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Abstract—By exploiting the special structure of the (1, 1)-
block in the coefficient matrix of saddle point problems, a
local circulant and residue splitting (LCRS) iterative method
is proposed to solve Toeplitz-structured saddle point problems,
and the splitting matrix serve as a preconditioner to accelerate
the convergence rate of Krylov subspace method such as
GMRES. The advantage of these methods are that the elapsed
CPU time of each iteration is reduced considerably by using of
the fast Fourier transform (FFT). The convergence theorem is
established under suitable conditions. Numerical experiments
of a model Stokes problem are presented to show that the LCRS
is used as either solver or preconditioner to GMRES method
often outperform other tested methods in the elapsed CPU
time.

Index Terms—saddle point problems, local circulant and
residue splitting (LCRS), iterative method, preconditioning,
fast Fourier transform (FFT).

I. INTRODUCTION

THE solution of large sparse saddle point problem with
Toeplitz structure is considered:

�

A B T

−B 0

��

x
y

�

=

�

f
g

�

or Au =b , (1)

where, A ∈ Rn×n is a symmetric positive definite (SPD)
Toeplitz matrix or block-Toeplitz and Toeplitz-block (BT-
TB) matrix, B ∈ Rm×n is a matrix of full rank, x , f ∈
Rn , y , g ∈Rm , and m ≤ n . These assumptions guarantee
the existence and uniqueness of the solution of linear
systems (1); see [4], [8], [11], [12]. A is here called a
BTTB matrix if A = A1⊗A2⊗ · · ·⊗Ap , where A i ∈Rq×q (i =
1, 2, · · · , p ), p , q ∈Z+, are all Toeplitz square matrices and
⊗ is a Kronecker tensor product.

The linear systems (1) arises in a variety of scientific
computing and engineering applications, including com-
putational fluid dynamics, constrained optimization, im-
age reconstruction, mixed finite element approximations
of elliptic PDEs and Stokes problems, numerical solutions
of FDEs via finite difference method and so forth; in detail,
one can see [10], [12], [21], [24] and references therein.
These applications have motivated both mathematicians
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and engineers to develop specific algorithms for solving
Toeplitz structure linear systems.

As the coefficient matrix A in (1) is usually large
and sparse, iterative methods are recommended against
direct methods. During the last decade, a large number of
iterative methods for solving saddle point problems have
been proposed. For example, Uzawa-type methods [4], [8],
[15], [25], preconditioned Krylov subspace methods [11],
Hermitian and skew-Hermitian splitting (HSS) iterative
method and its accelerated variants [1], [7], [9], [16],
restrictively preconditioned conjugate gradient methods
[2], [6], [23] and so on. We can refer to a comprehensive
survey [11] for algebraic properties and iterative methods
for saddle point problems.

Due to the Toeplitz-like structure of the coefficient
matrix, a lot of circulant preconditioners have been pro-
posed for solving Toeplitz-like linear systems, included
Strang’s preconditioner, T. Chan’s preconditioner, R. Chan’s
preconditioner, ω-circulant preconditioner etc; see [17] for
more details. This paper focuses on the solving the saddle
point problem with Toeplitz-structured and presents a
new circulant splitting iterative method.

The paper is organized as follows. In Section II, a new
circulant and residue splitting (CRS) iterative method is
presented to solve the general Toeplitz linear system,
and its convergence property is studied. In Section III,
a local circulant and residue splitting (LCRS) iterative
method for the saddle-point problem (1) is proposed,
and the conditions for guaranteeing its convergence are
studied. In Section IV, the splitting matrix of the LCRS
iterative method serve as a preconditioner to accelerate
the convergence rate of Krylov subspace methods and the
procedure for computing the generalized residual equa-
tions is described. In Section V, numerical experiments
of a model Stokes problem are given to show that the
new splitting is used as either solver or preconditioner to
GMRES method often do the best. Finally, the paper closes
with concluding remarks in Section VI.

II. CRS ITERATIVE METHOD

IN this section, we firstly review the definition of
Toeplitz and circulant matrices, then present the circu-

lant and residue splitting (CRS) iterative method for the
Toeplitz linear systems

T x = b̃ , (2)

where T ∈ Rn×n is a symmetric Toeplitz or BTTB matrix,
x , b̃ ∈Rn .
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Because any symmetric Toeplitz and BTTB matrix T =
(t i , j )1≤i , j≤n ∈Rn×n possesses the splitting of the form

T =C +S,

where S = T −C is the symmetric residue Toeplitz matrix,
and

C =Circ(c0, c1, c2, · · · , cm , · · · , c2, c1)

=

















c0 c1 c2 · · · cm · · · c2 c1

c1 c0 c1 · · · cm−1 · · · c3 c2

...
...

...
c2 c3 c4 · · · · · · · · · c0 c1

c1 c2 c3 · · · · · · · · · c1 c0

















(3)

is the symmetric circulant matrix [19], [20], [26], whose
elements are decided as follows:

c j =
n

d k : d k , d s ∈mode (t i ,i+j , i = 1, 2, · · · , n − j ),

|d k | ≥ |d s |
o

, j = 0, 1, · · · , m
�

m = fix(n/2)
�

.
(4)

Here, the function mode (t i ,i+j , i = 1, 2, · · · , n − j ) finds
the elements that appears most often in the (upper) j -
th diagonals of the Toeplitz matrix T , and the function
fix(n/2) rounds n/2 to the nearest integers towards zero.

Based on the above splitting of Toeplitz or BTTB matrix,
we firstly present a new approach to solve the Toeplitz
linear system (2), called the CRS iterative method, and it
is described as follows.

Algorithm 1. (CRS iterative method). Given an initial guess
x0, for k = 0, 1, 2, · · · , until the iteration sequence {xk }
converges to the exact solution, solve

(αI +C )xk+1 = (αI −S)xk + b̃ , (5)

where α is a given positive constant.

In the following, we deduce the convergence property
for the CRS iterative method. Note that the iteration matrix
of CRS iteration is

Gα = (αI +C )−1(αI −S). (6)

Let ρ(Gα) denote the spectral radius of the iteration
matrix Gα. Then the CRS iteration (5) is convergent if and
only if ρ(Gα)< 1 [3].

Theorem 1. Suppose T ∈ Rn×n is a SPD Toeplitz matrix,
C defined in (3) and (4) is its circulant part, and α is a
positive constant such that (αIn +C ) is a SPD circulant
matrix. Assume x is an eigenvector of the iteration matrix
Gα corresponding to its eigenvalue λ. Denote

γ :=
x ∗C x

x ∗x
and β :=

x ∗T x

x ∗x
.

Then the spectral radius ρ(Gα) < 1 and the CRS iterative
method is convergent if and only if α,β ,γ satisfy the
conditions 0<β < 2(α+γ).

Proof. Let λ be an eigenvalue of Gα and x be its corre-
sponding eigenvector. Then we have

(αI −S)x =λ(αI +C )x .

As (αI −S) = (αI +C )−T , by multiplying both sides of

the this equality from the left with
x ∗

x ∗x
, we obtain

λ(α+γ) = (α+γ)−β ,

where

γ=
x ∗C x

x ∗x
and β =

x ∗T x

x ∗x
.

By the assumption that α > 0, β > 0, α+γ > 0, it then

follows that |λ|=
|α+γ−β |
α+γ

< 1 provided

0<β < 2(α+γ).

Thus we complete the proof.
At the end of this section, the CRS iterative method is

reformulated into the residual-updating form as follows.
Algorithm 1’ Given an initial guess x0 and positive
parameter α.

(a) Set r := b̃ −T x0;
(b) Solve the linear systems (α+C )z = r to obtain z by

using the fast Fourier transform (FFT);
(c) Set xk+1 := xk + z .

III. LCRS ITERATIVE METHOD

IN this section, based on the CRS iterative method for
the linear system T x = b̃ in Section II, we present

a local circulant and residue splitting (LCRS) iterative
method for solving the Toeplitz-structured saddle point
problem (1).

For the coefficient matrix of the Toeplitz-structured
saddle point problem (1), we make the following splitting

A =
�

A B T

−B 0

�

=

�

Q1+C 0
−B Q2

�

−
�

Q1−S −B T

0 Q2

�

,

here, C and S are the symmetric circulant and residue
parts of the SPD Toeplitz or BTTB matrix A, respectively,
Q2 ∈ Rm×m is an SPD matrix and Q1 ∈ Rn×n is such that
Q1+C is an SPD circulant matrix. It is here noted that such
matrix Q1 does exist and the simplest case is Q1 =αI with
a suitable parameter α.

Then the local CRS iterative scheme for solving the
saddle point problem (1) is given as follows:
�

Q1+C 0
−B Q2

��

xn+1

yn+1

�

=

�

Q1−S −B T

0 Q2

��

xn

yn

�

+

�

f
g

�

.

And it is described as below.

Algorithm 2. (LCRS iterative method). Given an initial
guess u 0 = (x ∗0, y ∗0 )∗, for k = 0, 1, 2, · · · , until the iteration
sequence u k = (x ∗k , y ∗k )

∗ converges to the exact solution,
solve

(

xn+1 = xn +(Q1+C )−1( f −Axn − B T yn ),

yn+1 = yn +Q−1
2 (Bxn+1+ g ).

(7)

We see that the iterative method (7) is a special case of
the parameterized inexact Uzawa (PIU) method studied in
[8], and it is also similar to the local HSS iterative method
presented in [16], [27], [28].

We emphasize that the coefficient matrix of the first
linear sub-systems in LCRS iterative method is a circulant
matrix, which can be efficiently solved by using FFT. Since
FFT is highly parallizable and has been implemented
on multiprocessors efficiently [18], the LCRS method is
well-adapted for parallel computing and its computational
workloads may be further saved.
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In the following, the convergence of the LCRS iterative
method will be studied. Note that the iteration can be
written in a fixed-point form

�

xn+1

yn+1

�

=Γ

�

xn

yn

�

+

�

Q1+C 0
−B Q2

�−1�
f
g

�

, (8)

where

Γ=

�

Q1+C 0
−B Q2

�−1�
Q1−S −B T

0 Q2

�

is called the iteration matrix of the LCRS method. The
fixed-point iteration (8) converges for arbitrary initial
guesses u 0 = (x ∗0, y ∗0 )∗ and right-hand sides b to the
solution u ∗ = A −1b if and only if ρ(Γ) < 1, where ρ(Γ)
denotes the spectral radius of the iterative matrix Γ.

To determine the convergence conditions, some lem-
mas were developed for later use.

Lemma 2. ( [8]) Both roots of the real quadratic equation
λ2+φλ+ϕ = 0 have modulus less than one if and only if
|ϕ|< 1 and |φ|< 1+ϕ.

Lemma 3. Assume that A is an SPD Toeplitz or BTTB
matrix with the symmetric circulant part C , and B is a
matrix of full rank. Let Q1 ∈ Rn×n be such that Q1 +C is
an SPD circulant matrix, and Q2 ∈Rm×m is an SPD matrix.
If λ is an eigenvalue of the iteration matrix Γ, then λ 6= 1.

Proof. Let λ be an eigenvalue of the iteration matrix Γ
and v = (v ∗1 , v ∗2 )∗ be its corresponding eigenvector, where
v1 ∈Cn and v2 ∈Cm . Then it is true that

(

λ(Q1+C )v1− (Q1−S)v1+ B T v2 = 0,

λBv1+(1−λ)Q2v2 = 0.
(9)

If λ= 1 and v = (v ∗1 , v ∗2 )∗ is the corresponding eigenvec-
tor, then (9) produces

(

Av1+ B T v2 = 0,

Bv1 = 0,
or A v = 0.

Since the coefficient matrix A is nonsingular, v =
(v ∗1 , v ∗2 )∗ = 0, which contradicts the assumption that v =
(v ∗1 , v ∗2 )∗ is an eigenvector of the iteration matrix Γ. So
λ 6= 1.

Lemma 4. Under the assumptions in Lemma 3, let v =
(v ∗1 , v ∗2 )∗ be an eigenvector of the iteration matrix Γ corre-
sponding to the eigenvalue λ. Then v1 6= 0. If v2 = 0, then
|λ|< 1 provided 0<β < 2(η+γ), where

η=
v ∗1Q1v1

v ∗1 v1
, γ=

v ∗1C v1

v ∗1 v1
and β =

v ∗1 Av1

v ∗1 v1
.

Proof. If v1 = 0, then the second equation in (9) produces

(1−λ) Q2v2 = 0.

According to that Q2 is SPD, we have v2 = 0, which
contradicts the assumption that (v ∗1 , v ∗2 )∗ is an eigenvector
of the iteration matrix Γ. Therefore, v1 6= 0.

If v2 = 0, then the first equation in (9) produces

λ(Q1+C )v1− (Q1−S)v1 = 0.

Similar to the proof of Theorem 1, considering β > 0,η+

γ > 0, it follows that |λ|=
|η+γ−β |
η+γ

< 1 provided 0<β <

2(η+γ).

Theorem 5. Under the assumptions in Lemma 3, if
(v ∗1 , v ∗2 )∗ is an eigenvector corresponding to an eigenvalue
λ of the iteration matrix Γ, then the LCRS iterative method
is convergent if the inequality

0≤τ≤ 4(η+γ)−2β (10)

holds, where

γ=
v ∗1C v1

v ∗1 v1
, β =

v ∗1 Av1

v ∗1 v1
, τ=

v ∗1 B TQ−1
2 Bv1

v ∗1 v1
, η=

v ∗1Q1v1

v ∗1 v1
.

Proof. Let λ be an eigenvalue of the iteration matrix Γ and
(v ∗1 , v ∗2 )∗ be the corresponding eigenvector. From Lemma
3 and Lemma 4, we have λ 6= 1 and v1 6= 0.

As (1− λ)Q2 is nonsingular, Eliminating v2 in (9) and
using Q1+C −A in place of Q1−S, we have

λ(Q1+C )v1− (Q1+C −A)v1+
λ

λ−1
B TQ−1

2 Bv1 = 0.

Multiplying both sides of the above equation from left with
v ∗1

v ∗1 v1
, we obtain

λ(η+γ)− (η+γ−β )+
λ

λ−1
τ= 0. (11)

where

η :=
v ∗1Q1v1

v ∗1 v1
> 0, γ :=

v ∗1C v1

v ∗1 v1
, β :=

v ∗1 Av1

v ∗1 v1
> 0

and

τ :=
v ∗1 B TQ−1

2 Bv1

v ∗1 v1
≥ 0.

When Bv1 = 0, then τ = 0. From the equation (11) we
have

λ=
η+γ−β
η+γ

,

which is similar to the Theorem 1, then |λ| < 1 provided
0<β < 2(η+γ).

If Bv1 6= 0, then τ> 0. Considering the assumption η+
γ> 0, from (11) we obtain

λ2−
2(η+γ)−β −τ

η+γ
λ+

η+γ−β
η+γ

= 0. (12)

From Lemma 2, we known that both roots of the equation
(12) satisfy |λ|< 1 if and only if

�

�

η+γ−β
η+γ

�

�< 1 and
�

�

2(η+γ)−β −τ
η+γ

�

�< 1+
η+γ−β
η+γ

.

By straightforwardly solving the above two inequalities,
the condition (10) is obtained immediately.

Based on the above discussions, we known that ρ(Γ)< 1
hold true provided (10), i.e., the LCRS iterative method is
convergent, and it convergence to the unique solution of
the saddle point problem (1).

IV. KRYLOV SUBSPACE ACCELERATION

THE LCRS iterative method (7) for solving the saddle
point problem (1) belong to the class of stationary

iterative methods, and it convergence to the unique solu-
tion of the saddle point problem (1). Although the LCRS
iteration is very simple and very easy to implement, but
its convergence may be typically too slow for the method
to be competitive even with the optimal choice of the
parameter matrices Q1 and Q2. Since the splitting matrix
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of the LCRS iteration can serve as a preconditioner for
Krylov subspace methods, called the LCRS preconditioner,
the convergence rate of preconditioned Krylov subspace
methods such as GMRES can be greatly improved for
solving the saddle point linear system (1) in this section.

It follows from (8) that the linear system Au = b is
equivalent to the linear system

(I −Γ)u =M−1Au =M−1b.

This equivalent linear system is considered as a left-
preconditioned system and it can be solved using non-
symmetric Krylov subspace methods such as GMRES [22].
Hence, the matrix M , which is induced by the LCRS
iterative method, can be utilized as a preconditioner for
GMRES. In other words, we can say that GMRES is used
to accelerate the convergence of the splitting iteration
applied to Au = b [22]. In general, a clustered spectrum
of the preconditioned matrix M−1A often translates in
rapid convergence of GMRES.

Since (I − Γ) =M−1A and ρ(Γ) < 1 in Theorem 5, we
know that the spectra of the preconditioned matrix M−1A
are located inside a circle centred at (1, 0) with radius 1
on the complex plane, which is a desirable property for
Krylov subspace acceleration.

Another aspect of preconditioned krylov subspace
method need consider is how to solve the general residual
equations. When the LCRS preconditioner is used to ac-
celerate the convergence rate of Krylov subspace methods,
it is necessary to solve sequences of generalized residual
equations

�

Q1+C 0
−B Q2

��

z 1

z 2

�

=

�

r1

r2

�

, (13)

where r = (r ∗1 , r ∗2 )∗ and z = (z ∗1, z ∗2)∗ are the current and the
generalized residual vectors, respectively.

The residual equation (13) can be dealt with by first
solving (Q1 +C )z 1 = r1 and then solving Q2z 2 = r2 + Bz 1.
By taking advantage of the structures of the matrices Q1,
C and Q2, we can compute the generalized residual vector
z = (z ∗1, z ∗2)∗ in (13) by the following procedure.

(a) solve z 1 from (Q1+C )z 1 = r1 by using FFT;
(b) compute r̃2 = r2+ Bz 1;
(c) solve z 2 from Q2z 2 = r̃2 by using CG or direct method.

V. NUMERICAL RESULTS

IN this section, the effectiveness and advantages of the
proposed splitting iterative method are illustrated by

using numerical example, which coming from the finite
difference discretization of the two-dimensional Stokes
problem. This problem is chosen for numerical experi-
ments because it is widely known and well-understood
test problems. We note that the (1, 1)-block in saddle
point problems (1) is an SPD BTTB matrix. Our aim
here is to show that our circulant splitting method serve
as a solver may be competitive with the well-known
Uzawa, GSOR (generalized successive over relaxation) [4],
GMRES methods, while it serve as a preconditioner may
be superior to the local shift splitting (LSS) [13] precon-
ditioner, classic Uzawa (Uzawa) preconditioner [11] and
generalized parameterized inexact Uzawa (GPIU) [15], [25]

preconditioner. In order to express these preconditioners
clearly, the following matrix splitting is given
�

A B T

−B 0

�

=

�

A +W1 W4

−B +W3 W2

�

−
�

W1 −B T +W4

W3 W2

�

(14)

And the parameter matrices W1, W2, W3 and W4 are list
in Table I.

TABLE I: The selection of parameter matrices W1, W2, W3

and W4.

W1 W2 W3 W4

LSS −
1

2
A

α

2
I

1

2
B

1

2
B T

Uzawa 0 δI 0 0

GPIU δA BW1 B T t B (t > 0) 0

LCRS A −Q1−C 1 δI 0 0

In actual numerical experiments, Q1 = αµI with µ =
mode

�

A(i , i ), i = 1, 2, · · · , n
�

is chosen for use in the LCRS
iterative method. All the tests are performed in MATLAB
R2013a with machine precision 10−16, and terminated
when the current residual satisfies ‖rk ‖/‖r0‖ < 10−6 or
the number of the prescribed iteration kmax = 1, 000 is
exceeded, where rk is the residual at the k -th iteration.
The zero vector serve as the initial guess, and the right-
hand side vector b is selected such that the exact solution
of the saddle point problem is u ∗ = (x ∗, y ∗)∗ = (1, 1, · · · , 1)∗.

The problem under consideration is the Stokes problem,
which is firstly constructed and used in [3] and latter in
other papers [1], [4], [13], i.e.,















−v∆u+∇p = f̃ , in Ω,

∇·u = g̃ , in Ω,

u = 0, on ∂ Ω,
∫

Ω
p (x )d x = 0,

(15)

where Ω = [0, 1]× [0, 1] ⊂ R2, ∂ Ω is the boundary of Ω, v
stands for the viscosity scalar, ∆ is the componentwise
Laplace operator, u=(u T , v T )T is a vector-valued function
representing the velocity, and p is a scalar function repre-
senting the pressure. By discretizing (15) with the upwind
scheme and taking v = 1, we obtain the following linear
system with saddle point form (1),

�

A B T

−B 0

��

u
p

�

=

�

f
−g

�

,

where

A =

�

I ⊗T +T ⊗ I 0
0 I ⊗T +T ⊗ I

�

∈R2p 2×2p 2
,

B T =

�

I ⊗ F
F ⊗ I

�

∈R2p 2×p 2
,

T =
1

h2
tridiag(−1, 2,−1)∈Rp×p ,

F =
1

h
tridiag(−1,−1, 0)∈Rp×p

with ⊗ being the Kronecker product symbol and h = 1
p+1

the discretization meshsize, p is a positive integer, the
total number of varablesis m + n = 2p 2 + p 2 = 3p 2; see
[13].
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The LCRS iterative method is compare with the classic
Uzawa, GSOR, GMRES when they are used as solvers
for the tested example, from the point of view of the
number of total iteration steps (denoted by “IT”), the
elapsed CPU time in seconds (denoted by “CPU”) and the
absolute error norm ‖u k−u ∗‖∞ (denoted by “ERR”), where
u k is the approximate solution satisfied the terminated
condition of iterative methods, and u ∗ is the exact solution
of the saddle point problem. The concrete numerical
results and the corresponding parameters used in iterative
methods are given in Table II.

Moreover, The LCRS iteration is compare with the
classic Uzawa, generalized parameterized inexact Uzawa
(GPIU) and local shift-splitting (LSS) when they are used
as preconditioners to accelerate GMRES for the tested
problem, from the point of view of the number of total
iteration steps and the elapsed CPU time in seconds,
denoted by “IT” and “CPU” respectively. The empirical
optimal parameters used in preconditioners and concrete
numerical results are given in Table III. Furthermore, the
convergence history is shown in Figure 1.

As shown in Table II and Figure 1, all iterative methods
can successfully produce approximate solution of the
tested saddle point problem. The elapsed CPU time and
number of iterations increased as the scale of the problem
increased. In terms of the number of iterations, the Uzawa
iteration is the fewest, and the LCRS iterative method are
fewer than GMRES but more than GSOR. In terms of the
elapsed CPU time, the LCRS iteration is the least among
all iterative methods.

When the LCRS is used as a preconditioner to accelerate
GMRES method, from Table III, we can see that the
iteration counts of GPIU preconditioner is the fewest,
and those of the LCRS preconditioner is the most. But
the elapsed CPU time of LCRS preconditioner is the lest.
Moreover, as FFT could be paralleled and implemented
on multiprocessors efficiently, the elapsed CPU time of
the LCRS iterative method and the LCRS preconditioned
GMRES method may be further saved.

Clearly, with the optimal parameters, the LCRS is used
as either solver or preconditioner to GMRES method often
do best in the elapsed CPU time, but whose iteration
counts are more than Uzawa and GSOR iterative methods,
also more than Uzawa, GPIU and LSS used as precondi-
tioners to GMRES. This may be attributable to the follow-
ing two reasons. The first is that the convergence speed
of the LCRS iterative method may be slow, which directly
increases the number of iterations. The other is that the
FFT is used in LCRS iterative method or preconditioner,
which can save a lot of time in each iteration steps. In
conclusion, the LCRS is a good iterative method for solving
saddle point problem (1), which is much more effective
than the other tested method, and it can be used as a good
preconditioner to accelerate the convergence of GMRES
for the test problems.

VI. CONCLUDING REMARKS

THE sparse symmetric Toeplitz or BTTB structured
saddle point problems are common in many field.

The local circulant and residue splitting (LCRS) iterative
method and its preconditioned form are proposed to solve

the saddle point problems with the SPD Toeplitz or BTTB
(1, 1)-block. In fact, the new splitting iterative method
belongs to a class of the parameterized inexact Uzawa
(PIU) method studied in [8], and it is also similar to the
local HSS iterative method presented in [16], [27], [28]. The
splitting matrix of the LCRS iterative method can serve
as a preconditioner, called the LCRS preconditioner, to
accelerate GMRES method for solving the saddle point
problems. The main idea is the Toeplitz matrix could
be split to a sum of circulant and residue matrix, and
the linear sub-systems with circulant coefficient matrix
could be solved by using FFT. Theoretical analysis have
shown that the LCRS iterative method is feasible and
effective. Numerical experiments shown that LCRS iter-
ative method and the GMRES method incorporated with
the LCRS preconditioner outperform other test solvers or
preconditioners in elapsed CPU time.

Based on the following splitting of the saddle point
matrix A :

A =
�

A B T

−B 0

�

=

�

G B T

−B 0

�

−
�

A −G 0
0 0

�

:=M −N ,

where M is called the constraint preconditioner, the main
ideas in this paper could be generalized to the constraint
preconditioner by further exploiting the Toeplitz structure.
In [14]the convergence of the constraint preconditioned
Krylov subspace iterative method was study, and it may be
interesting to study the convergence of a class of splitting
iterative methods based on the local circulant and residual
splitting. In addition, future work should also focus on
determining the choice of the optimal parameter matrices
Q1 and Q2.
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TABLE II: Numerical results of iterative methods.

p=8 p=16 p=24 p=32 p=40 p=48 p=56 p=64 p=72 p=80

LCRS α 0.26 0.21 0.20 0.20 0.20 0.20 0.19 0.19 0.19 0.19

δ 1.28 1.03 1.06 1.13 1.13 1.12 1.12 1.08 1.09 1.08

IT 59 102 158 187 242 296 359 401 459 516

CPU 0.0029 0.0068 0.0195 0.0304 0.0525 0.1000 0.1743 0.2598 0.3334 0.5389

ERR 7.90E-5 1.26E-4 1.54E-4 2.87E-4 2.94E-4 7.07E-4 5.62E-4 8.25E-4 7.29E-4 7.39E-4

Uzawa δ 0.55 0.53 0.52 0.51 0.51 0.5 0.5 0.5 0.5 0.5

IT 31 46 59 70 80 91 99 107 115 122

CPU 0.0204 0.0282 0.0667 0.1291 0.2629 0.5683 0.7189 1.286 2.3341 2.9978

ERR 6.41E-5 2.53E-4 5.05E-4 8.25E-4 1.33E-3 1.49E-3 2.16E-3 2.85E-3 3.55E-3 4.42E-3

GSOR ω 1.2 1.23 1.22 1.23 1.23 1.23 1.23 1.23 1.23 1.23

τ 0.87 0.87 0.91 0.91 0.92 0.93 0.93 0.93 0.94 0.94

IT 49 79 98 118 134 148 161 173 184 193

CPU 0.0161 0.0558 0.1724 0.3148 0.7977 1.5938 2.4809 4.1128 10.7579 17.964

ERR 1.81E-4 6.51E-4 1.38E-3 2.21E-3 3.24E-3 4.41E-3 5.89E-3 7.56E-3 8.93E-3 1.11E-2

GMRES IT 54 119 176 233 312 376 439 501 563 625

CPU 0.0377 0.1302 0.3909 1.2338 3.0164 5.7188 9.8161 14.9753 24.059 36.0489

ERR 2.44E-4 9.99E-4 4.66E-3 1.42E-2 3.04E-2 4.16E-2 5.63E-2 7.50E-2 9.68E-2 1.21E-1

TABLE III: Numerical results of preconditioned GMRES with different preconditioner.

p=8 p=16 p=24 p=32 p=40 p=48 p=56 p=64 p=72 p=80

Non IT 54 119 176 233 312 376 439 501 563 625

CPU 0.0377 0.1302 0.3909 1.2338 3.0164 5.7188 9.8161 14.9753 24.059 36.0489

LCRS α 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

δ 0.75 0.48 0.56 0.53 0.41 0.30 0.31 0.35 0.36 0.44

IT 14 19 24 27 29 31 33 35 37 39

CPU 0.0042 0.0112 0.0343 0.0633 0.0956 0.1361 0.1773 0.2482 0.3265 0.3917

Uzawa δ 0.74 0.63 0.54 0.53 0.51 0.59 0.58 0.57 0.56 0.55

IT 8 9 10 10 11 11 11 11 11 11

CPU 0.0092 0.0287 0.0790 0.1451 0.2249 0.3182 0.4288 0.6133 0.9722 1.1538

GPIU α 0.03 0.4 0.05 0.06 0.07 0.08 0.08 0.09 0.08 0.09

t 0.33 0.33 0.35 0.34 0.33 0.32 0.32 0.33 0.34 0.33

IT 3 3 3 3 3 3 3 3 3 3

CPU 0.0034 0.0176 0.0732 0.2159 0.5783 1.4742 3.7813 8.5324 18.1374 32.2067

LSS α 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

IT 7 7 8 9 9 9 9 9 9 9

CPU 0.0047 0.0171 0.0438 0.0933 0.1575 0.1997 0.2808 0.4685 0.5099 0.6485
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Fig. 1: Convergence of LCRS, Uzawa, GSOR, GMRES and LCRS preconditioned GMRES methods.
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