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Abstract—Train maintenance regulation requires regular 

inspections of the rolling stock of railway companies. A planner 

who makes a schedule of rolling-stock operation should 

consider both assignments of rolling stock to train services and 

schedules of periodical maintenance. In Japan, the schedule is 

manually created for the middle-term, which is for half a month 

or full month. To reduce spent time to make the schedule , we 

developed an algorithm for rolling-stock-assignment schedule. 

To efficiently consider inspection cycles, the proposed 

algorithm creates assignment patterns of rolling stock which 

satisfy inspection cycles in advance. And then, the algorithm 

creates templates of schedule using the patterns, and assigns 

inspections to the templates. We verified the feasibility and 

scalability of the proposed algorithm using actual train 

operation data. The results indicate that the algorithm 

successfully generates a schedule which satisfies required 

regular inspection cycles within feasible calculation time . 

 

Index Terms— Dijkstra method, inspection cycle, scheduling 

algorithm, rolling stock assignment 

 

I. INTRODUCTION 

RIN maintenance regulation requires railway companies 

to regularly inspect their rolling stock at stated cycles in 

order to ensure safe transportation, and these cycles are based 

on running distances and inspection periods. Each railway 

company manages their rolling stock by creating schedules for 

rolling-stock assignments. These schedules define the 

assignment of train units to train services and the dates of 

inspections. In this paper, a train unit means combined 

vehicles that serve as one train and maintained together. 

This scheduling requires much time because they are 

manually prepared without any decision-support system. The 

purpose of this research was to support a rolling-stock planner 

in quickly creating an assignment schedule. 

There have been several studies on the problem of 

rolling-stock assignments without maintenance.  The problem 

of train unit assignment considering combinations of train 

 
Manuscript received October 11, 2017; revised March 26, 2018.  

T . Tomiyama and T . Sato are with Hitachi, Ltd., Research & 

Development Group, 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, 

244-0817, Japan (e-mail: tomoe.tomiyama.rq@hitachi.com).  

K. Okada and T . Wakamiya are Hitachi, Ltd., Social Infrastructure 

Information Systems Division, 6-27-18, Minamiooi, Shinagawa-ku, 

Tokyo, Japan. 

T . Murata is with Graduate School of Information, Production and 

Systems, Waseda University, 2-7, Hibikino, Wakamatsu-ku, 

Kitakyushu-shi, Fukuoka 808-0315, Japan. 

units was solved [1]-[5]. From another point of view, the usage 

of train units was minimized [6] and seat demand was 

considered [7]-[8]. 

 

There have been studies considering maintenance in the 

short term. The rolling-stock assignment and shunting 

scheduling were solved using two branch-and-bound 

algorithms [9].  Rolling-stock assignment was modeled as a 

problem of multi-commodity flow considering the cost of 

shunting tasks [10]. Combinations of each vehicle were 

considered [11]. Rolling stock assignment and maintenance 

scheduling were solved considering the addition of deadhead 

trains [12].   

Whereas most studies were focused on short-term 

schedules of a few days without inspection cycles, [15] 

focused on a few days with inspection cycles, which can be 

applied to a middle- or long-term schedule. This study 

provides an efficient column-generation algorithm by relaxing 

constraints across train units.  

In Japan, an assignment schedule is created for the middle- 

term, which is for half a month or full month. We developed an 

algorithm for a train-unit-assignment schedule with inspection 

cycles. 

We describe the rolling-stock-assignment problem in 

Section II, present our approach and algorithm in Sections III 

and IV, respectively, explain the computational results in 

Section V, and give concluding remarks in Section VI. 

II. ROLLING-STOCK-ASSIGNMENT PROBLEM 

A. Scheduling for Rolling-Stock Assignment 

Schedules for rolling-stock assignment are normally created in 

train units. A train unit means a set of combined vehicles that 

are not divided except in special cases such as breakdowns. 

The first step in assigning train units is to define sets of train 

services that are assigned the same train unit 

(train-circulation). After that, train units are respectively 

assigned to the train-circulation, and inspection dates are 

defined in regular cycles (rolling-stock assignment). 

Whereas train-circulations are created in one day, 

rolling-stock assignments are created in a few days or more 

because inspection cycles are taken into account. The range 

of the schedule (planning horizon) depends on the operational 

policies. In most Japanese railways, except high speed trains , 

the range is a half a month or full month. Fig. 1 (a) shows an 

example of a train-circulation. The symbol of circle in the figure 

indicates the departure from a depot, and the symbol of 

triangle in the figure indicates the arrival to a depot. In this 
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case, train-circulation 1 includes trains 1, 2, 7, and 8, and this 

circulation involves departures and arrivals from station A. In 

the same way, train-circulation 2 includes trains 3, 4, 9, and 10, 

and the departure and arrival stations are station A. 

Train-circulation 3 includes train 5, 6, 11, and 30, and the 

departure and arrival stations are station A.  

In train-circulation 3, a short stay at a depot is included 

among train 11 and train 30, and an inspection is available 

during this stay. Fig. 1 (b) shows an example of a 

rolling-stock-assignment for September. In this case, train unit 

A is sequentially assigned to train-circulations 1, 2, and 3 from 

the first day to the last day of the targeted planning horizon.  

In theory, rolling-stock-assignment can be automatically 

created on the basis of the running and inspection results. In 

practice, it has to be manually managed because unplanned 

maintenance works cannot be avoided. To keep interactive 

with a planner, the scheduling algorithm of 

rolling-stock-assignment is required to quickly response. 

B. Constraints of Train Connectivity and Inspections 

To create a rolling-stock-assignment schedule, a planner takes 

into account the following constraints. 

(1) Connectivity between train-circulations 

It is necessary to maintain consistency of place and time of 

train-circulations assigned to the same train unit to make a 

schedule executable. In general, train units are stored at 

depots or stations near the stations where the train units will 

depart from the next day. If the departure depot (or station) is 

different from the arrival depot (or station), a deadhead train is 

needed. This incurs additional operation cost.  

 (2) Inspection cycle 

An inspection cycle is defined by laws. In our targeted railway 

company, the cycle is within five days for light inspections 

such as visual inspection. Regarding heavy inspections, such 

as overhaul, the date of inspection is designated by another 

schedule of the rolling-stock factory.  

(3) Inspection capacity 

The number of inspections in one day is limited because 

inspections require specific facilities and skilled maintainers. 

In our targeted railway company, to make it easier to consider 

the capacity of inspections, train-circulations in which 

inspections can be conducted are designated. 

C. Literature 

The researches related to rolling-stock-assignment can be 

categorized to two types: which deals with train-circulation 

and rolling-stock-assignment together or which deals with 

them separately. 

In the case of dealing with them together, it is required to 

consider constraints related to each train such as shunting 

works for turn-over and the number of vehicles. The algorithm 

integrating two branch-and-bound algorithms for 

rolling-stock-assignment and shunting schedule was 

provided [9]. The penalties against complex shunting works 

and/or delays caused by shortage of drivers  were modeled as 

evaluation criteria [2] [10]. 

Combinations of each vehicle were considered [1] [8] [4] [11]. 

The constraints related to the number of vehicles for each train 

were modeled as a multi-commodity flow problem [1]. The 

same constraints were modeled as a mixed integer problem, 

and were solved by the heuristic algorithm using lagrangian 

relaxation algorithm and local search [8]. The positions of 

vehicles composing each train unit were modeled as a 

multi-commodity flow problem, and the branch-and-bound 

algorithm applied Dantzing-Wolfe decomposition was 

provided [4]. The required time to merge train units was 

considered by the algorithm using branch-and-bound method 

and column-generation method [11]. 

In addition, some researches consider the designed 

inspection dates [12]-[15]. The dates and the required time to 

execute inspections were modeled as a mix integer problem, 

and the algorithms using column-generation algorithm and 

lagrangian relaxation method were provided [12]-[14].  

While these researches assumed that inspection dates were 

designed, [30] provided an algorithm for scheduling both of 

assignment of train units and assignment of inspections. In 

this algorithm, assignment of train units was defined as a 

sub-problem for column-generation algorithm, and was solved 

using the algorithm of searching the shortest path based on 

Bellman-Ford method.  

As the case of dealing with train-circulation and 

rolling-stock-assignment separately, there is a research for 

long distance trains. The rule-based heuristic algorithm for 

assigning train units to train-circulations was provided [16]. 

This research defined a model of ideal cumulative mileage 

within one inspection cycle for efficiency. To keep real 
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(a) Example of train-circulation 

 

Train 
Unit A

T. C. 1

Sept. 1st Sept. 2nd Sept. 3rd Sept. 4th Sept. 31st

T. C. : Train Circulation

T. C. 2 T. C. 3 T. C. 1 T. C. 1

Train 
Unit B

T. C. 2 T. C. 3 T. C. 1 T. C. 2 T. C. 2

Train 
Unit C

T. C. 3 T. C. 1 T. C. 2 T. C. 3 T. C. 3

 
(b) Example of rolling-stock-assignment 

Fig. 1. Schedule examples 
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Fig. 2.  Network model of train-unit operation (cited from [17]) 

cumulative mileage of each train unit close to the ideal one, the 

algorithm calculated priorities of train-circulations for each 

train unit. 

III. MODEL AND FORMULATION 

The constraint of connectivity between train-circulations, 

which is mentioned in the previous section (constraint (1)), 

can be considered using a network model. In this model, a task, 

such as train-circulation, is represented as a node, and only 

nodes that maintain connectivity are linked by arcs. 

Whereas the network model is useful for restricting 

relations between two nodes, it cannot restrict relations over 

some nodes such as an inspection cycle. To efficiently 

consider the connectivity and the inspection cycles, we solve 

the problem in two steps , i.e., creating templates of 

train-circulation assignment using the network model, and 

assigning inspections to the templates considering inspection 

cycles. The details of the proposed algorithm are given in the 

next section. 

In this section, we explain the network model and 

mathematical formulation. 

A. Network Model of Train Unit Operation  

We represent a rolling-stock assignment as a network model to 

efficiently consider the connectivity of circulations. As 

previously mentioned, a node in a network model represents a 

train-circulation. In addition, if a train unit is stocked at a depot 

for a whole day, this operation is represented as a node. Each 

node has four attributes: date of circulation, departure depot 

(or station) of circulation, arrival depot (or station) of 

circulation, and availability of inspections. In our targeted 

railway operation system, the availability of inspection is 

pre-defined in each train-circulation considering the depot 

capacity. The availability of inspection depends on the time 

interval of the arrival and departure times at the depot. 

Therefore, it is defined at the same time as creating a 

train-circulation. 

The nodes are linked by arcs if the train-circulations 

represented by the nodes maintain connectivity, which is 

mentioned in Section II (1). Each arc has a weight that 

represents an order-pattern of train-circulation assignment. 

This order-pattern defines circulation sequences that are 

continuously assigned to the same train unit. The detail of the 

pattern is mentioned in the next section. 

A train-unit assignment is represented as a path of the 

network model. Fig. 2 shows an example of this network model 

for schedules of September. Train-circulations on 1st 

September are represented by the left three nodes, 

train-circulations on 2nd September are represented by the 

next three nodes, and train-circulations on the other days are 

represented by the same way. The path indicated in Fig. 2 

represents a schedule for train unit A. In the schedule, train 

unit A is assigned to train-circulation 1, 2, 3, and 1 from 1st 

September to 4th September. 

B. Formulation of Rolling-Stock Assignment Problem 

Scheduling rolling-stock assignment consists of two 

problems:  

problem 1) assigning train units to train-circulations,  

problem 2) defining dates of train units’ inspections.  

Assignment of train units is modeled as a problem of extracting 

a set of paths from the network model and deciding 0-1 values 

of variables which represent train unit assignments to the 

extracted paths. Definition of inspections’ dates is modeled as 

a problem of deciding 0-1 values of variables which represent 

inspection executions satisfying inspection cycles . The 

evaluation of this problem is minimizing inspection cost. 

We defined these problems by using the following 

elements. 

Parameters 

rW : weight of arc r. 

kC : cycle of inspection k. 

ukFC : the first cycle of inspection k for train unit u. This 

parameter is defined depending on running and inspection 

results of each train unit. 

knPC : cost for executing an inspection k at the 

train-circulation represented by node n. When the inspection 

k is not executable at node n, the cost is set high. 

 

Sets 

R : arc set in a network model. 

N : node set in a network model. 

I : date set included in the targeted planning horizon. The 

first day of the planning horizon is denoted as 0. The following 

days are sequentially numbered. 

K : type of inspection set. 
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U : train unit set. 

J : path set. This set is created on the basis of the result of 

problem 1. 

 

Variables 

  1,0kna : 1kna  if inspection k is executable at node 

n, or 0kna  if not. 

 1,0int : 1int  if node n denotes a train-circulation at 

the i-th day, or 0int  if not.  

 1,0rno : 1rno  if node n is the origin of arc r, or 

0rno  if not. 

 1,0rnd : 1rnd  if node n is the destination of arc r, or 

0rnd  if not. 

 1,0ns : 1ns  if node n denotes a train-circulation at 

the first day of the targeted planning horizon, or 0ns  if 

not.  

 1,0ne : 1ne  if node n denotes a train-circulation at 

the last day of the targeted planning horizon, or 0ne  if not.  

 1,0jnp : 1jnp  if node n is included in path j, or 

0jnp  if not. This value is decided by the result of problem 

1. 

 

Decision variables 

 1,0j

rx  : 1j

rx  if arc r is included in a solution for 

path j, or 0j

rx  if not. 

 1,0kny  : 1kny  if inspection k is assigned to node n, 

or 0kny  if not. 

 1,0juz  : 1juz  if train unit u is assigned to path j, or 

0juz  if not. 

 

The rolling-stock-assignment model is defined as follows. 

 

Objective functions 

knNn Kk kn PCy  
min                       (1) 

A solution is evaluated by the total inspection cost. As the 

mentioned above, knPC  is set high if inspection k is not 

executable at node n. Therefore, if all nodes assigned 

inspections have availability of inspection, objective value is 

minimized. 

 

Constraints 

1 Jj

j

rx          Rr                 (2) 

1)(   Jj

j

rrnn

j

rRr rn xdexo          Nn      (3) 

0)(   nnRr

j

rnrRr

j

rnr sexoxd  

JjNn  ,       (4) 

 


Rr rnnrn

j

rjn deoxp )(    JjNn  ,    (5) 

 


Jj juz 1                                   Uu      (6) 

 


Uu juz 1                                        Jj       (7) 

 


Nn nju sz 1                                    Jj          (8) 

 


Nn njuez 1                                   Jj           (9) 

 

0 


 ju

FCi

i Nn knjnin zypt
uk

                    

UuJjKkIi  ,,,  (10) 

1 




kCi

i Nn knjnin ypt                     

JjKkIi  ,,  (11) 

 

Equation (2) is the constraint restricting that each arc is 

covered by only one path. 

Equation (3) is the constraint of the train-circulation 

coverage. It makes each node covered by only one path. 

When an arc is included in a solution, the nodes out-linked by 

the arc are included in a solution at the same time. However the 

last day of the targeted planning horizon, nodes have no 

out-linked arc. Therefore, Eq. (3) restricts the coverage of both 

of the origin nodes of all arcs and the destination nodes of arcs 

in the last day. 

To make paths from the first day to the last day of the 

targeted planning horizon, Eq. (4) restricts the number of 

in-linked and out-linked arcs with a node to the same number 

of each other. The first nodes in the targeted planning horizon 

have only out-linked arcs, and the last nodes in the targeted 

planning horizon have only in-linked arcs. Therefore, the left 

term of Eq. (4) is multiplied by ns  and ne  to except the first 

nodes and the last nodes. 

Equation (5) defines nodes included in the paths extracted 

as a solution. 

Equation (6) is the constraint of the train unit coverage. 

Each train unit is restricted to be assigned to only one path. 

Equation (7) is the constraint of the path coverage. Each 

path is restricted to be assigned to only one train unit. 

Equations (8) and (9) are the constraints of the coverages of 

nodes in the first day and the last day of the targeted planning 

horizon. To make each path start from the first day and make it 

finish at the last day, this constraint makes each path include 

only one node respectively in the first day and the last day.  

The constraint of an inspection cycle, which is mentioned in 

Section II (constraint (2)), is expressed by Eqs. (10) and (11). Eq. 

(10) is for the first inspection cycle. The fist cycle depends on 

the running and inspection results of each train unit. Therefore, 

Eq. (10) needs to be considered on the basis of the train unit 

assignment, that is controlled by the decision variable juz . Eq. 

(11) is for all inspection cycles.  

The constraint of inspection capacity, which is mentioned 

in Section II (constraint (3)), is expressed by variable kna .  
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Fig. 3.  Overview of the proposed algorithm 

IV. PROPOSED ALGORITHM 

A. Overview 

We propose an algorithm for searching schedules for all train 

units using the network model mentioned in section III. The 

reason of using the network model is to apply order-patterns 

for efficient search. Order-pattern is created by using a kind of 

know-how of rolling-stock-assignment planner, it defines a 

partial order of train-circulations which satisfies an inspection 

cycle (see step 0 mentioned below). 

Fig.3 shows the overview of the way to use the network 

model. The algorithm uses the network model in the following 

two phases.  

 

[Phase1]: Process of Creating Templates  of Schedule 

The algorithm creates templates of schedule for each train 

unit by selecting feasible paths  from the network model 

considering Eqs. (2)-(9). Template is a rough schedule for a 

train unit, it defines assignment of train unit to each 

train-circulation. To increase the possibility of success of the 

next phase (Phase 2), the order-patterns are reflected in the 

network model. 

 

[Phase 2]: Process of Setting Inspections  

The algorithm assigns inspections to the paths selected in 

phase 1 considering Eqs. (10) and (11) to satisfy required 

inspection cycles. The results of this phase are defined as  a 

rolling-stock-assignment schedule. 

If there are any violations of inspection cycles, a template is 

selected to be canceled. The network model is modified by 

pushing back the nodes included in the canceled template. 

And then, the procedures of phase 1 and 2 are repeated until a 

feasible solution, which has no violation of constraints 

mentioned in section II, is found. 

B. The Algorithm 

The flow of the proposed algorithm is shown in Fig. 4. At the 

beginning of the flow, the network model is created (step 0). 

And the algorithm creates a schedule by searching partial 

solution for each train unit (steps 1-5). And then, to get a better 

solution, the algorithm repeats the steps 1-5 within time limit 

by randomly changing processing order (step 6). 

The details of steps 0-5 are illustrated below. 

 

[Step 0]: Process of Creating Order-patterns 

In step0, the algorithm creates order-patterns by changing a 

part of an operation pattern. An operation pattern is a 

sequence of train-circulations satisfying inspection cycles, 

which is created together with train-circulations. In an 

operation pattern, more than one inspection is included at the 

interval of inspection cycle. The algorithm creates 

order-patterns by dividing an operation pattern by inspection 

cycle and partly changing the divided patterns while keeping 

satisfaction of inspection cycle. The detailed processes are 

the following. 

Step A: Divides an operation pattern at the interval of 

inspection cycle, and defines them as basic patterns. Fig. 5 (a) 

shows an example of basic patterns. In this example, 

inspection cycle is three days. The sequence of 

train-circulations lined up from T.C.1 to T.C.9 is an operation 

pattern. Inspection is available at T.C.1, 3, 5, and 7.The 

sequences from T.C.1 to 3, from T.C.4 to 6, and from T.C.7 to 9 

are respectively created as basic patterns (BPs). 

Step B: Exchange train-circulations included in the basic 

patters among each other, and define them as order-patterns. 

The target of this exchange is only train-circulations with 

availability of inspection in order to keep satisfaction of 

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

 
______________________________________________________________________________________ 



 

Yes

No

Start

Step 2. Search paths 

representing train-

circulation-assignment 

templates.

All inspections 
can be set.

Finish

Step 3. Assign inspections 

to the paths..

Step 1. Create a network 

model based on the order 

patterns.

Step 5. Modify the 

network model for 

backtrack.

Step 4. Select a 

cancelled template.

Phase 1

Phase 2

Success for the 
search.

Yes
No

Step 0. Create order 

patterns of train-

circulation-assignment.

processing time

is within time limit

Step 6. Change processing 

order of train units.

 
Fig. 4.  Flow of the proposed algorithm 
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(a) Example of basic patterns 
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(b)  Example of order-patterns 

Fig. 5 Example of patterns 

inspection cycle. In addition, exchange is allowed only when 

consistencies of departure and arrival of train-circulations can 

be kept. Fig. 5 (b) shows an example of order-patterns. T.C.1 

and T.C.3 in BP.1 are respectively exchanged with T.C.5 in BP.2 

and T.C.7 in BP.3. The resulted patterns are respectively 

defined as order-patterns (order-pattern 2-9). By the same way, 

train-circulations with inspection availabilities included in 

BP.2 and BP.3 are exchanged with each other. 

 

[Phase1]: Process of Creating Templates of Schedule 

 (Step1): Create the network model 

The network model, which is mentioned in Section III, is 

created on the basis of train-circulation data, and weights of 

arcs are set on the basis of the order-patterns generated in 

step0.  

The algorithm sets small weights to the following arcs. 

a) Arc that represents the same order of train-circulations 

with order-patterns. In the case of Fig.5, the arcs connecting 

T.C.1 and T.C.2, T.C.2 and T.C.3, T.C.4 and T.C.5, T.C.5 and 

T.C.6 and so on are set small weights. 

b) Arc between the last node of an order-pattern and the first 

node of the other order-pattern. In the case of Fig. 5, the arcs 

connecting T.C.3 and T.C.5, T.C.3 and T.C.7, T.C.4 and T.C.1 

and so on are set small weights.  

 (Step 2): Create templates of schedule 

Templates of schedule are created by searching the shortest 

paths from each node of the first day of targeted planning 

horizon considering constraints of connectivity between 

train-circulations. Each path is individually searched by using 

the Dijkstra method in sequential order. The Dijkstra method is 

one of general algorithms for searching the shortest path from 

a network model. The method makes the searching process 

fast by memorizing partial solutions and using them to skip the 

same search processes.  

To consider the constraints of coverages of nodes and arcs 

denoted in Eqs. (2) and (3), the network model is modified 

every time a path is searched. It means that the nodes included 

in the selected path are deleted from the network model to 

avoid being selected by the other train unit. 

 

[Phase 2]: Process of Setting Inspections  

 (Step 3): Assign inspections 

Inspections are assigned to the templates  created in phase 1. 

The algorithm starts checking from the first node of the path 

searched in step 2 and sets inspections to the nodes with the 

availability of inspection. To minimize the number of added 

inspections, the algorithm sets inspections to the nodes that 

are the last nodes in each inspection cycle. When a violation 

of inspection cycle remains, the algorithm cancels a solution 

for other train units and backtracks to address the violation to 

change the templates created in the previous step (see steps 4 

and 5 explained below). 

 (Step 4): Cancelation 

When an inspection-cycle violation remains, the algorithm 

selects a path for cancelation previously searched as a partial 

solution in step 2.  

(Step 5): Modify the network model 

To backtrack beyond the phase, the algorithm modifies the 

network model and executes the processes from step 2 and 3 

again. When a path is selected for cancelation in step 4, the 

nodes and arcs in the selected path are added to the network 

model to backtrack. This makes the nodes and arcs selectable 

for other paths again. 
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Table 1.  Data sets and parameters 

(a) Data Sets 

Data No. 
Size of 

Depot 

Number of 

Train Units 

Planning 

Horizon 

[days] 

Ratio of 

Designated 

Inspections 

[%] 

Case1 small 10 16 1.88 

Case2 large 67 28 4.53 

 

(b) Parameters 

Inspection Cycles 

[days] 

Weights of Arcs  

Included in 

Patterns 

 not Included  in 

Patterns 

5 1 1000 

 

Table 3.The schedule created by the proposed algorithm for Case 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Train Unit 0 10 1 2 3 00 00 00 00 00 00 00 00 00 00 00 00

Train Unit 1 2 6 7 1 7 6 7 1 7 1 2 3 00 00 00 00

Train Unit 2 5 10 00 00 4 5 6 2 1 2 6 7 1 2 3 00

Train Unit 3 1 7 1 2 6 2 1 7 6 7 3 4 5 1 2 1

Train Unit 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Train Unit 5 3 4 5 6 2 1 2 6 2 3 4 5 6 7 1 2

Train Unit 6 7 3 4 5 1 7 3 4 5 6 7 1 7 6 7 6

Train Unit 7 4 5 6 7 3 00 4 5 3 4 5 6 2 3 4 5

Train Unit 8 6 2 3 00 00 4 5 3 00 5 1 2 3 4 5 3

Train Unit 9 00 00 00 4 5 3 00 00 00 00 00 00 4 5 6 7

Underline: with inspeciton availability, Bold: assigned inspection, 00: operation as a spare

Date

 

Table 2.  The number of variables 

  
Variable 

x 

Variable 

y 

Variable 

z 

Variable 

p 
Total 

Case 1 480 160 100 1600 2340 

Case 2 15596 1876 4489 125692 147653 

 

V. NUMERICAL RESULTS 

A. Evaluation Criteria 

We compared the proposed algorithm with the commercial 

Mixed-Integer Programing (MIP) solver Gurobi [18] from the 

following view points. 

(1) Optimality: inspection cost for executing inspections, 

which is calculated by Eq. (1). To calculate inspection costs, 

we used 1.0 and 10.0 as cost values for inspection in 

pre-defined window and not in pre-defined window 

respectively. 

(2) Stability: variance of inspection costs in several trails of 

the proposed algorithm. The proposed algorithm randomly 

changes the order of processing train units  (see step 6 

indicated in the previous section). So, the result of the 

algorithm could be different on each search. We repeated the 

algorithm several times, and verified the variance of the 

inspection costs of the searches. 

(3) Scalability: spent time for searching the best solution. In 

the proposed algorithm, the time is for all processes shown in 

Fig. 4. 

B. Data Set of Experiment 

The test data were based on two sets of actual data indicated 

in Table 1. The parameters of our model introduced in Section 

III are also indicated in Table 1. In addition, Table 2 shows 

problem sizes. 

We used a Pentium 4 computer (3.2 GHz and 2 GB). The 

programming language was C++ for the proposed algorithm. 

Gurobi was processed on a web server with Intel Xeon CPU 

(3.4GHz, 4 cores, and 20GB).  

C. Results 

We executed the proposed algorithm ten times using 

respectively data of Case 1 and Case 2. The limit time of each 

execution was six hours for Case 1, and 24hours for Case 2.  

In the beginning, we indicate one of results of Case 1. After 

that, the numerical summary of the results are described on the 

basis of the evaluation criteria mentioned above. 

Table 3 shows one of the schedules created by the proposed 

algorithm. Though some train units were sequentially 

assigned to some train-circulations with inspection 

availability, inspections were assigned to only some of them.  

To minimize the inspection cost, it is desirable that the interval 

of inspections is close to the inspection cycle. In the result 

described in Table 3, all intervals were four or five days, which 

were close to the inspection cycle. 

In this case, the basic order-pattern consisted of from T.C. 1 

to T.C.7. The T.C.10 was irregular, and was only set in day 1 

and day 2. The order-patterns were underlined using dashed 

line. For example, train unit 0 was sequentially assigned to 

train-circulations 1, 2 and 3 as with the order-patterns. While 

the assignments of train units mostly kept to the 

order-patterns, there were some disconnections of the 

order-patterns, such as days 5, 6 and 8. It was probably caused 

by the buffers included in the order-patterns. In the 
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Fig.6 A part of the network model for the schedule shown in Table 3  

 

Table 4. Result  in Case 1 

  
Inspection 

Cost 

Inspection 

Cost 

(Variance) 

Number of 

Inspections 

in Pre-defined 

(Average) 

Number of 

Inspections not 

in Pre-defined 

(Average) 

Rate of 

Inspections in 

Pre-defined 

[%] 

Convergence T ime 

[seconds] 

Proposed 32.5 0.25 32.5 0.0 100.0 3066.0 

Gurobi 
50.0 

(Interim) 
- - - - ≥ 86400 

 

order-patterns, only T.C.1 and T.C.4 had inspection 

availabilities. Whereas the intervals  between them, which were 

“from T.C.1 to T.C.4” and “from T.C.4 to T.C.1”, were three and 

four, the inspection cycle was five days. Therefore, if we 

assigned train units to train-circulations using the 

order-patterns, the intervals of inspections were three and four 

days. It were shorter than inspection cycles. To minimize 

inspection cost, the proposed algorithm created the schedule 

as partially disconnecting the sequential of the order-patterns. 

Figure 6 shows a part of the network model that created for 

calculating the schedule of Train Unit 0 in the same case of 

Table 3. The arcs between the train unit and the nodes of the 

first day were created, only if the arcs kept consistency with 

the place where the train unit was stored at the day before the 

first day. Train unit 0 was assigned to T.C.10 and T.C.1 at day 

1 and day 2 respectively. Since the arcs from train unit 0 to the 

nodes of the day 1 were weighted equally, the arcs were 

selected in order of the identity. In the same way, the arc from 

the node of day 1 to the node of day 2 was selected. At day 3, 

the weight of the arc linked from the node of T.C.1 to the node 

of T.C.2 was smaller than the ones of the other arcs, because 

the arc was a part of order-pattern. Therefore the arc was 

selected. In this way, the schedules of the train units were 

created. 

Next, the numerical summary of the results are described. 

 

(1) Optimality: Table 4 shows comparison between the result 

of the proposed algorithm and the result of Gurobi in Case 1.  

 

The results of the proposed algorithm are average of ten 

trails.  Gurobi could not finish searching an optimal solution 

within feasible time, which is 24 hours. So, the result of Gurobi 

described in Table 4 is about an interim solution. 

In Table 4, the proposed algorithm searched a better solution, 

in which the inspection cost was 35.0 percent lower, than 

Gurobi. In the proposed algorithm, all inspections were 

scheduled in pre-defined window. It means all nodes assigned 

inspections have availability of inspection, which is 

pre-defined (see section III). The detailed result of Gurobi was 

unknown because the result was interim and the detailed 

results were not output in the process of calculation. 

(2) Stability: In Table 4, the proposed algorithm could get 

solutions within 0.25 variances in cases 1. Furthermore, Figure 

7 shows a convergence process of case 1. Gurobi got an 

interim solution with inspection cost 50.0 at the beginning of 

the process. After that, it could not get the better solution. In 

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

 
______________________________________________________________________________________ 



 

Table 5. Result  in Case 2 

  
Inspection 

Cost 

Inspection 

Cost 

(Variance) 

Number of 

Inspections 

in Pre-defined 

(Average) 

Number of 

Inspections not 

in Pre-defined 

(Average) 

Rate of 

Inspections in 

Pre-defined 

[%] 

Convergence T ime 

[seconds] 

Proposed 609.1 3.08 430.3 429.1 96.0 55946.4 
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Fig.7 Searching Process (Case1) 

the case of the proposed method, it could got a solution near 

to the best solution, with 106.3 percent of the best solution’s 

cost mentioned above, at the beginning of processing time 

within one minute. In addition, the method could get the best 

solution within one hour. These results indicate our method 

can get a solution within feasible time in small data set. 

(3) Scalability: Table 5 shows the result of Case 2. The 

calculation time was about 15.5 hours. Although the problem 

size of Case 2 was about 63 times larger than Case 1, the 

calculation time was only about 18.3 times longer than Case 1. 

The calculation time is much less than “n log n”, n is the total 

number of decision variables. This indicates that our method 

can deal with large case within feasible time. 

VI. CONCLUSION 

We proposed an algorithm of making a train-unit-assignment 

schedule using order-patterns. Whereas some constraints of 

this problem can be represented by a network model, others 

cannot be represented. If constraints are represented by a 

network model, there are efficient methods  for considering the 

constraints. Therefore, we divided the problem into two 

problems on the basis of the type of constraints: 

train-circulation assignment and inspection assignment. To 

avoid a too restricted of a limitation of a search space, the 

proposed algorithm searches for a solution that bridges the 

two problems by the network model. 

Numerical experiments using actual data indicated that the 

proposed algorithm could search a better solution than 

commercial solver Gurobi, which uses several algorithms of 

optimization like branch-and-cut, in feasible processing time. 

The inspection cost of the proposed algorithm was 35.0 

percent lower than the one of Gurobi. In addition, the variance 

of inspection costs of ten trials was  0.25 and 3.08 in case of 

small and large data respectively. The result indicates the 

proposed algorithm is stable though the proposed algorithm 

randomly searches the best solution. From the viewpoint of 

processing time, the algorithm converged within one hour and 

16 hours in case of small and large data respectively. The 

calculation time is much less than “n log n”, n is the total 

number of decision variables. These results indicates the 

proposed algorithm is scalable even if problem size becomes 

large. 

From the above, we confirm that the proposed algorithm is 

feasible and scalable against actual data. To apply the 

proposed algorithm to actual use, we need to verify the best 

limitation of processing time considering the method’s 

stability. 
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