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Abstract—This paper is concerned with the parameter es-
timation problem for Vasicek model driven by small Lévy
noises from discrete observations. The explicit formula of
the least squares estimators are obtained and the estimation
error is given. By using Cauchy-Schwarz inequality, Gronwall’s
inequality, Markov inequality and dominated convergence, the
consistency of the least squares estimators are proved when a
small dispersion coefficient ε → 0 and n → ∞ simultaneously.
The simulation is made to verify the effectiveness of the
estimators.

Index Terms—Least squares estimator, Lévy noises, discrete
observations, consistency.

I. INTRODUCTION

Stochastic differential equations are of great importance
for studying random phenomena and are widely used in the
modeling of stochastic phenomena in the fields of physics,
chemistry, medicine and finance [4], [16]. However, part or
all of the parameters in stochastic differential equations are
always unknown. In the case of stochastic models driven
by Brownian motion, the popular methods are maximum
likelihood estimation and Bayes estimation when the pro-
cesses can be observed continuously [7], [9], [20], [21].
When the process is observed only at discrete times, the
explicit expression of the likelihood function can not be
given. Hence, some approximate likelihood methods have
been proposed [1], [3], [5], [14], [15]. The least squares
estimation is asymptotically equivalent to the maximum
likelihood estimation and has been used to estimate the
parameters for stochastic differential equations [12], [17].
But, in fact, non-Gaussian noise can more accurately reflect
the practical random perturbation. Lévy noise, as a kind of
important non-Gaussian noise, has attracted wide attention
in the research and practice in the fields of engineering,
economy and society. From a practical point of view in
parametric inference, it is more realistic and interesting
to consider asymptotic estimation for stochastic differential
equations with small Lévy noises. Recently, a number of
literatures have been devoted to the parameter estimation for
the models driven by small Lévy noises. When the coefficient
of the Lévy jump term is constant, drift parameter estimation
has been investigated by some authors [8], [10], [11].

Vasicek model, which was introduced by Oldrich Alfons
Vasicek in 1977( [19]), is a mathematical model describing
the evolution of interest rates. It is a type of one-factor
short rate model as it describes interest rate movements as
driven by only one source of market risk. The model can

This work was supported in part by the key research projects of uni-
versities under Grant 18A110006 and Anyang Normal University scientific
research fund project under Grant AYNUKP-2017-B20.

Chao Wei is with the School of Mathematics and Statistics,
Anyang Normal University, Anyang 455000, China.(Email:
chaowei0806@aliyun.com..

be used in the valuation of interest rate derivatives, and
has also been adapted for credit markets. It is known that
parameter estimation for Vasicek model driven by Brownian
motion has been well developed( [13], [18], [22]). However,
some features of the financial processes cannot be captured
by the Vasicek model, for example, discontinuous sample
paths and heavy tailed properties. Therefore, it is natural to
replace the Brownian motion by the Lévy process. Recently,
the parameter estimation problems for Vasicek model driven
by small Lévy noises have been studied by some authors.
For example, Davis( [6]) used Malliavin calculus and Monte
Carlo estimation to study the estimator of the Vasicek model
driven by jump process, Bao( [2]) developed the approximate
bias of the ordinary least squares estimator of the Vasicek
model driven by continuous-time Lévy processes. But, in (
[2]), only one parameter has been considered, the explicit
expression of the estimation error and the consistency of the
estimators have not been discussed in both Davis( [6]) and (
[2]).

In this paper, we consider the parameter estimation for
Vasicek model driven by small Lévy noises from discrete
observations. The explicit formula of all parameter estimators
and the estimation error are derived and the consistency of
the estimators are proved. Firstly, the process is discreted
based on Euler-Maruyama scheme, the least squares method
is used to obtain the explicit formula of the estimators and
the estimation errors are given as well. Then, the consistency
of the least squares estimators are proved by applying the
Cauchy-Schwarz inequality, Gronwall’s inequality, Markov
inequality and dominated convergence when the small disper-
sion coefficient ε → 0 and n → ∞ simultaneously. Finally,
the simulation result is provided to verify the effectiveness
of the obtained estimators.

This paper is organized as follows. In Section 2, the
Vasicek model driven by small Lévy noises is introduced, the
contrast function is given and the explicit formula of the least
squares estimators are obtained. In Section 3, the estimation
errors are derived and the consistency of the estimators are
proved. In Section 4, some simulation results are made. The
conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let (Ω,F ,P) be a basic probability space equipped
with a right continuous and increasing family of σ-algebras
({Ft}t≥0). Let (Lt, t ≥ 0) be an ({Ft})-adapted Lévy
noises with decomposition

Lt = Bt +

∫ t

0

∫
|z|>1

zN(ds, dz) +

∫ t

0

∫
|z|≤1

zÑ(ds, dz),

(1)
where (Bt, t ≥ 0) is a standard Brownian motion, N(ds, dz)
is a Poisson random measure independent of (Bt, t ≥
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0) with characteristic measure dtν(dz), and Ñ(ds, dz) =
N(ds, dz) − ν(dz) is a martingale measure. We assume
that ν(dz) is a Lévy measure on R\0 satisfying

∫
(|z|2 ∧

1)ν(dz) <∞.
In this paper, we study the parameter estimation for

Vasicek model driven by small Lévy noises described by
the following stochastic differential equation:{

dRt =(a− bRt)dt+ εdLt, t ∈ [0, 1]

R0 =r0,
(2)

where a and b are unknown parameters. Without loss of
generality, it is assumed that ε ∈ (0, 1].

Consider the following contrast function

Yn,ε(a, b) =
n∑

i=1

|Rti −Rti−1 − (a− bRti−1)∆ti−1|2, (3)

where ∆ti−1 = ti − ti−1 = 1
n .

It is easy to obtain the estimators

ân,ε =
n
∑n

i=1(Rti −Rti−1)Rti−1

∑n
i=1Rti−1

(
∑n

i=1Rti−1)2 − n
∑n

i=1R
2
ti−1

−
n
∑n

i=1(Rti −Rti−1
)
∑n

i=1R
2
ti−1

(
∑n

i=1Rti−1
)2 − n

∑n
i=1R

2
ti−1

b̂n,ε =
n
∑n

i=1(Rti −Rti−1
)
∑n

i=1Rti−1

(
∑n

i=1Rti−1)2 − n
∑n

i=1R
2
ti−1

−
n2

∑n
i=1(Rti −Rti−1)Rti−1

(
∑n

i=1Rti−1)2 − n
∑n

i=1R
2
ti−1

(4)

Before giving the main results, we introduce some assump-
tions below.

Let R0 = (R0
t , t ≥ 0) be the solution to the underlying

ordinary differential equation under the true value of the
parameter:

dR0
t = (a0 − b0R0

t )dt, R0
0 = r0.

Assumption 1: a0 and b0 are positive true valves of the
parameters.

Assumption 2: inf0≤t≤1{Rt} > 0.
In the next sections, the consistency of the least squares

estimators are derived and the simulation is made to verify
the effectiveness of the estimators.

III. MAIN RESULT AND PROOFS

First of all, we introduce some lemmas which are of great
importance for proving the main results.

Lemma 1: Let Nn,ε
t = R[nt]/n, in which [nt] denotes the

integer part of nt. The sequence {Nn,ε
t } converges to the

deterministic process {R0
t } uniformly in probability as ε→ 0

and n→∞.
Proof: Observe that

Rt −R0
t = b0

∫ t

0

(Rs −R0
s)ds+ εLt. (5)

By using the Cauchy-Schwarz inequality, we find that

|Rt −R0
t |2

≤ 2b20|
∫ t

0

(Rs −R0
s)ds|2 + 2ε2|Lt|2

≤ 2b20t

∫ t

0

|Rs −R0
s|2ds+ 2ε2 sup

0≤s≤t
|Ls|2

.

According to the Gronwall’s inequality, we obtain

|Rt −R0
t |2 ≤ 2ε2e2b

2
0t

2

sup
0≤s≤t

|Ls|2. (6)

Then, it follows that

sup
0≤t≤T

|Rt −R0
t | ≤

√
2εeb

2
0T

2

sup
0≤t≤T

|Lt|. (7)

Therefore, for each T > 0, it is easy to check that

sup
0≤t≤T

|Rt −R0
t |

P→ 0. (8)

As [nt]/n → t when n → ∞, we conclude that the
sequence {Nn,ε

t } converges to the deterministic process
{R0

t } uniformly in probability as ε → 0 and n → ∞. The
proof is complete.

Lemma 2: As ε→ 0 and n→∞,
n∑

i=1

Rti−1
(Lti − Lti−1

)
P→

∫ 1

0

R0
sdLs.

Proof: Note that
n∑

i=1

Rti−1
(Lti − Lti−1

) =

∫ 1

0

Nn,ε
s dLs. (9)

Then, it is elementary to see that

|
∫ 1

0

Nn,ε
s dLs −

∫ 1

0

R0
sdLs|

= |
∫ 1

0

(Nn,ε
s −R0

s)dBs

+

∫ 1

0

∫
|z|>1

(Nn,ε
s −R0

s)zN(ds, dz)

+

∫ 1

0

∫
|z|≤1

(Nn,ε
s −R0

s)zÑ(ds, dz)|

≤ |
∫ 1

0

(Nn,ε
s −R0

s)dBs|

+ |
∫ 1

0

∫
|z|>1

(Nn,ε
s −R0

s)zN(ds, dz)|

+ |
∫ 1

0

∫
|z|≤1

(Nn,ε
s −R0

s)zÑ(ds, dz)|.

It can be easily to check that

|
∫ 1

0

∫
|z|>1

(Nn,ε
s −R0

s)zN(ds, dz)|

≤
∫ 1

0

∫
|z|>1

|Nn,ε
s −R0

s||z|N(ds, dz)

≤ sup
0≤s≤1

|Nn,ε
s −R0

s|
∫ 1

0

∫
|z|>1

|z|N(ds, dz)

P→ 0,

as ε→ 0 and n→∞.
By using the Markov inequality and dominated con-

vergence, we have |
∫ 1

0
(Nn,ε

s − R0
s)dBs|

P→ 0 and
|
∫ 1

0

∫
|z|≤1(Nn,ε

s −R0
s)zÑ(ds, dz)| P→ 0.

Thus, combining the previous results, it follows that
n∑

i=1

Rti−1
(Lti − Lti−1

)
P→

∫ 1

0

R0
sdLs. (10)
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The proof is complete.
In the following theorem, the consistency in probability

of the least squares estimators are proved by using Cauchy-
Schwarz inequality, Gronwall’s inequality, Markov inequality
and dominated convergence.

Theorem 1: When ε → 0 and n → ∞, the least squares
estimators â and b̂ are consistent in probability, namely

ân,ε
P→ a0, b̂n,ε

P→ b0.

Proof: By using the Euler-Maruyama scheme, from (2),
we have

Rti −Rti−1
= (a0− b0Rti−1

)∆ti−1 + ε(Lti −Lti−1
). (11)

Then, it is easy to see that
n∑

i=1

(Rti−Rti−1) = a0−
1

n
b0

n∑
i=1

Rti−1
+ε

n∑
i=1

(Lti−Lti−1
),

(12)
and

n∑
i=1

(Rti −Rti−1
)Rti−1

(13)

=
1

n
a0

n∑
i=1

Rti−1 −
1

n
b0

n∑
i=1

R2
ti−1

+ ε

n∑
i=1

(Lti − Lti−1)Rti−1 .

Substituting (12) and (13) into the expression of ân,ε, it
follows that

ân,ε − a0

=
nε

∑n
i=1Rti−1

∑n
i=1Rti−1

(Lti − Lti−1
)

(
∑n

i=1Rti−1
)2 − n

∑n
i=1R

2
ti−1

−
nε

∑n
i=1R

2
ti−1

∑n
i=1(Lti − Lti−1

)

(
∑n

i=1Rti−1
)2 − n

∑n
i=1R

2
ti−1

=
ε 1
n

∑n
i=1Rti−1

∑n
i=1Rti−1

(Lti − Lti−1
)

( 1
n

∑n
i=1Rti−1

)2 − 1
n

∑n
i=1R

2
ti−1

−
ε 1
n

∑n
i=1R

2
ti−1

∑n
i=1(Lti − Lti−1

)

( 1
n

∑n
i=1Rti−1)2 − 1

n

∑n
i=1R

2
ti−1

Let
RN = inf

0≤ti−1≤1
{Rti−1

}, (14)

and
RM = sup

0≤ti−1≤1
{Rti−1}. (15)

.
We make an assumption that RN 6= RM .
From (15), it follows that

1

n

n∑
i=1

Rti−1 ≤ RM <∞,

and
1

n

n∑
i=1

R2
ti−1
≤ R2

M <∞,

Therefore, from Lemma 1 and Lemma 2, when ε→ 0 and
n→∞, we have

ε
1

n

n∑
i=1

Rti−1

n∑
i=1

Rti−1
(Lti − Lti−1

)
P→ 0, (16)

and

ε
1

n

n∑
i=1

R2
ti−1

n∑
i=1

(Lti − Lti−1
)

P→ 0. (17)

Under the assumption that RN 6= RM , it is obviously that

(
1

n

n∑
i=1

Rti−1
)2 − 1

n

n∑
i=1

R2
ti−1

< 0. (18)

From (14) and (15), it follows that

(
1

n

n∑
i=1

Rti−1
)2 − 1

n

n∑
i=1

R2
ti−1

> R2
N −R2

M . (19)

Then, we have

1

( 1
n

∑n
i=1Rti−1)2 − 1

n

∑n
i=1R

2
ti−1

<
1

R2
N −R2

M

<∞.

(20)
Combining the previous arguments, when ε→ 0, n→∞,

we have
ân,ε

P→ a0. (21)

Since

b̂n,ε − b0

=
(ân,ε − a0) 1

n

∑n
i=1Rti−1

1
n

∑n
i=1R

2
ti−1

−
ε
∑n

i=1(Lti − Lti−1)Rti−1

1
n

∑n
i=1R

2
ti−1

.

As 1
n

∑n
i=1R

2
ti−1
≥ R2

N > 0, we get that 1
1
n

∑n
i=1 R2

ti−1

≤
1

R2
N
<∞.

Together with the results that ân,ε − a0
P→ 0 and

ε
∑n

i=1Rti−1(Lti − Lti−1)
P→ 0, it follows that

b̂n,ε − b0
P→ 0, (22)

as ε→ 0 and n→∞.
Therefore, ân,ε and b̂n,ε are consistent in probability. The

proof is complete.
Theorem 2: When ε→ 0 and n→∞,

ε−1(ân,ε − a0)
P→

∫ 1

0
R0

sds
∫ 1

0
R0

sdLs − L1

∫ 1

0
(R0

s)2ds

(
∫ 1

0
R0

sds)
2 −

∫ 1

0
(R0

s)2ds
,

and

ε−1(̂bn,ε − b0)
P→

∫ 1

0
R0

sdLs − L1

∫ 1

0
R0

sds

(
∫ 1

0
R0

sds)
2 −

∫ 1

0
(R0

s)2ds
.

Proof: Since

ε−1(ân,ε − a0)

=
1
n

∑n
i=1Rti−1

∑n
i=1Rti−1

(Lti − Lti−1
)

( 1
n

∑n
i=1Rti−1)2 − 1

n

∑n
i=1R

2
ti−1

−
1
n

∑n
i=1R

2
ti−1

∑n
i=1(Lti − Lti−1)

( 1
n

∑n
i=1Rti−1

)2 − 1
n

∑n
i=1R

2
ti−1

.

According to the Lemma 2, it is easy to check that

1

n

n∑
i=1

Rti−1

P→
∫ 1

0

R0
sds,
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and
1

n

n∑
i=1

R2
ti−1

P→
∫ 1

0

(R0
s)2ds.

Together with the results that
∑n

i=1Rti−1
(Lti−Lti−1

)
P→∫ 1

0
R0

sdLs and
∑n

i=1(Lti − Lti−1
) = L1, it follows that

ε−1(ân,ε − a0)
P→

∫ 1

0
R0

sds
∫ 1

0
R0

sdLs − L1

∫ 1

0
(R0

s)2ds

(
∫ 1

0
R0

sds)
2 −

∫ 1

0
(R0

s)2ds
.

Since

ε−1(̂bn,ε − b0) =
ε−1(ân,ε − a0) 1

n

∑n
i=1Rti−1

1
n

∑n
i=1R

2
ti−1

−
∑n

i=1(Lti − Lti−1)Rti−1

1
n

∑n
i=1R

2
ti−1 .

From above results, we obtain that

ε−1(̂bn,ε − b0)
P→

∫ 1

0
R0

sdLs − L1

∫ 1

0
R0

sds

(
∫ 1

0
R0

sds)
2 −

∫ 1

0
(R0

s)2ds
.

The proof is complete.

IV. SIMULATION

In this experiment, we generate a discrete sample
(Rti−1

)i=1,...,n and compute ân,ε and b̂n,ε from the sample.
We let r0 = 0.05. For every given true value of the
parameters-(a0, b0), the size of the sample is represented
as“Size n” and given in the first column of the table. In
Table 1, ε = 0.01, the size is increasing from 500 to 5000.
In Table 2, ε = 0.001, the size is increasing from 5000 to
50000. The tables list the value of “a0−LSE”,“b−LSE”and
the absolute errors (AE) of LSE, LSE means least squares
estimator.

Two tables illustrate that when n is large enough and ε is
small enough, the obtained estimators are very close to the
true parameter value. Therefore, the methods used in this
paper are effective and the obtained estimators are good.

TABLE I
LSE SIMULATION RESULTS OF a0 AND b0

True Aver AE

(a0, b0) Size n a0 −
LSE

b0 −
LSE

a0 b0

(1,1)

500 0.9651 0.9563 0.0349 0.0437

1000 0.9732 0.9674 0.0268 0.0326

5000 0.9868 0.9782 0.0132 0.0218

(2,3)

500 1.9685 2.9637 0.0315 0.0363

1000 2.0246 3.0212 0.0246 0.0212

5000 2.0124 3.0108 0.0124 0.0108

(4,5)

500 3.9686 4.9684 0.0314 0.0316

1000 3.9782 4.9764 0.0218 0.0236

5000 3.9831 4.9875 0.0169 0.0125

TABLE II
LSE SIMULATION RESULTS OF a0 AND b0

True Aver AE

(a0, b0) Size n a0 −
LSE

b0 −
LSE

a0 b0

(1,1)

5000 0.9963 0.9980 0.0037 0.0020

10000 0.9985 0.9989 0.0015 0.0011

50000 0.9996 0.9997 0.0004 0.0003

(2,3)

5000 1.9974 2.9972 0.0026 0.0028

10000 2.0012 3.0012 0.0012 0.0012

50000 2.0003 3.0004 0.0003 0.0004

(4,5)

5000 3.9978 4.9972 0.0022 0.0028

10000 4.0012 4.0016 0.0012 0.0016

50000 4.0005 4.0006 0.0005 0.0006

V. CONCLUSION

In this paper, the parameter estimation for Vasicek model
driven by small Lévy noises has been studied from discrete
observations. The least squares method has been used to
obtain the estimators. The explicit formula of the estima-
tion error has been given and the consistency of the least
squares estimators has been proved. Further research topics
will include the parameter estimation for general nonlinear
stochastic differential equations driven by lévy noises.

REFERENCES

[1] Y. Ait-Sahalia, “Maximum likelihood estimation of discretely-sampled
diffusions: a closed form approximation approach,” Econometrica,
vol. 70, no. 1, pp. 223-262, 2002.

[2] Y. Bao, A. Ullah, Y. Wang, J. Yu, “Bias in the estimation of
mean reversion in continuous-time lévy processes,” Economics Letters,
vol. 134, no. 1, pp. 16-19, 2015.

[3] B. Bibby, M. Sqrensen, “Martingale estimation functions for discretely
observed diffusion processes,” Bernoulli, vol. 1, no. 1, pp. 17-39, 1995.

[4] J. P. N. Bishwal, Parameter estimation in stochastic differential equa-
tions, Springer-Verlag, London, 2008.

[5] J. W. Cai, P. Chen, X. Mei, “Range-based threshold spot volatility
estimation for jump diffusion models,” IAENG International Journal
of Applied Mathematics, vol. 47, no. 1, pp 43-48, 2017.

[6] M. H. A. Davis, M. P. Johansson, “Malliavin monte carlo greeks
for jump diffusions, Stochastic Processes and Their Applications,”
vol. 116, no. 1, pp. 101-129, 2006.

[7] T. Deck, “Asymptotic properties of Bayes estimators for Gaussian Itô
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