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Abstract—In this work, we are interested in M/G/1 retrial
queue with priority customers, Bernoulli schedule, FCFS orbit
and general retrial times, which stochastic analysis have been
performed in the literature. Our contribution consists in the
study of the asymptotic behaviour of the number of customers
in the retrial group under heavy traffic and also low retrial rate.
We present some numerical illustrations to support the obtained
theoretical results.

Index Terms—Retrial queue with priority, General retrial
times, retrial group, waiting line, Asymptotic Behavior.

I. INTRODUCTION

Retrial queues are characterized by the feature that arriving
customers, who find the service area busy, join the retrial group
(orbit) and reply for service at random intervals. The models
in question arise in the analysis of different communication
systems: cellular mobile networks, IP networks, LAN operat-
ing under transmission protocols like CSMA/CD, .... There is
an extensive literature on retrial queues and their applications.
For an accessible bibliography on this topic, we refer to [3],
[4], [21].

Retrial queueing systems can be classified into two cate-
gories according to the number of different customers: models
with single type of customers and models with several types of
customers (these latter’s can include the priority phenomenon).
Several authors have studied retrial queues with priorities.
A review of the main results exists in [2], [11]. In related
bibliography, it is frequently assumed that the high priority
customers are queued and served according to some discipline
whereas low priority ones (in case of blocking) leave the
service area and retry until they find the server idle. Moreover,
the high priority customers have either preemptive or non-
preemptive priority over low priority customers [5], [8], [9],
[14]. In recent contributions, retrial queueing systems with
priority mechanism are analyzed in various combinations [13],
[18], [19], [23].

The greater part of the research on retrial queues is based on
the fact that the retrials operate under classical retrial policy,
which suppose that the intervals between successive repeated
attempts are exponentially distributed with total rate jθ ( j is
the number of customers in the retrial group). There is another
discipline, called constant retrial policy, where the total retrial
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rate does not depend on the number of customers in the retrial
group: the customers form a queue and only the customer at
the head of this queue can request a service. The discipline
in question was introduced by Fayolle [15] for exponentially
distributed retrial times and studied by Gomez-Corral [16] for
single server queue with general retrial and service times. The
recent contributions on this topic include [6], [10], [12], [20],
[22], [24]. The stability of single server retrial queues under
general distribution for retrial times was discussed in [17].

In this work, we consider a single server queueing system
at which primary customers arrive according to a Poisson
process with rate λ > 0. An arriving customer receives an
immediate service if the server is idle; otherwise he decides
either to enter the orbit with probability p or to join the
waiting space (of infinite capacity) with probability (1− p).
We assume that only the customer at the head of the orbit
is allowed for access to the server. The orbiting customer
in question will repeatedly retry until the time at which he
finds the server idle and starts his service. There is a retrial
queue with FCFS orbit. The retrial times follow a general
distribution with distribution function A(x), Laplace-Stieltjes
transform Ã(s) =

∫
∞

0 e−sxdA(x),Re(s) > 0 and kth moment
αk = (−1)kÃ(k)(0). It is clear that an orbiting customer can be
admitted for service only if the waiting space is empty. Thus,
the queued customers (which are served in FCFS discipline)
have non preemptive priority over those in the orbit. At
any service completion, the server becomes idle only when
the priority queue is empty and a competition between an
exponential distribution of rate λ and general retrial time
distribution of rate θ = 1

α1
determines the next customer to

be served. The service times follow a general distribution
with distribution function B(x) and Laplace-Stieltjes transform
B̃(s) =

∫
∞

0 e−sxdB(x),Re(s)> 0. Let βk = (−1)kB̃(k)(0) be the
kth moment of the service time about the origin, ρ = λβ1 be
the load of the system, ki j =

∫
∞

0
(λ (1−p)x)i

i!
(λ px) j

j! e−λxdB(x) be
the joint distribution of the number of customers arriving at
the priority queue and the orbit during a service time with
generating function

K(z1,z2) =
∞

∑
i=0

∞

∑
j=0

ki jziz j = B̃(λ −λ (1− p)z1−λ pz2).

Finally, we admit the hypothesis of mutual independence
between all random variables defined above.

The state of the system at time t can be described by means
of the process
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{
C(t),Nq(t),No(t),ξ1(t),ξ2(t), t ≥ 0

}
, (1)

where Nq(t) and No(t) are the numbers of customers in the
priority queue and in the orbit, respectively; C(t) is the state of
the server at time t. We have that C(t) is 0 or 1 depending on
whether the server is idle or busy. If C(t) = 0, Nq(t) = 0 and
No(t)> 0, then ξ1(t) represents the elapsed retrial time of the
customer at the head of the orbit (at time t). If C(t) = 1,ξ2(t)
is the elapsed service time of the customer in service at time
t.

Stochastic analysis of this queueing model was performed
in [7]. The authors studied the ergodicity of the associated em-
bedded Markov chain and obtained its stationary distribution.
By using the method of supplementary variables, they found
the partial generating functions of the steady state distribution.
These generating functions permitted to have the generating
functions of the steady state system state distribution of
the number of customers in the priority queue, in the orbit
and in the system. The analysis in question included also
the investigations on the stochastic decomposition property,
convergence to a two-level priority queue without retrials as
well as on the optimal control of the priority policy. Our
contribution consists in the study of the asymptotic behavior of
the number of customers in the retrial group under heavy traffic
(ρ→ Ã(λ )

p+(1−p)Ã(λ ) ) and also under low retrial rate
(
Ã(λ )→ 0

)
.

We present some numerical illustrations to support the ob-
tained theoretical results.

The paper is organized as follows. In the next section, we
review some existing results (ergodicity condition, steady state
system state distribution, generating function of the steady
state distribution of the number of customers in the orbit),
which are related to the considered model. Section 3 deals with
asymptotic analysis of the number of customers in the orbit in
the case of low retrial rate and high traffic intensity. In section
4, we present numerical illustrations and their explanation.

II. STOCHASTIC ANALYSIS

In this section, we present some results, given in [7] which
are necessary for our investigation on the asymptotic behaviour
of the retrial queueing system under study. In the first time,
consider the associated embedded Markov chain. Let ζn be the
time of the nth departure, Nq,n = Nq(ζn) and No,n = No(ζn) be
the numbers of customers in the priority queue and in the orbit,
respectively, just before the time ζn. The sequence of random
vectors

{
Nq,n,No,n,n≥ 1

}
forms a Markov chain which is the

embedded Markov chain for the considered system. Its state
space is S= Z+×Z+ and its fundamental equations are defined
as

Nq,n =

{
Nq,n−1−1+ vq,n if Nq,n−1 > 0

vq,n if Nq,n−1 = 0 , (2)

No,n =

 No,n−1 + vo,n if Nq,n−1 ≥ 1
No,n−1−δn + vo,n if Nq,n−1 = 0,No,n−1 ≥ 1

vo,n if Nq,n−1 = 0 and No,n−1 = 0
, (3)

where vq,n and vo,n are the numbers of customers arriving at the
waiting space and the orbit during the nth service time; δq,n is

equal to 0 or 1 depending on whether the nth served customer
is the primary one or proceeds from the orbit. With the help of
Foster’s criterion and Kaplan’s condition, it is established that
the irreducible and aperiodic Markov chain

{
Nq,n,No,n,n≥ 1

}
is ergodic if and only if ρ < Ã(λ )

p+(1−p)Ã(λ ) .

Now consider the random process (1), assume that ρ <
Ã(λ )

p+(1−p)Ã(λ ) and define the steady state distribution of the
system state

P0 = lim
t→∞

P(C(t),Nq(t) = 0,No(t) = 0);

P0,0, j =

∞∫
0

lim
t→∞

d
dx

P(C(t) = 0,Nq(t) = 0,No(t) = j,ξ1(t)≤ x),

for j ≥ 1,x≥ 0;

P1,i, j =

∞∫
0

lim
t→∞

d
dx

P(C(t) = 1,Nq(t) = i,No(t) = j,ξ2(t)≤ x),

for i≥ 0, j≥ 0,x≥ 0. The corresponding generating functions
are given by

P0(z2) =
∞

∑
j=0

P0,0, jz
j
2 = P0

z2 (1−g(z2))
(
1− Ã(λ

)
)

Ã(λ )(1− z2)g(z2)− z2 (1−g(z2))

and

P1(z1,z2) =
∞

∑
i=0

∞

∑
j=0

P1,i, jzi
1z j

2

= p0
Ã(λ )(1− z2)K(z1,z2)

Ã(λ )(1− z2)g(z2)− z2 (1−g(z2))

× z1−g(z2)

z1−K(z1,z2)

1−K(z1,z2)

1− (1− p)z1− pz2

with p0 = 1− p+(1−p)Ã(λ )
Ã(λ ) ρ and g(z2) as the unique root of

z1 of the equation z1−K(z1,z2) = z1− B̃(λ − λ (1− p)z1−
λ pz2) = 0 (see also [14]).

At present, the generating function of the steady state
distribution of the number of customers in the orbit, P(z),
can be expressed in the following manner

P(z) = p0×
Ã(λ )

p
× 1− (1− p)g(z)− pz

Ã(λ )(1− z)g(z)− z(1−g(z))
. (4)

From (2), we can see that P(z) does not reveal the nature
of the distribution in question. That is the reason to perform
the asymptotic analysis of the orbit length under limit values
of some parameters. We note that the asymptotical behaviour
of the random variable representing the number of customers
in the retrial group was early studied for M/G/1 retrial queue
[14] and also MX/G/1 retrial queue with impatient customers
[1]. Here, the systems operated under classical retrial policy
with exponential retrial times.

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_13

(Advance online publication: 28 May 2018)

 
______________________________________________________________________________________ 



III. ASYMPTOTIC BEHAVIOUR OF THE ORBIT LENGTH

A. Heavy traffic

First consider the case of heavy traffic when arrival rate
increases in such a way that ρ → Ã(λ )

p+(1−p)Ã(λ ) .

Theorem 1. If M/G/1 retrial queue, priority customers,
FCFS orbit and general retrial times is in the steady state, and
β2 < ∞, then

lim
z→1

P(z) =
1

1+ s β2
2β 2

1

× 1

1+ s
[

p(1−Ã(λ ))Ã(λ )

(p+qÃ(λ ))
2 +

(Ã(λ ))
2
β2

2(p+qÃ(λ ))β 2
1

] ,
(5)

i.e. under heavy traffic orbit length No(t) has asymptotically a
two stage generalized Erlang distribution.

Proof. Let

P(z) =

[
1− p+qÃ(λ )

Ã(λ )
ρ

]
× Ã(λ )

p

× 1−qg(z)− pz
Ã(λ )(1− z)g(z)− z(1−g(z))

.

By using the stochastic decomposition property of the model
[7], we can rewrite P(z) in the following manner:

P(z) = X(z)×Y (z), (6)

where X(z) = (1−λβ1)(1−qg(z)−pz)
(g(z)−z)p is the generating function for

the number of customers in the waiting space of the two-level
priority queue without retrials and

Y (z) =
1

(1−λβ1)
×
[

1− p+qÃ(λ )
Ã(λ )

ρ

]
× Ã(λ )

× g(z)− z
Ã(λ )(1− z)g(z)− z(1−g(z))

is the generating function of the number of customers in the
orbit given that the server is idle. Then

lim
z→1

P(z) = lim
z→1

X(z)× lim
z→1

Y (z).

In the first time, we calculate

lim
z→1

X(z) =
(1−λβ1)(1−qg(z)− pz)

(g(z)− z) p
.

Assume that ε = (1−ρ)→ 0 and z = e−εs. Thus ε = (1−
ρ) = 1−λβ1 and λ = 1

β1
(1− ε) . Under this assumption, we

have

lim
ε→0

X(e−εs) = lim
ε→0

ε (1−qg(e−εs)− pe−εs)

(g(e−εs)− e−εs) p
.

Let g(e−εs) = g(z), where z = e−εs and e−εs = 1− εs +
ε2s2

2 +o(ε2). One can develop g(z) in the following manner:

g(u) = g(1+(u−1)) = g(1)+(u−1)g
′
(1)+

1
2
(u−1)2g

′′
(1),

this yields

g(e−εs) = 1− εsg
′
(1)+

ε2s2

2
g
′
(1)+

ε2s2

2
g
′′
(1)+o

(
ε

2) .
We have also that g(1) = 1;g

′
(1) = ρ p

1−ρq ;g
′′
(1) = λ 2 p2β2

(1−ρq)3 .

Therefore,

g(e−εs) = 1− εsp
(1− (1− ε)q)

+
ε2sp

(1− (1− ε)q)

+
ε2s2

2
p

(1− (1− ε)q)

+
ε2s2

2

(1− ε)2 β2
β 2

1
p2

(1− (1− ε)q)3 +o
(
ε

2)
= 1+

1
(1− (1− ε)q)3

×
[
−εsp3 + ε

2sp2(p−2q)+
ε2s2

2
p2(p+

β2

β 2
1
)

]
+ o

(
ε

2) .
Taking into account that β2 < ∞, we obtain

lim
ε→0

X(e−εs) = lim
ε→0

ε (1−qg(e−εs)− pe−εs)

(g(e−εs)− e−εs) p

= lim
ε→0

ε2sqp3 + ε2sp4

ε2sp2(p−2q+3q)+ ε2s2

2 p3(p+ β2
β 2

1
− p)

= lim
ε→0

ε2sp3

ε2sp3 + ε2s2

2 p3 β2
β 2

1

=
1

1+ s
2

β2
β 2

1

.

Now we calculate limz→1 Y (z). In this case ρ = λβ1 <
Ã(λ )

p+qÃ(λ ) . Assuming that ε= Ã(λ )
p+qÃ(λ ) − ρ→ 0 and z =e−εs,

thus ε = Ã(λ )
p+qÃ(λ )−λβ1 and λ= 1

β1

(
Ã(λ )

p+qÃ(λ ) − ε

)
. Define η1 =

Ã(λ )
p+qÃ(λ ) . So λ = 1

β1
(η1− ε) and g(e−εs) becomes

g(e−εs) = 1− εs(η1− ε) p
(1− (η1− ε)q)

+
ε2s2

2
(η1− ε) p

(1− (η1− ε)q)

+
ε2s2

2

(η1− ε)2 β2
β 2

1
p2

(1− (η1− ε)q)3 +o
(
ε

2)
= 1+

1
(1− (η1− ε)q)3

×
(
− εsη1 p(1−qη1)

2 + ε
2sp(1−qη1)(1−3qη1)

+
ε2s2

2
η1 p((1−qη1)

2 +η1
β2

β 2
1

p)
)
+o
(
ε

2) .
Then

lim
z→1

Y (z) = lim
ε→0

Y (e−εs)

= lim
ε→0

Ã(λ )
((1−η1)+ ε)

[
1− p+qÃ(λ )

Ã(λ )
(η1− ε)

]
× g(e−εs)− e−εs

Ã(λ )(1− e−εs)g(e−εs)− e−εs (1−g(e−εs))
.
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Taking into account that β2 < ∞, we obtain

lim
ε→0

Y (e−εs) = lim
ε→0

1
((1−η1)+ ε)

×
(

p+qÃ(λ )
)

ε (g(e−εs)− e−εs)

Ã(λ )(1− e−εs)g(e−εs)− e−εs (1−g(e−εs))

= lim
ε→0

Y1(e−εs)

Y2(e−εs)
,

where

Y1(e−εs) =
(

p+qÃ(λ )
)
× ε×

(
g(e−εs)− e−εs)

and

Y2(e−εs) = ((1−η1)+ ε) Ã(λ )
(
1− e−εs)g

(
e−εs)

− ((1−η1)+ ε)e−εs (1−g(e−εs)
)
.

The function Y1(e−εs) can be expressed in the following
manner

Y1(e−εs) =
(

p+qÃ(λ )
)
× ε×

(
g(e−εs)− e−εs)

=
(

p+qÃ(λ )
) ε

(1− (η1− ε)q)3

× (−εsη1 p(1−qη1)
2

+ ε
2sp(1−qη1)(1−3qη1)

+
ε2s2

2
η1 p((1−qη1)

2 +η1
β2

β 2
1

p)

+ εs− ε2s2

2
)+o

(
ε

2)
=

(
p+qÃ(λ )

)
× −ε2sη1 p(1−qη1)

2 + ε2s(1−qη1)
3

(1− (η1− ε)q)3 +o
(
ε

2)
=

(
p+qÃ(λ )

)
(1− (η1− ε)q)3

×
[
ε

2s(1−qη1)
2 (1−qη1−η1 p)

]
.

Then

Y1(e−εs) =
1

(1− (η1− ε)q)3 ε
2s

p3
(
1− Ã(λ )

)(
p+qÃ(λ )

)2 .

Now consider Y2(e−εs) and assume that
Y2(e−εs)=l1(e−εs)+l2(e−εs), where

l1(e−εs) = ((1−η1)+ ε) Ã(λ )
(
1− e−εs)g

(
e−εs)

and

l2(e−εs) =−((1−η1)+ ε)e−εs (1−g(e−εs)
)
.

We transform the function l1(ε) as follows

l1(e−εs) = ((1−η1)+ ε) Ã(λ )
(
1− e−εs)g

(
e−εs)

+ o(ε2)

=
1

(1− (η1− ε)q)3

(
εsÃ(λ )(1−η1)(1−qη1)

3

+ ε
2sÃ(λ )(1−qη1)

2 (3q(1−η1)+(1−qη1))

− ε2s2

2
Ã(λ )(1−η1)(1−qη1)

2 (1−qη1 +2η1 p)
)
,

and the function l2(e−εs) as follows

l2(e−εs) =
1

(1− (η1− ε)q)3

×

(
− εspη1 (1−η1)(1−qη1)

2

+ ε
2sp(1−qη1) [(1−η1)(1−3qη1)−η1 (1−qη1)]

+
ε2s2

2
η1 p(1−η1)

[
3(1−qη1)

2 +η1 p
β2

β 2
1

])
.

So,

Y2(e−εs) =
1

(1− (η1− ε)q)3 ×

{
ε

2s
p3
(
1− Ã(λ )

)(
p+qÃ(λ )

)
+

ε2s2

2

(
2p4Ã(λ )

(
1− Ã(λ )

)2(
p+qÃ(λ )

)4

+
p3
(
Ã(λ )

)2 (1− Ã(λ )
)

β2
β 2

1(
p+qÃ(λ )

)3

)}
.

Then

lim
ε→0

Y (e−εs) =
1

1+ s
[

p(1−Ã(λ ))Ã(λ )

(p+qÃ(λ ))
2 +

(Ã(λ ))
2
β2

2(p+qÃ(λ ))β 2
1

] .
Finally, we find

lim
ε→0

P(e−εs) = lim
ε→0

X(e−εs)× lim
ε→0

Y (e−εs)

=
1

1+ s
2

β2
β 2

1

× 1

1+ s
[

p(1−Ã(λ ))Ã(λ )

(p+qÃ(λ ))
2 +

(Ã(λ ))
2
β2

2(p+qÃ(λ ))β 2
1

] ,
it is the product of two Laplace-Stieljes transforms of two
exponential variables with different rates λ1 =

β2
2β 2

1
and λ2 =[

p(1−Ã(λ ))Ã(λ )

(p+qÃ(λ ))
2 +

(Ã(λ ))
2
β2

2(p+qÃ(λ ))β 2
1

]
which corresponds to a two-

stage generalized Erlang’s distribution (or two stage Hypo-
exponential distribution) with mean 1

λ1
+ 1

λ2
.

B. Low rate of retrials

Now consider the case of low rate retrials, that is, as
Ã(λ )→ 0. The following theorem describes the orbit length
distribution.
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Theorem 2. If β2 < ∞, then as Ã(λ ) → 0 the
number of customers in the orbit is asymptotically

Gaussian with mean
p(1−Ã(λ ))

(
ρ+

λ2 pβ2
2(1−ρ)(1−ρq)

)
Ã(λ )−[p+qÃ(λ )]ρ

and variance
pλ

(1−ρ∗)

(
β1 +

λ pβ2
2(1−ρ)(1−ρq)

)
, where ρ∗ = p+qÃ(λ )

Ã(λ ) ρ and
ρ = λβ1.

Proof. Consider n̄o = P
′
(1) , that is the mean number of

customers in the orbit. According to the stochastic decom-
position property of the considered model [6], n̄o = n̄∞ + n̄∗o,
where n̄∞ = λ 2β2

2(1−ρ) is the mean number of waiting customers
in the ordinary two-level priority queue without retrials and

n̄∗o =
P
′
0 (1)

1−ρ
=

p
(
1− Ã(λ )

)
Ã(λ )−

[
p+qÃ(λ )

]
ρ

(
ρ +

λ 2 pβ2

2(1−ρ)(1−ρq)

)
represents the mean number of customers in the orbit given
that the server is idle.

Assume that ν = pρ + λ 2 p2β2
2(1−ρ)(1−ρq) and ρ∗ = p+qÃ(λ )

Ã(λ ) ρ. At
present consider

n̄∗ =
n̄o− n̄∗o

1√
Ã(λ )

=
n̄o− 1−Ã(λ )

Ã(λ )−[p+qÃ(λ )]ρ
ν

1√
Ã(λ )

=

√
Ã(λ )× n̄o−

√
Ã(λ )

1− Ã(λ )

Ã(λ )−
[
p+qÃ(λ )

]
ρ

ν .

The characteristic function E [exp(itn̄∗)] can be given in
terms of the generating function P(z) as follows:

E [exp(itn̄∗)] = P
(

eit
√

Ã(λ )
)

exp
{
−it
√

Ã(λ )× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
,

where

P
(

eit
√

Ã(λ )
)
= X(eit

√
Ã(λ ))×Y (eit

√
Ã(λ )),

with

X(eit
√

θ ) =
(1−ρ)

(
1−qg(eit

√
Ã(λ ))− peit

√
Ã(λ )
)

(
g(eit
√

Ã(λ ))− eit
√

Ã(λ )
)

p

and

Y (eit
√

Ã(λ )) =
1

(1−ρ)

×
(1−ρ∗) Ã(λ )×

(
g(eit
√

Ã(λ ))− eit
√

Ã(λ )
)

Ã(λ )
(

1− eit
√

Ã(λ )
)

g(eit)− eit
√

Ã(λ )
(

1−g(eit
√

Ã(λ ))
) .

Then

E [exp(itn̄∗)] = lim
θ→0

P
(

eit
√

Ã(λ )
)

exp
{
−it
√

Ã(λ )× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
= lim

θ→0
X(eit
√

Ã(λ ))

× lim
θ→0

Y (eit
√

Ã(λ ))

exp
{
−it
√

Ã(λ )× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
.

We have that

lim
θ→0

X(eit
√

Ã(λ ))=
(1−ρ)

(
1−qg(eit

√
Ã(λ ))− peit

√
Ã(λ )
)

(
g(eit
√

Ã(λ ))− eit
√

Ã(λ )
)

p
→ 1

and

lim
θ→0

Y (eit
√

Ã(λ ))exp
{
−it
√

Ã(λ )× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
= lim

θ→0
Y (eit
√

Ã(λ ))exp

{
−
(

eit
√

Ã(λ )−1
) (1− Ã(λ )

)
ν

Ã(λ )(1−ρ∗)

}

× exp
{((

eit
√

Ã(λ )−1
)
− it
√

Ã(λ )
)

1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
.

Let

f1
(
Ã(λ )

)
= lim

θ→0
exp
{((

eit
√

Ã(λ )−1
)
− it
√

Ã(λ )
)

× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
and

f2
(
Ã(λ )

)
= lim

θ→0
Y (eit
√

Ã(λ ))× exp
{
−
(

eit
√

Ã(λ )−1
)

× 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

}
.

We have eit
√

Ã(λ ) = 1+ it
√

Ã(λ )− t2

2 Ã(λ )+o(t2). So

f1
(
Ã(λ )

)
= lim

θ→0
exp
{ 1− Ã(λ )

Ã(λ )(1−ρ∗)
ν

×
(

1+ it
√

Ã(λ )− t2

2
Ã(λ )−1− it

√
Ã(λ )

)}
= exp

{
− t2

2
ν

(1−ρ∗)

}
= exp

{
− t2

2
1

(1−ρ∗)

(
pρ +

λ 2 p2β2

2(1−ρ)(1−ρq)

)}
and with the help of the Hospital rule, we find that

f2
(
Ã(λ )

)
= lim

θ→0

1
(1−ρ)

× −pρ× (−g′(1)+1)
−g′(1)

,

where g′(1) = pρ

1−qρ
. So

f2
(
Ã(λ )

)
=

1
(1−ρ)

−pρ× (−g′(1)+1)
−g′(1)

=
1

(1−ρ)

pρ (−pρ +1−ρ + pρ)

1−qρ

1−qρ

pρ
= 1.

Finally,

E
[
eitn̄∗

]
= exp

{
− t2

2
1

(1−ρ∗)

(
pρ +

λ 2 p2β2

2(1−ρ)(1−ρq)

)}
.
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This is the characteristic function of Gaussian
random variable with mean equal to 0 and variance

1
(1−ρ∗)

(
pρ + λ 2 p2β2

2(1−ρ)(1−ρq)

)
.

IV. NUMERICAL ILLUSTRATIONS

This section deals with numerical illustrations to discuss the
theoretical results obtained in theorem 1 and 2.

In the first time, consider (5). It is easy to see that lim
z→1

P(z) is
the product of two Laplace-Stieltjes transforms corresponding
to the sum of two independent exponential random variables:

F̃ (s) =
1

1+ s
2

β2
β 2

1

× 1

1+ s
[

p(1−Ã(λ ))Ã(λ )

(p+qÃ(λ ))
2 +

(Ã(λ ))
2
β2

2(p+qÃ(λ ))β 2
1

] .
The mean of random variable having the Laplace-Stieltjes

transforms F̃ (s) is m1 = (−1) F̃ ′(s = 0). In fact,

m1 =
β2

2β 2
1

[
1+

(
Ã(λ )

)2(
p+qÃ(λ )

)]+ p
(
1− Ã(λ )

)
Ã(λ )(

p+qÃ(λ )
)2 .

To illustrate the behaviour of the mean number of the
customers in the orbit, under heavy traffic, we assume that
the service rate γ = 1

β1
= 1 and consider the following service

time distributions:
• Exponential (E) : BE(x) = 1− e−γx,x ≥ 0, with β1 = 1

and β2 = 2;
• Two stage Erlang (E2) : BE2(x) = 1−e−2γx−2γe−2γx,x≥

0, with β1 = 1 and β2 = 1.5.
Thus, we have M/M/1 and M/E2/1 retrial models,
respectively.

For retrial times, we choose:
1) Exponential (E) : AE(x) = 1− e−θx,x≥ 0;
2) Two stage Erlang (E2) : AE2(x) = 1 − e−2θx −

2θxe−2θx,x≥ 0;
3) Two stage Hyperexponentiel (H2) : AH2(x) = 1 −

ζ1e−θ1x−ζ2e−θ2x, x ≥ 0, ζ1
θ1

+ ζ2
θ2

= 1
θ
,ζ1 +ζ2 = 1,θ1 =

2ζ1θ ,θ2 = 2ζ2θ .

Table I presents the numerical values of the traffic intensity

ρ∗ calculated according to ρ∗ =
(p+(1−p)Ã(λ ))

Ã(λ ) ×λβ1 when the
arrival rate λ , the probability p and the retrial time distribution
are varied. We have assumed that the retrial intensity θ = 2.
Since the service rate γ = 1

β1
= 1, we obtain the same values

of ρ∗ for the two considered models.
Fig.1-3 show the asymptotic behaviour of the mean number

of customers in the orbit, m1, with respect to the arrival
rate λ for the M/M/1 retrial model; whereas Fig.4-6 are
concerned by the M/E2/1 retrial model. The numerical re-
sults are obtained for different values of the probability p
(p = 0.25, p = 0.5 and p = 0.75) as well as for above
mentioned retrial time distributions : exponential (solid curve),
two-stage Erlang (dash curve) and two-stage hyperexponential
(dots curve). It is easy to see that the probability p has little
effect on the numerical values of m1.

TABLE I: Traffic intensity ρ∗ for M/M/1 and M/E2/1 retrial
models.

θ = 2 Retrial time E Retrial time E2 Retrial time H2
p λ ÃE (λ ) ρ∗ ÃE2 (λ ) ρ∗ ÃH2 (λ ) ρ∗

0.1 0.9524 0.1013 0.9518 0.1013 0.9531 0.1012
0.2 0.9091 0.2050 0.9070 0.2051 0.9128 0.2048
0.3 0.8696 0.3113 0.8653 0.3117 0.8771 0.3105

1
4 0.4 0.8333 0.4200 0.8265 0.4210 0.8450 0.4183

0.5 0.8000 0.5313 0.7901 0.5332 0.8159 0.5282
0.6 0.7692 0.6450 0.7561 0.6484 0.7892 0.6401
0.7 0.7407 0.7613 0.7243 0.7666 0.7646 0.7539
0.8 0.7143 0.8800 0.6944 0.8880 0.7418 0.8696
0.1 0.9524 0.1025 0.9518 0.1025 0.9531 0.1025
0.2 0.9091 0.2100 0.9070 0.2103 0.9128 0.2096
0.3 0.8696 0.3225 0.8653 0.3233 0.8771 0.3210

1
2 0.4 0.8333 0.4400 0.8265 0.4420 0.8450 0.4367

0.5 0.8000 0.5625 0.7901 0.5664 0.8159 0.5564
0.6 0.7692 0.6900 0.7561 0.6968 0.7892 0.6801
0.7 0.7407 0.8225 0.7243 0.8332 0.7646 0.8077
0.8 0.7143 0.9600 0.6944 0.9760 0.7418 0.9392
0.1 0.9524 0.1038 0.9518 0.1038 0.9531 0.1037
0.2 0.9091 0.2150 0.9070 0.2154 0.9128 0.2143
0.3 0.8696 0.3337 0.8653 0.3350 0.8771 0.3315

3
4 0.4 0.8333 0.4600 0.8265 0.4630 0.8450 0.4550

0.5 0.8000 0.5936 0.7901 0.5996 0.8159 0.5846
0.6 0.7692 0.7350 0.7561 0.7451 0.7892 0.7202
0.7 0.7407 0.8838 0.7243 0.8998 0.7646 0.8616

Fig. 1: M/M/1 retrial model. θ = 2, p = 0.25.

Fig. 2: M/M/1 retrial model. θ = 2, p = 0.5.

We have also examined the effects of the retrial intensity θ

on the asymptotic behaviour of the mean number of customers
in the orbit when the traffic intensity ρ∗ goes to 1.

From Fig.7, we can see that increasing the retrial intensity θ

results in important increasing of the considered performance
measure, and this for the three considered retrial time distribu-
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Fig. 3: M/M/1 retrial model. θ = 2, p = 0.75.

Fig. 4: M/E2/1 retrial model. θ = 2, p = 0.25.

Fig. 5: M/E2/1 retrial model. θ = 2, p = 0.5.

Fig. 6: M/E2/1 retrial model. θ = 2, p = 0.75.

tions: exponential (solid curve), two-stage Erlang (dash curve)
and hyperexponential (dots curve).

Fig. 7: M/E2/1 retrial model. p = 0.5,λ = 0.4.

At present, our intention is made to the result established in
theorem 2. To show the behaviour of the mean and variance of
the number of customers in the orbit (when the retrial intensity
θ → 0), the M/E2/1 retrial queue is considered. Fig 8− 9
present the numerical values of the Gaussian parameters when
the retrial time is distributed according to exponential law
(solid curve), two-stage Erlang law (dash curve) and two-stage
hyperexponential one (dots curve). It is easy to see that the
convergence is faster in the case of two-stage hyperexponential
retrial times.

Fig. 8: M/E2/1 retrial model. p = 0.5,λ = 0.3,β1 = 1.

Fig. 9: M/E2/1 retrial model. p = 0.5,λ = 0.3,β1 = 1.

V. CONCLUDING REMARKS

We therefore established that for model of type M/G/1
with retrials, priority, FCFS orbit and general retrial times,
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the bellow conclusions apply successfully. The asymptotic
behaviour of the steady state distribution of the number of
customers in orbit, which did not reveal the nature of the
variable studied, allowed us to approximate the latter by
distributions whose characteristics are known.

- In case of heavy traffic, the distribution of the number
of customers in orbit goes to two-stage generalized Erlang
distribution, then the mean number of customers in orbit is:

no =
2β 2

1
β2

+

[
p
(
1− Ã(λ )

)
Ã(λ )(

p+qÃ(λ )
)2 +

(
Ã(λ )

)2
β2

2
(

p+qÃ(λ )
)

β 2
1

]−1

.

- In case of low rate of retrials, the distribution of the
number of customers in orbit goes to Gaussian distribution,
then the mean number of customers in orbit is:

no =
p
(
1− Ã(λ )

)(
ρ + λ 2 pβ2

2(1−ρ)(1−ρq)

)
Ã(λ )−

[
p+qÃ(λ )

]
ρ

.

REFERENCES

[1] N.K. Arrar, N.V. Djellab and J-B. Baillon. On the asymptotic behaviour
of M/G/1 retrial queues with batch arrivals and impatience phe-
nomenon. Mathematical and Computer Modelling 55, 654-665, 2012.

[2] N.K. Arrar, N.V. Djellab and J-B. Baillon. On the stochastic decompo-
sition property of single server retrial queuing systems. Turkish Journal
of Mathematics 41, 918-931, 2017.

[3] J.R. Artalejo. A classified bibliography of research on retrial queues:
progress in 1990-1999. TOP 7(2), 187-211, 1999.

[4] J.R. Artalejo. A classified bibliography of research on retrial queues:
progress in 2000-2009. Mathematical and Computer Modelling 51,
1071-1081, 2010.

[5] J.R. Artalejo, A.N. Dudin and V.I. Klimenok. Stationary analysis of a
retrial queue with preemptive repeated attempts. Operations Research
Letters 28, 173-180, 2001.
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