − fS∗(t)||2 ≤ ||eλt(θX−1) − eλt(θY −1)||2.

The rest of proof arrives by using the fact that ψX and θY
are (or can be extend to) two meromorphic functions. �

III. RUIN PROBABILITY

This section utilizes integro-differential Equations (3) and
(4) to derive an approximate formula for the infinite (and
finite)-time ruin probability of a compound Poisson pro-
cess (1). We seek an analytical solution ψ̃(·) which is an
exponential type function. In the other word, we assume:
|ψ̃(ω)| ≤MeT |ω|, ω ∈ C, for some real numbers M and T
in R.

If this assumption is not met, as might be the case if, for
example, there are point masses in ψ(·), our method works,
but our error bounds may not be valid anymore.

The following theorem provides an (n + 1)−order ODE
for infinite-time ruin probability ψ(·) in the situation that
claim size distribution X has been approximated by an
n−component Hyperexponential density function f∗X(·).

Theorem 1. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential

1The hyperexponential Hn setup falls into the more general framework
of phase-type (PH) approximations. A main step of this article is that would
be to allow the wi in (6) to be negative; maybe this is already implicit in
the paper, but it should be mentioned.
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density function f∗X(·). Then, infinite-time survivals
probability ψ̃(·) of a compound Poisson process (1) can
be approximated by infinite-time survivals probability ψ̃∗(·)
which can be evaluated using the following (n + 1)−order
ODE.

∑n
i=1 λωiµiψ̃

(n−1)
∗ (u) +

∑n
i=1

∑n
i ̸=i λωiµiµj ψ̃

(n−2)
∗ (u) −∑n

i=1

∑n
i ̸=i
∑n
k>j,̸=i λωiµiµjµkψ̃

(n−3)
∗ (u) +∑n

i=1

∑n
i ̸=i
∑n
k>j,̸=i

∑n
l>k,̸=i λωiµiµjµkµlψ̃

(n−4)
∗ (u) +

· · · + (−1)n
∑n
i=1

∏n
j ̸=i µj ψ̃

(0)
∗ (u) −[

λψ̃
(n)
∗ (u)− cψ̃

(n+1)
∗ (u)

]
−
∑n
i=1 µi

[
λψ̃

(n−1)
∗ (u)− cψ̃

(n)
∗ (u)

]
−∑n

i=1

∑n
j ̸=i µiµj

[
λψ̃

(n−2)
∗ (u)− cψ̃

(n−1)
∗ (u)

]
−∑n

i=1

∑n
j ̸=i

∑n
k>j ̸=i µiµjµk

[
λψ̃

(n−3)
∗ (u)− cψ̃

(n−2)
∗ (u)

]
−

· · · −
∏n
i=1 µi

[
λψ̃

(0)
∗ (u)− cψ̃

(1)
∗ (u)

]
,= 0 with boundary

conditions that satisfy cψ̃
(m)
∗ (0) − λψ̃

(m−1)
∗ (0) +

λ
∑m−2
j=0 ψ̃

(j)
∗ (0)f (m−2−j)(0) = 0, for m = 1, · · · , n.

Proof. An application of Lemma (2) by changing k(u) 7→
−cψ̃(1)

∗ (u) + λψ̃∗(u), y(u) 7→ ψ̃∗(u), and ωi 7→ λωi lead to
the desired result. �

Using the fact that ψ̃∗(0) = 1−λE(X)/c, (see [10], Page
104) the above boundary condition equation leads to:

ψ̃
(1)
∗ (0) = ψ̃∗(0)

λ

c
,

ψ̃
(2)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
2 − (

λ

c
)fX (0)

]
,

ψ̃
(3)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
3 − 2fX (0)(

λ

c
)
2 − (

λ

c
)f

(1)
X

(0)

]
,

ψ̃
(4)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
4 − 3fX (0)(

λ

c
)
3

+ (
λ

c
)
2
[−2f

(1)
X

(0) + f
2
X (0)]

−(
λ

c
)f

(2)
X

(0)

]
,

ψ̃
(5)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
5 − 4(

λ

c
)
4
fX (0) + (

λ

c
)
3
[−3f

(1)
X

(0) + 3f
2
X (0)]

+(
λ

c
)
2
[−2f

(2)
X

(0) + 2fX (0)f
(1)
X

(0)] − (
λ

c
)f

(3)
X

(0)

]
,

ψ̃
(6)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
6 − 5(

λ

c
)
5
fX (0) + (

λ

c
)
4
[6f

2
X (0) − 4f

(1)
X

(0)]

+(
λ

c
)
3
[−3f

(2)
X

(0) + 6fX (0)f
(1)
X

(0) − f
3
X (0)]

]

+ψ̃∗(0)

[
(
λ

c
)
2
[2f

(3)
X

(0) + 2fX (0)f
(2)
X

(0) + f
(1)
X

(0)f
(1)
X

(0)]

−(
λ

c
)f

(4)
X

(0)

]
,

ψ̃
(7)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)
7 − 6(

λ

c
)
6
fX (0) + (

λ

c
)
5
[10f

2
X (0) − 5f

(1)
X

(0)]

+(
λ

c
)
4
[−4f

(2)
X

(0) + 7fX (0)f
(1)
X

(0) − 4f
(3)
X

(0)]

]

+ψ̃∗(0)(
λ

c
)
3
[
2f

(3)
X

(0) + 2fX (0)f
(1)
X

(0) + 3f
(1)
X

(0)f
(1)
X

(0)

−f(3)
X

(0) + 4fX (0)f
(2)
X

(0) − 3f
2
X (0)f

(1)
X

(0)

]

+ψ̃∗(0)

[
(
λ

c
)
2
[−2f

(4)
X

(0) + fX (0)f
(3)
X

(0) + 2f
(1)
X

(0)f
(2)
X

(0)

+f
(3)
X

(0)] − (
λ

c
)f

(5)
X

(0)

]

and so on.
The following provides error bound for approximating

infinite-time survivals probability ψ̃(·) by ψ̃∗(·).

Theorem 2. Suppose claim size density function fX(·)
has been approximated by an n−component Hyperexponen-
tial density function f∗X(·). Then, the infinite-time survival
probability ψ̃(u) of compound Poisson process (1) can be
approximated by ψ̃∗(u), given by Theorem (1), and its error
satisfies ||ψ(u) − ψ∗(u)||2 ≤ cλψ̃(0)√

πa21

∣∣∣∣∣∣φX(s)−
∑n
j=1

ωiµi
µi+s

∣∣∣∣∣∣
2
,

where a1 = sup{φX(s),
∑n
j=1

ωiµi
µi+s

} and φX(s) stands for
the characteristic function of random claim X.

Proof. Application of the Hausdorff-Young for Laplace
transform (Lemma 1) along with fact that L(g′(x);x; s) =
sL(g(x);x; s) − g(0) and L(

∫ x
0
(g(x − y)f(y)dy;x; s) =

L(g(x);x; s)L(f(x);x; s), one may conclude that

||ψ(u)− ψ∗(u)||2 ≤
1
√
π
||L(ψ̃)− L(ψ̃∗)||2

=
1
√
π

∣∣∣∣∣
∣∣∣∣∣ cψ̃(0)

cu− λ+ λL(f)
−

cψ̃(0)

cu− λ+ λL(f∗)

∣∣∣∣∣
∣∣∣∣∣
2

.

Application of inequality ||1/h1−1/h2||2 ≤ a−2||h1−h2||2,
where a = sup{h1, h2}, from [11] completes the desired
proof. �

The following theorem provides an (n + 1)−order PDE
for finite-time ruin probability ψ(·) in the situation that
claim size distribution X has been approximated by an
n−component Hyperexponential distribution function.

Theorem 3. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗X(·). Then, finite-time survivals probability
ψ̃(u;T ) of a compound Poisson process (1) can be approx-
imated by finite-time survivals probability ψ̃∗(u;T ) which
can be evaluated using the following (n+ 1)−order PDE.

0 =
n∑
i=1

λωiµi
∂n−1

∂un−1
ψ̃∗(u;T ) +

n∑
i=1

n∑
i̸=i

λωiµiµj
∂n−2

∂un−2
ψ̃∗(u;T )

−
n∑
i=1

n∑
i̸=i

n∑
k>j,̸=i

λωiµiµjµk

∂n−3

∂un−3
ψ̃∗(u;T )

+

n∑
i=1

n∑
i̸=i

n∑
k>j, ̸=i

n∑
l>k, ̸=i

λωiµiµjµkµl

∂n−4

∂un−4
ψ̃∗(u;T )

− · · · + (−1)
n

n∑
i=1

n∏
j ̸=i

µj
∂0

∂u0
ψ̃∗(u;T )

−

λ ∂n

∂un
ψ̃∗(u;T ) − c

∂n+1

∂un+1
ψ̃∗(u;T ) + c

∂n+1

∂T∂un
ψ̃∗(u;T )


−

n∑
i=1

µi

λ ∂n−1

∂un−1
ψ̃∗(u;T ) − c

∂n

∂un
ψ̃∗(u;T ) + c

∂n

∂T∂un−1
ψ̃∗(u;T )


−

n∑
i=1

n∑
j ̸=i

µiµj

λ ∂n−2

∂un−2
ψ̃∗(u;T ) − c

∂n−1

∂un−1
ψ̃∗(u;T )

+c
∂n−1

∂T∂un−2
ψ̃∗(u;T )


−

n∑
i=1

n∑
j ̸=i

n∑
k>j ̸=i

µiµjµk

λ ∂n−3

∂un−3
ψ̃∗(u;T ) − c

∂n−2

∂un−2
ψ̃∗(u;T )

+c
∂n−2

∂T∂un−3
ψ̃∗(u;T )


− · · · −

n∏
i=1

µi

λ ∂0

∂u0
ψ̃∗(u;T ) − c

∂1

∂u1
ψ̃∗(u;T ) + c

∂1

∂T1
ψ̃∗(u;T )

 ,

where ψ̃
(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ) and boundary
conditions that satisfy cψ̃

(m)
∗ (0;T ) − c ∂

∂T ψ̃
(m−1)
∗ (0;T ) −

λψ̃
(m−1)
∗ (0;T ) + λ

∑m−2
j=0 ψ̃

(j)
∗ (0;T )f

(n−2−j)
X (0) = 0, for

m = 1, · · · , n.

Proof. Using partial integro-differential equation (4) and
the Schwarz integrability condition, one may change order
of differentiation and obtain the above recursive formula
for boundary conditions. An application of Lemma (2) by
changing k(u) 7→ −c ∂∂u ψ̃∗(u;T ) + c ∂

∂T ψ̃∗(u;T ) + λψ̃∗(·),
y(u) 7→ ψ̃∗(u;T ), and ωi 7→ λωi lead to the desired result.
�

Using the fact that ψ̃∗(u; 0) = 1, ψ̃∗(0;T ) =∫ cT
0

FS,T (x)dx/(cT ), and FS,T (x) = P (
∑N(T )
j=1 Xj ≤ x),

for all x ∈ R+ (see [3], Page 121). One may compute the
following from boundary conditions from recursive formula
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given by Theorem (3).

ψ̃
(1)
∗ (0;T ) =

λ

c
ψ̃∗(0;T ) +

∂

∂T
ψ̃∗(0;T ),

ψ̃
(2)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
2 − (

λ

c
)fX (0)

]
+

∂

∂T
ψ̃
(1)
∗ (0;T ),

ψ̃
(3)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
3 − 2fX (0)(

λ

c
)
2 − (

λ

c
)f

(1)
X

(0)

]

+
∂

∂T
ψ̃
(2)
∗ (0;T ),

ψ̃
(4)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
4 − 3fX (0)(

λ

c
)
3

+(
λ

c
)
2
[−2f

(1)
X

(0) + f
2
X (0)] − (

λ

c
)f

(2)
X

(0)

]

+
∂

∂T
ψ̃
(3)
∗ (0;T ),

ψ̃
(5)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
5 − 4(

λ

c
)
4
fX (0)

+(
λ

c
)
3
[−3f

(1)
X

(0) + 3f
2
X (0)] + (

λ

c
)
2
[−2f

(2)
X

(0)

+2fX (0)f
(1)
X

(0)] − (
λ

c
)f

(3)
X

(0)

]
+

∂

∂T
ψ̃
(4)
∗ (0;T ),

ψ̃
(6)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
6 − 5(

λ

c
)
5
fX (0)

+(
λ

c
)
4
[6f

2
X (0) − 4f

(1)
X

(0)]

+(
λ

c
)
3
[−3f

(2)
X

(0) + 6fX (0)f
(1)
X

(0) − f
3
X (0)]

]

+ψ̃∗(0;T )

[
(
λ

c
)
2
[2f

(3)
X

(0) + 2fX (0)f
(2)
X

(0)

+f
(1)
X

(0)f
(1)
X

(0)] − (
λ

c
)f

(4)
X

(0)

]
+

∂

∂T
ψ̃
(5)
∗ (0;T ),

ψ̃
(7)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
7 − 6(

λ

c
)
6
fX (0)

+(
λ

c
)
5
[10f

2
X (0) − 5f

(1)
X

(0)]

+(
λ

c
)
4
[−4f

(2)
X

(0) + 7fX (0)f
(1)
X

(0) − 4f
(3)
X

(0)]

]

+ψ̃∗(0;T )(
λ

c
)
3
[
2f

(3)
X

(0) + 2fX (0)f
(1)
X

(0)

+3f
(1)
X

(0)f
(1)
X

(0) − f
(3)
X

(0) + 4fX (0)f
(2)
X

(0)

−3f
2
X (0)f

(1)
X

(0)

]

+ψ̃∗(0;T )

[
(
λ

c
)
2
[−2f

(4)
X

(0) + fX (0)f
(3)
X

(0)

+2f
(1)
X

(0)f
(2)
X

(0) + f
(3)
X

(0)] − (
λ

c
)f

(5)
X

(0)

]

+
∂

∂T
ψ̃
(6)
∗ (0;T ),

where ψ̃(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ).

Using the central limit theorem for compound sum
N(t)∑
i=1

Xi (see [10], §2.5, or [28], §1.9), one may provide

the following approximation for expression ψ̃∗(0;T ) =∫ cT
0

FS,T (x)dx/(cT )

ψ̃∗(0;T ) ≈
1

cT

∫ cT

0

Φ

(
x− λTm1√

λTm2

)
dx,

where mi = E(Xi), for i = 1, 2, and Φ(·) stands for
cumulative distribution function for standard normal distri-
bution, see [10], §2.5 ,or [28], §1.9, for other parametric
approximation approaches and [25] for a nonparametric
approximation approach. For heavy tailed random claim size
X that the ordinary central limit theorem does not work
properly. One has to employ an appropriated version of the
central limit theorem, see [26] and [5], among others, for
more details.

The following provides error bound for approximating
finite-time survivals probability ψ̃(u;T ) by ψ̃∗(u;T ).

Theorem 4. Suppose claim size density function fX(·) has
been approximated by an n−component Hyperexponential
density function f∗X(·). Then, the infinite-time survival prob-
ability ψ̃(u;T ) of compound Poisson process (1) can be

approximated by ψ̃∗(u;T ), given by Theorem (3), and its
error satisfies

||Error||2 ≤
λ
√
π

[
−
cψ̃(0;T )

a21
+
a2T

c
− cψ̃(0;T )a21a

2
2a3

]

×

∣∣∣∣∣∣
∣∣∣∣∣∣φX(s)−

n∑
j=1

ωiµi

µi + s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

where Error = ψ(u;T ) − ψ∗(u;T ), a1 =
sup{φX(s),

∑n
j=1

ωiµi
µi+s

}, a2 = sup{1/s − c/A(s), 1/s −
c/A∗(s)}, a2 = sup{eA(s)/cT , eA∗(s)/cT }, A(s) =
cs− λ+ λφX(s), A∗(s) = cs− λ+ λ

∑n
j=1 ωiµi/(µi+ s),

and φX(s) stands for the characteristic function of random
claim X.

Proof. Taking the Laplace transform from both sides of
Equation (4) leads to the following first-order PDE

A(s)L(ψ̃(u;T );u; s)−cψ̃(0;T )−c ∂
∂T

L(ψ̃(u;T );u; s) = 0,

where L(ψ̃(u; 1);u; s) = 1/s. Therefore, the Laplace trans-
form of finite-time ruin probability for compound Poisson
process (1) is

L(ψ̃(u;T );u; s) =
cψ̃(0;T )

A(s)
+

(
1

s
− cψ̃(0;T )

A(s)

)
eA(s)/cT .

The above finding along with an application of the
Hausdorff-Young for Laplace transform (Lemma 1) lead to

||E||2 ≤
1

√
π

||L(ψ̃(u;T );u; s) − L(ψ̃∗(u;T );u; s)||2

=
1

√
π

∣∣∣∣∣
∣∣∣∣∣ cψ̃(0;T )

A(s)
+

(
1

s
−
cψ̃(0;T )

A(s)

)
e
A(s)/cT

−
cψ̃(0;T )

A∗(s)
−
(

1

s
−
cψ̃(0;T )

A∗(s)

)
e
A∗(s)/cT

∣∣∣∣∣
∣∣∣∣∣
2

≤
cψ̃(0;T )
√
πa21

||A(s) − A∗(s)||2 +
b

√
π

∣∣∣∣∣
∣∣∣∣∣TA(s)

c
−
TA∗(s)

c

∣∣∣∣∣
∣∣∣∣∣
2

+
b

√
π

∣∣∣∣∣
∣∣∣∣∣ln( 1

s
−
cψ̃(0;T )

A(s)
) − ln(

1

s
−
cψ̃(0;T )

A∗(s)
)

∣∣∣∣∣
∣∣∣∣∣
2

,

where E = ψ(u;T )−ψ∗(u;T ), the second inequality arrives
by application of inequality ||1/h1 − 1/h2||2 ≤ a−2||h1 −
h2||2, and a = sup{h1, h2}, from [11], triangle inequality,
and the Mean value theorem (i.e., (exp{A(s)/cT + ln(1s −
cψ̃(0;T )
A(s) )}−exp{A∗(s)/cT +ln(1s −

cψ̃(0;T )
A∗(s)

)})/(A(s)/cT +

ln(1s −
cψ̃(0;T )
A(s) ) − A∗(s)/cT − ln(1s −

cψ̃(0;T )
A∗(s)

)) ≤ b where

b = sup{A(s)/cT + ln(1s − cψ̃(0;T )
A(s) ), A∗(s)/cT + ln( 1s −

cψ̃(0;T )
A∗(s)

)}).
Application of inequality || lnh1 − lnh2||2 ≤ ||h1 −

h2||2/a, where a = sup{h1, h2}, from [11] completes the
desired proof. �

IV. SIMULATION STUDY

Consider compound Poisson process (1) with intensity rate
λ = 1 and premium c = 1.1. This section conducts two
simulation studies to show practical application the about
findings.

Example 1. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Weibull(0.3,9.26053). Ref. [7] using a three-moment match-
ing algorithm showed that density function of random claim
X can be approximated by the following 2-component Hy-
perexponential density function

f∗X(x) = 0.000095e−0.019x + 1.348225e−1.355x. (7)
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For infinite-time ruin probability: Application of Theorem
(1) leads to the following second order ODE

1.1ψ̃
(3)
∗ (u) + 0.5114ψ̃

(2)
∗ (u) + 0.0026395ψ̃

(1)
∗ (u) = 0

with initial conditions ψ̃∗(0) = 0.0909090909, lim
u→0

ψ̃
(1)
∗ (u) =

0.08264462809, and lim
u→0

ψ̃
(2)
∗ (u) = −0.03629992491.

Solving the above ODE, one may approx-
imate finite-time survival probability ψ̃(u) of
compound Poisson process (1) by ψ̃∗(u) =
0.9974815963 − 0.2101123939e−0.01502369720u −
0.2873692025e−0.8589763028u.

For finite-time ruin probability: Application of Theo-
rem (3) leads to the following PDE 1.1 ∂3

∂u3 ψ̃∗(u;T ) +

0.5114 ∂2

∂u2 ψ̃∗(u;T )−0.0539995 ∂1

∂u1 ψ̃∗(u;T )−1.1 ∂3

∂u2∂T
ψ̃∗(u;T )−

1.5114 ∂2

∂u∂T
ψ̃∗(u;T ) − 0.0283195 ∂

∂T
ψ̃∗(u;T ) = 0with initial

conditions ψ̃∗(u, 0) = 0, ψ̃∗(0;T ) = β(T ), lim
u→20

ψ̃∗(u;T ) =

1, lim
u→0

∂

∂u
ψ̃∗(u;T ) = 0.9091β(T ) +

∂

∂T
β(T ), where β(T ) =

1
1.1T

∫ 1.1T
0 Φ

(
x−T√
29.36T

)
dx.

Solving the above PDE, one may approximate finite-time
survival probability ψ̃(u;T ) of compound Poisson process
(1) by ψ̃∗(u;T ).

Example 2. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Gamma(0.7310,1). Ref. [30] using the Padé approximant
method showed that density function of random claim X
can be approximated by by the following 3-component Hy-
perexponential density function

f∗X(x) = 0.8099e−3.2398x + 0.3616e−1.4465x

+0.5198e−1.0396x. (8)

For infinite-time ruin probability: Application of Theorem
(1) leads to the following second order ODE 1.1ψ̃

(4)
∗ (u) +

5.29849ψ̃
(3)
∗ (u) + 6.479507012ψ̃

(2)
∗ (u) + 1.797919457ψ̃

(1)
∗ (u) =

0with initial conditions ψ̃∗(0) = 0.3354861821, lim
u→0

ψ̃
(1)
∗ (u) =

0.3049874383, lim
u→0

ψ̃
(2)
∗ (u) = −0.2385743202, and lim

u→20
ψ̃∗(u) =

1.

Solving the above ODE, one may approximate infinite-
time survival probability ψ̃(u) of compound Poisson process
(1) by ψ̃∗(u) = 1− 0.013037e−3.073097u − 0.008568e−1.349630u −
0.642908e−0.394082u.

For finite-time ruin probability: Application
of Theorem (3) leads to the following PDE
1.1 ∂4

∂u4 ψ̃∗(u;T )+5.29849 ∂3

∂u3 ψ̃∗(u;T )+6.479507012 ∂2

∂u2 ψ̃∗(u;T )+

1.797919457 ∂
∂u
ψ̃∗(u;T ) − 5.359146 ∂

∂T
ψ̃∗(u;T ) −

10.5141 ∂2

∂u∂T
ψ̃∗(u;T ) − 6.2985 ∂3

∂u2∂T
ψ̃∗(u;T ) −

1.1 ∂4

∂u3∂T
ψ̃∗(u;T ) = 0 with initial conditions

ψ̃∗(u, 0) = 0, ψ̃∗(0;T ) = β(T ), lim
u→20

ψ̃∗(u;T ) = 1,

lim
u→0

∂

∂u
ψ̃∗(u;T ) = 0.9091β(T ) +

∂

∂T
β(T ), lim

u→0

∂

∂u
ψ̃∗(u;T ) =

−0.71113β(T ) + 0.9091
∂

∂T
β(T ) +

∂2

∂T 2
β(T ),where

β(T ) = 1
1.1T

∫ 1.1T

0
Φ
(
x−0.7309651999T√

0.7309651995T

)
dx.

Solving the above PDE, one may approximate finite-time
survival probability ψ̃(u;T ) of compound Poisson process
(1) by ψ̃∗(u;T ).

It worthwhile to mention that: A given density function
(or a density function corresponding to a given data set) can
be approximated by a Hyperexponential distribution using a
Matlab package called “bayesf”, see [29] for more details.

V. CONCLUSION AND SUGGESTIONS

This article approximates claim size density function
fX(·) by a n−component Hyperexponential density function
f∗X(·). Then, it restates the problem of finding an infinite-
time (or finite-time) ruin probability as a (n+ 1)−order or-
dinary differential equation (or a partial differential equation
for finite-time ruin probability). Application of our findings
has been given though a simulation study.

Certainly the following generalized Hyperexponential dis-
tribution can be provided a more accurate approximation in
the situation that the true density function (or recorded data)
has more than one mode.

gGHEX (x) =

n∑
i=1

ωiµie
−µi(x−bi)I[bi,∞)(x). (9)

In such situation the finite and infinite ruin probabilities can
be evaluated using the following lemma.

Lemma 4. Suppose claim size density function fX(·) has
been approximated by generalized Hyperexponential distri-
bution gGHEX (·). The survival probability can be found by
the following two inverse Laplace transforms.

(i) The Laplace transform of the infinite-time survival
probability can be found by the following equation

L
(
ψ̃(u);u; s

)
=

cψ̃(0)

cs− λ+ λ
∑k
i=1

ωiµi
µi+s

e−sbi

(ii) The Laplace transform of the finite-time survival
probability can be found by the following equation

L
(
ψ̃(u;T );u; s

)
=

cψ̃(0;T )

B(s)
+

(
1

s
−
cψ̃(0;T )

B(s)

)
e
B(s)
cT ,

where B(s) = cs− λ+ λ
∑k
i=1

ωiµi
µi+s

e−sbi .

Proof. The desired result arrives by taking a Laplace
transform from both sides of equations (3) and (4) and solv-
ing corresponding first-order PDE with boundary condition
ψ̃(u; 0) = 1 or L(ψ̃(u; 0);u; s) = 1/s. � Another possibility
can be using a Lévy process to evaluate the ruin probability,
see [22] and [23] for more details.
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