



Abstract—Train maintenance regulation requires regular

inspections of the rolling stock of railway companies. A planner

who makes a schedule of rolling-stock operation should

consider both assignments of rolling stock to train services and

schedules of periodical maintenance. In Japan, the schedule is

manually created for the middle-term, which is for half a month

or full month. To reduce spent time to make the schedule , we

developed an algorithm for rolling-stock-assignment schedule.

To efficiently consider inspection cycles, the proposed

algorithm creates assignment patterns of rolling stock which

satisfy inspection cycles in advance. And then, the algorithm

creates templates of schedule using the patterns, and assigns

inspections to the templates. We verified the feasibility and

scalability of the proposed algorithm using actual train

operation data. The results indicate that the algorithm

successfully generates a schedule which satisfies required

regular inspection cycles within feasible calculation time .

Index Terms— Dijkstra method, inspection cycle, scheduling

algorithm, rolling stock assignment

I. INTRODUCTION

RIN maintenance regulation requires railway companies

to regularly inspect their rolling stock at stated cycles in

order to ensure safe transportation, and these cycles are based

on running distances and inspection periods. Each railway

company manages their rolling stock by creating schedules for

rolling-stock assignments. These schedules define the

assignment of train units to train services and the dates of

inspections. In this paper, a train unit means combined

vehicles that serve as one train and maintained together.

This scheduling requires much time because they are

manually prepared without any decision-support system. The

purpose of this research was to support a rolling-stock planner

in quickly creating an assignment schedule.

There have been several studies on the problem of

rolling-stock assignments without maintenance. The problem

of train unit assignment considering combinations of train

Manuscript received October 11, 2017; revised March 26, 2018.

T . Tomiyama and T . Sato are with Hitachi, Ltd., Research &

Development Group, 292, Yoshida-cho, Totsuka-ku, Yokohama-shi,

244-0817, Japan (e-mail: tomoe.tomiyama.rq@hitachi.com).

K. Okada and T . Wakamiya are Hitachi, Ltd., Social Infrastructure

Information Systems Division, 6-27-18, Minamiooi, Shinagawa-ku,

Tokyo, Japan.

T . Murata is with Graduate School of Information, Production and

Systems, Waseda University, 2-7, Hibikino, Wakamatsu-ku,

Kitakyushu-shi, Fukuoka 808-0315, Japan.

units was solved [1]-[5]. From another point of view, the usage

of train units was minimized [6] and seat demand was

considered [7]-[8].

There have been studies considering maintenance in the

short term. The rolling-stock assignment and shunting

scheduling were solved using two branch-and-bound

algorithms [9]. Rolling-stock assignment was modeled as a

problem of multi-commodity flow considering the cost of

shunting tasks [10]. Combinations of each vehicle were

considered [11]. Rolling stock assignment and maintenance

scheduling were solved considering the addition of deadhead

trains [12].

Whereas most studies were focused on short-term

schedules of a few days without inspection cycles, [15]

focused on a few days with inspection cycles, which can be

applied to a middle- or long-term schedule. This study

provides an efficient column-generation algorithm by relaxing

constraints across train units.

In Japan, an assignment schedule is created for the middle-

term, which is for half a month or full month. We developed an

algorithm for a train-unit-assignment schedule with inspection

cycles.

We describe the rolling-stock-assignment problem in

Section II, present our approach and algorithm in Sections III

and IV, respectively, explain the computational results in

Section V, and give concluding remarks in Section VI.

II. ROLLING-STOCK-ASSIGNMENT PROBLEM

A. Scheduling for Rolling-Stock Assignment

Schedules for rolling-stock assignment are normally created in

train units. A train unit means a set of combined vehicles that

are not divided except in special cases such as breakdowns.

The first step in assigning train units is to define sets of train

services that are assigned the same train unit

(train-circulation). After that, train units are respectively

assigned to the train-circulation, and inspection dates are

defined in regular cycles (rolling-stock assignment).

Whereas train-circulations are created in one day,

rolling-stock assignments are created in a few days or more

because inspection cycles are taken into account. The range

of the schedule (planning horizon) depends on the operational

policies. In most Japanese railways, except high speed trains ,

the range is a half a month or full month. Fig. 1 (a) shows an

example of a train-circulation. The symbol of circle in the figure

indicates the departure from a depot, and the symbol of

triangle in the figure indicates the arrival to a depot. In this

Railway Rolling-Stock-Assignment-Scheduling

Algorithm for Minimizing Inspection Cost

Tomoe Tomiyama, Tatsuhiro Sato, Kenichirou Okada, Takashi Wakamiya, and Tomohiro Murata

T

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

case, train-circulation 1 includes trains 1, 2, 7, and 8, and this

circulation involves departures and arrivals from station A. In

the same way, train-circulation 2 includes trains 3, 4, 9, and 10,

and the departure and arrival stations are station A.

Train-circulation 3 includes train 5, 6, 11, and 30, and the

departure and arrival stations are station A.

In train-circulation 3, a short stay at a depot is included

among train 11 and train 30, and an inspection is available

during this stay. Fig. 1 (b) shows an example of a

rolling-stock-assignment for September. In this case, train unit

A is sequentially assigned to train-circulations 1, 2, and 3 from

the first day to the last day of the targeted planning horizon.

In theory, rolling-stock-assignment can be automatically

created on the basis of the running and inspection results. In

practice, it has to be manually managed because unplanned

maintenance works cannot be avoided. To keep interactive

with a planner, the scheduling algorithm of

rolling-stock-assignment is required to quickly response.

B. Constraints of Train Connectivity and Inspections

To create a rolling-stock-assignment schedule, a planner takes

into account the following constraints.

(1) Connectivity between train-circulations

It is necessary to maintain consistency of place and time of

train-circulations assigned to the same train unit to make a

schedule executable. In general, train units are stored at

depots or stations near the stations where the train units will

depart from the next day. If the departure depot (or station) is

different from the arrival depot (or station), a deadhead train is

needed. This incurs additional operation cost.

 (2) Inspection cycle

An inspection cycle is defined by laws. In our targeted railway

company, the cycle is within five days for light inspections

such as visual inspection. Regarding heavy inspections, such

as overhaul, the date of inspection is designated by another

schedule of the rolling-stock factory.

(3) Inspection capacity

The number of inspections in one day is limited because

inspections require specific facilities and skilled maintainers.

In our targeted railway company, to make it easier to consider

the capacity of inspections, train-circulations in which

inspections can be conducted are designated.

C. Literature

The researches related to rolling-stock-assignment can be

categorized to two types: which deals with train-circulation

and rolling-stock-assignment together or which deals with

them separately.

In the case of dealing with them together, it is required to

consider constraints related to each train such as shunting

works for turn-over and the number of vehicles. The algorithm

integrating two branch-and-bound algorithms for

rolling-stock-assignment and shunting schedule was

provided [9]. The penalties against complex shunting works

and/or delays caused by shortage of drivers were modeled as

evaluation criteria [2] [10].

Combinations of each vehicle were considered [1] [8] [4] [11].

The constraints related to the number of vehicles for each train

were modeled as a multi-commodity flow problem [1]. The

same constraints were modeled as a mixed integer problem,

and were solved by the heuristic algorithm using lagrangian

relaxation algorithm and local search [8]. The positions of

vehicles composing each train unit were modeled as a

multi-commodity flow problem, and the branch-and-bound

algorithm applied Dantzing-Wolfe decomposition was

provided [4]. The required time to merge train units was

considered by the algorithm using branch-and-bound method

and column-generation method [11].

In addition, some researches consider the designed

inspection dates [12]-[15]. The dates and the required time to

execute inspections were modeled as a mix integer problem,

and the algorithms using column-generation algorithm and

lagrangian relaxation method were provided [12]-[14].

While these researches assumed that inspection dates were

designed, [30] provided an algorithm for scheduling both of

assignment of train units and assignment of inspections. In

this algorithm, assignment of train units was defined as a

sub-problem for column-generation algorithm, and was solved

using the algorithm of searching the shortest path based on

Bellman-Ford method.

As the case of dealing with train-circulation and

rolling-stock-assignment separately, there is a research for

long distance trains. The rule-based heuristic algorithm for

assigning train units to train-circulations was provided [16].

This research defined a model of ideal cumulative mileage

within one inspection cycle for efficiency. To keep real

Station A

6:00

Train Circulation 1

Station C

6:30Train 1

Train 27:05

Train 7

6:35

7:45

7:15

Train 8 7:50

8:20 ・・・

Station A

6:10

Train Circulation 2

Station C

6:40Train 3

Train 47:15

Train 9

6:45

7:55

7:25

Train 10 8:00

8:30 ・・・

Station A

6:20

Train Circulation 3

Station C

6:50Train 5

Train 67:25

Train 11

6:55

8:05

7:35

Train 30

12:0012:30 ・・・

Inspection
is available

(a) Example of train-circulation

Train
Unit A

T. C. 1

Sept. 1st Sept. 2nd Sept. 3rd Sept. 4th Sept. 31st

T. C. : Train Circulation

T. C. 2 T. C. 3 T. C. 1 T. C. 1

Train
Unit B

T. C. 2 T. C. 3 T. C. 1 T. C. 2 T. C. 2

Train
Unit C

T. C. 3 T. C. 1 T. C. 2 T. C. 3 T. C. 3

(b) Example of rolling-stock-assignment

Fig. 1. Schedule examples

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

September 1st

・・・

Path

Train Circulation 1
September 2nd

September 3rd
September 4th

Train Circulation 2

Train Circulation 3
Train Unit A T.C. 1

T.C. 2

T.C. 3

T.C. 1

Fig. 2. Network model of train-unit operation (cited from [17])

cumulative mileage of each train unit close to the ideal one, the

algorithm calculated priorities of train-circulations for each

train unit.

III. MODEL AND FORMULATION

The constraint of connectivity between train-circulations,

which is mentioned in the previous section (constraint (1)),

can be considered using a network model. In this model, a task,

such as train-circulation, is represented as a node, and only

nodes that maintain connectivity are linked by arcs.

Whereas the network model is useful for restricting

relations between two nodes, it cannot restrict relations over

some nodes such as an inspection cycle. To efficiently

consider the connectivity and the inspection cycles, we solve

the problem in two steps , i.e., creating templates of

train-circulation assignment using the network model, and

assigning inspections to the templates considering inspection

cycles. The details of the proposed algorithm are given in the

next section.

In this section, we explain the network model and

mathematical formulation.

A. Network Model of Train Unit Operation

We represent a rolling-stock assignment as a network model to

efficiently consider the connectivity of circulations. As

previously mentioned, a node in a network model represents a

train-circulation. In addition, if a train unit is stocked at a depot

for a whole day, this operation is represented as a node. Each

node has four attributes: date of circulation, departure depot

(or station) of circulation, arrival depot (or station) of

circulation, and availability of inspections. In our targeted

railway operation system, the availability of inspection is

pre-defined in each train-circulation considering the depot

capacity. The availability of inspection depends on the time

interval of the arrival and departure times at the depot.

Therefore, it is defined at the same time as creating a

train-circulation.

The nodes are linked by arcs if the train-circulations

represented by the nodes maintain connectivity, which is

mentioned in Section II (1). Each arc has a weight that

represents an order-pattern of train-circulation assignment.

This order-pattern defines circulation sequences that are

continuously assigned to the same train unit. The detail of the

pattern is mentioned in the next section.

A train-unit assignment is represented as a path of the

network model. Fig. 2 shows an example of this network model

for schedules of September. Train-circulations on 1st

September are represented by the left three nodes,

train-circulations on 2nd September are represented by the

next three nodes, and train-circulations on the other days are

represented by the same way. The path indicated in Fig. 2

represents a schedule for train unit A. In the schedule, train

unit A is assigned to train-circulation 1, 2, 3, and 1 from 1st

September to 4th September.

B. Formulation of Rolling-Stock Assignment Problem

Scheduling rolling-stock assignment consists of two

problems:

problem 1) assigning train units to train-circulations,

problem 2) defining dates of train units’ inspections.

Assignment of train units is modeled as a problem of extracting

a set of paths from the network model and deciding 0-1 values

of variables which represent train unit assignments to the

extracted paths. Definition of inspections’ dates is modeled as

a problem of deciding 0-1 values of variables which represent

inspection executions satisfying inspection cycles . The

evaluation of this problem is minimizing inspection cost.

We defined these problems by using the following

elements.

Parameters

rW : weight of arc r.

kC : cycle of inspection k.

ukFC : the first cycle of inspection k for train unit u. This

parameter is defined depending on running and inspection

results of each train unit.

knPC : cost for executing an inspection k at the

train-circulation represented by node n. When the inspection

k is not executable at node n, the cost is set high.

Sets

R : arc set in a network model.

N : node set in a network model.

I : date set included in the targeted planning horizon. The

first day of the planning horizon is denoted as 0. The following

days are sequentially numbered.

K : type of inspection set.

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

U : train unit set.

J : path set. This set is created on the basis of the result of

problem 1.

Variables

  1,0kna : 1kna if inspection k is executable at node

n, or 0kna if not.

 1,0int : 1int if node n denotes a train-circulation at

the i-th day, or 0int if not.

 1,0rno : 1rno if node n is the origin of arc r, or

0rno if not.

 1,0rnd : 1rnd if node n is the destination of arc r, or

0rnd if not.

 1,0ns : 1ns if node n denotes a train-circulation at

the first day of the targeted planning horizon, or 0ns if

not.

 1,0ne : 1ne if node n denotes a train-circulation at

the last day of the targeted planning horizon, or 0ne if not.

 1,0jnp : 1jnp if node n is included in path j, or

0jnp if not. This value is decided by the result of problem

1.

Decision variables

 1,0j

rx : 1j

rx if arc r is included in a solution for

path j, or 0j

rx if not.

 1,0kny : 1kny if inspection k is assigned to node n,

or 0kny if not.

 1,0juz : 1juz if train unit u is assigned to path j, or

0juz if not.

The rolling-stock-assignment model is defined as follows.

Objective functions

knNn Kk kn PCy  
min (1)

A solution is evaluated by the total inspection cost. As the

mentioned above, knPC is set high if inspection k is not

executable at node n. Therefore, if all nodes assigned

inspections have availability of inspection, objective value is

minimized.

Constraints

1 Jj

j

rx Rr (2)

1)(  Jj

j

rrnn

j

rRr rn xdexo Nn (3)

0)(  nnRr

j

rnrRr

j

rnr sexoxd

JjNn  , (4)

 


Rr rnnrn

j

rjn deoxp)(JjNn  , (5)

 


Jj juz 1 Uu (6)

 


Uu juz 1 Jj (7)

 


Nn nju sz 1 Jj (8)

 


Nn njuez 1 Jj (9)

0 


 ju

FCi

i Nn knjnin zypt
uk

UuJjKkIi  ,,, (10)

1 




kCi

i Nn knjnin ypt

JjKkIi  ,, (11)

Equation (2) is the constraint restricting that each arc is

covered by only one path.

Equation (3) is the constraint of the train-circulation

coverage. It makes each node covered by only one path.

When an arc is included in a solution, the nodes out-linked by

the arc are included in a solution at the same time. However the

last day of the targeted planning horizon, nodes have no

out-linked arc. Therefore, Eq. (3) restricts the coverage of both

of the origin nodes of all arcs and the destination nodes of arcs

in the last day.

To make paths from the first day to the last day of the

targeted planning horizon, Eq. (4) restricts the number of

in-linked and out-linked arcs with a node to the same number

of each other. The first nodes in the targeted planning horizon

have only out-linked arcs, and the last nodes in the targeted

planning horizon have only in-linked arcs. Therefore, the left

term of Eq. (4) is multiplied by ns and ne to except the first

nodes and the last nodes.

Equation (5) defines nodes included in the paths extracted

as a solution.

Equation (6) is the constraint of the train unit coverage.

Each train unit is restricted to be assigned to only one path.

Equation (7) is the constraint of the path coverage. Each

path is restricted to be assigned to only one train unit.

Equations (8) and (9) are the constraints of the coverages of

nodes in the first day and the last day of the targeted planning

horizon. To make each path start from the first day and make it

finish at the last day, this constraint makes each path include

only one node respectively in the first day and the last day.

The constraint of an inspection cycle, which is mentioned in

Section II (constraint (2)), is expressed by Eqs. (10) and (11). Eq.

(10) is for the first inspection cycle. The fist cycle depends on

the running and inspection results of each train unit. Therefore,

Eq. (10) needs to be considered on the basis of the train unit

assignment, that is controlled by the decision variable juz . Eq.

(11) is for all inspection cycles.

The constraint of inspection capacity, which is mentioned

in Section II (constraint (3)), is expressed by variable kna .

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

Train unit A: the remaining days is one day at 1st September.

・・・

Train
circulation 1

Selected

Not selected

Phase 1. Search paths (create templates).

Phase 2. Assign inspections for each path.

Inspection is available

Violation of

inspection cycle.
Reset the canceled path.

9/1 9/2 9/3 9/4

9/1 9/2 9/3 9/4

・・・

Re-search a path.

Train
circulation 2

Train
circulation 3

Train unit A

9/1 9/2 9/3 9/4

Train
circulation 1

Train
circulation 2

Train
circulation 3

Train
circulation 1

Train
circulation 2

Train
circulation 3

Fig. 3. Overview of the proposed algorithm

IV. PROPOSED ALGORITHM

A. Overview

We propose an algorithm for searching schedules for all train

units using the network model mentioned in section III. The

reason of using the network model is to apply order-patterns

for efficient search. Order-pattern is created by using a kind of

know-how of rolling-stock-assignment planner, it defines a

partial order of train-circulations which satisfies an inspection

cycle (see step 0 mentioned below).

Fig.3 shows the overview of the way to use the network

model. The algorithm uses the network model in the following

two phases.

[Phase1]: Process of Creating Templates of Schedule

The algorithm creates templates of schedule for each train

unit by selecting feasible paths from the network model

considering Eqs. (2)-(9). Template is a rough schedule for a

train unit, it defines assignment of train unit to each

train-circulation. To increase the possibility of success of the

next phase (Phase 2), the order-patterns are reflected in the

network model.

[Phase 2]: Process of Setting Inspections

The algorithm assigns inspections to the paths selected in

phase 1 considering Eqs. (10) and (11) to satisfy required

inspection cycles. The results of this phase are defined as a

rolling-stock-assignment schedule.

If there are any violations of inspection cycles, a template is

selected to be canceled. The network model is modified by

pushing back the nodes included in the canceled template.

And then, the procedures of phase 1 and 2 are repeated until a

feasible solution, which has no violation of constraints

mentioned in section II, is found.

B. The Algorithm

The flow of the proposed algorithm is shown in Fig. 4. At the

beginning of the flow, the network model is created (step 0).

And the algorithm creates a schedule by searching partial

solution for each train unit (steps 1-5). And then, to get a better

solution, the algorithm repeats the steps 1-5 within time limit

by randomly changing processing order (step 6).

The details of steps 0-5 are illustrated below.

[Step 0]: Process of Creating Order-patterns

In step0, the algorithm creates order-patterns by changing a

part of an operation pattern. An operation pattern is a

sequence of train-circulations satisfying inspection cycles,

which is created together with train-circulations. In an

operation pattern, more than one inspection is included at the

interval of inspection cycle. The algorithm creates

order-patterns by dividing an operation pattern by inspection

cycle and partly changing the divided patterns while keeping

satisfaction of inspection cycle. The detailed processes are

the following.

Step A: Divides an operation pattern at the interval of

inspection cycle, and defines them as basic patterns. Fig. 5 (a)

shows an example of basic patterns. In this example,

inspection cycle is three days. The sequence of

train-circulations lined up from T.C.1 to T.C.9 is an operation

pattern. Inspection is available at T.C.1, 3, 5, and 7.The

sequences from T.C.1 to 3, from T.C.4 to 6, and from T.C.7 to 9

are respectively created as basic patterns (BPs).

Step B: Exchange train-circulations included in the basic

patters among each other, and define them as order-patterns.

The target of this exchange is only train-circulations with

availability of inspection in order to keep satisfaction of

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

Yes

No

Start

Step 2. Search paths

representing train-

circulation-assignment

templates.

All inspections
can be set.

Finish

Step 3. Assign inspections

to the paths..

Step 1. Create a network

model based on the order

patterns.

Step 5. Modify the

network model for

backtrack.

Step 4. Select a

cancelled template.

Phase 1

Phase 2

Success for the
search.

Yes
No

Step 0. Create order

patterns of train-

circulation-assignment.

processing time

is within time limit

Step 6. Change processing

order of train units.

Fig. 4. Flow of the proposed algorithm

T.C.1

T.C.: Train Circulation

T.C.2 T.C.3

T.C.4 T.C.5 T.C.6

T.C.7 T.C.8 T.C.9

Inspection is available

Basic
Pattern 1

Basic
Pattern 2

Basic
Pattern 3

(a) Example of basic patterns

T.C.1 T.C.2 T.C.3

T.C.5 T.C.2 T.C.3

T.C.7 T.C.2 T.C.3 T.C.4 T.C.3 T.C.6

T.C.3 T.C.8 T.C.9

Order
Pattern 1

Order
Pattern 2

Order
Pattern 3

Order
Pattern 8

Order
Pattern 9

T.C.1 T.C.2 T.C.5

T.C.1 T.C.2 T.C.7

Order
Pattern 6

Order
Pattern 7

T.C.4 T.C.1 T.C.6

T.C.1 T.C.8 T.C.9

Order
Pattern 4

Order
Pattern 5

(b) Example of order-patterns

Fig. 5 Example of patterns

inspection cycle. In addition, exchange is allowed only when

consistencies of departure and arrival of train-circulations can

be kept. Fig. 5 (b) shows an example of order-patterns. T.C.1

and T.C.3 in BP.1 are respectively exchanged with T.C.5 in BP.2

and T.C.7 in BP.3. The resulted patterns are respectively

defined as order-patterns (order-pattern 2-9). By the same way,

train-circulations with inspection availabilities included in

BP.2 and BP.3 are exchanged with each other.

[Phase1]: Process of Creating Templates of Schedule

 (Step1): Create the network model

The network model, which is mentioned in Section III, is

created on the basis of train-circulation data, and weights of

arcs are set on the basis of the order-patterns generated in

step0.

The algorithm sets small weights to the following arcs.

a) Arc that represents the same order of train-circulations

with order-patterns. In the case of Fig.5, the arcs connecting

T.C.1 and T.C.2, T.C.2 and T.C.3, T.C.4 and T.C.5, T.C.5 and

T.C.6 and so on are set small weights.

b) Arc between the last node of an order-pattern and the first

node of the other order-pattern. In the case of Fig. 5, the arcs

connecting T.C.3 and T.C.5, T.C.3 and T.C.7, T.C.4 and T.C.1

and so on are set small weights.

 (Step 2): Create templates of schedule

Templates of schedule are created by searching the shortest

paths from each node of the first day of targeted planning

horizon considering constraints of connectivity between

train-circulations. Each path is individually searched by using

the Dijkstra method in sequential order. The Dijkstra method is

one of general algorithms for searching the shortest path from

a network model. The method makes the searching process

fast by memorizing partial solutions and using them to skip the

same search processes.

To consider the constraints of coverages of nodes and arcs

denoted in Eqs. (2) and (3), the network model is modified

every time a path is searched. It means that the nodes included

in the selected path are deleted from the network model to

avoid being selected by the other train unit.

[Phase 2]: Process of Setting Inspections

 (Step 3): Assign inspections

Inspections are assigned to the templates created in phase 1.

The algorithm starts checking from the first node of the path

searched in step 2 and sets inspections to the nodes with the

availability of inspection. To minimize the number of added

inspections, the algorithm sets inspections to the nodes that

are the last nodes in each inspection cycle. When a violation

of inspection cycle remains, the algorithm cancels a solution

for other train units and backtracks to address the violation to

change the templates created in the previous step (see steps 4

and 5 explained below).

 (Step 4): Cancelation

When an inspection-cycle violation remains, the algorithm

selects a path for cancelation previously searched as a partial

solution in step 2.

(Step 5): Modify the network model

To backtrack beyond the phase, the algorithm modifies the

network model and executes the processes from step 2 and 3

again. When a path is selected for cancelation in step 4, the

nodes and arcs in the selected path are added to the network

model to backtrack. This makes the nodes and arcs selectable

for other paths again.

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

Table 1. Data sets and parameters

(a) Data Sets

Data No.
Size of

Depot

Number of

Train Units

Planning

Horizon

[days]

Ratio of

Designated

Inspections

[%]

Case1 small 10 16 1.88

Case2 large 67 28 4.53

(b) Parameters

Inspection Cycles

[days]

Weights of Arcs

Included in

Patterns

 not Included in

Patterns

5 1 1000

Table 3.The schedule created by the proposed algorithm for Case 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Train Unit 0 10 1 2 3 00 00 00 00 00 00 00 00 00 00 00 00

Train Unit 1 2 6 7 1 7 6 7 1 7 1 2 3 00 00 00 00

Train Unit 2 5 10 00 00 4 5 6 2 1 2 6 7 1 2 3 00

Train Unit 3 1 7 1 2 6 2 1 7 6 7 3 4 5 1 2 1

Train Unit 4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Train Unit 5 3 4 5 6 2 1 2 6 2 3 4 5 6 7 1 2

Train Unit 6 7 3 4 5 1 7 3 4 5 6 7 1 7 6 7 6

Train Unit 7 4 5 6 7 3 00 4 5 3 4 5 6 2 3 4 5

Train Unit 8 6 2 3 00 00 4 5 3 00 5 1 2 3 4 5 3

Train Unit 9 00 00 00 4 5 3 00 00 00 00 00 00 4 5 6 7

Underline: with inspeciton availability, Bold: assigned inspection, 00: operation as a spare

Date

Table 2. The number of variables

Variable

x

Variable

y

Variable

z

Variable

p
Total

Case 1 480 160 100 1600 2340

Case 2 15596 1876 4489 125692 147653

V. NUMERICAL RESULTS

A. Evaluation Criteria

We compared the proposed algorithm with the commercial

Mixed-Integer Programing (MIP) solver Gurobi [18] from the

following view points.

(1) Optimality: inspection cost for executing inspections,

which is calculated by Eq. (1). To calculate inspection costs,

we used 1.0 and 10.0 as cost values for inspection in

pre-defined window and not in pre-defined window

respectively.

(2) Stability: variance of inspection costs in several trails of

the proposed algorithm. The proposed algorithm randomly

changes the order of processing train units (see step 6

indicated in the previous section). So, the result of the

algorithm could be different on each search. We repeated the

algorithm several times, and verified the variance of the

inspection costs of the searches.

(3) Scalability: spent time for searching the best solution. In

the proposed algorithm, the time is for all processes shown in

Fig. 4.

B. Data Set of Experiment

The test data were based on two sets of actual data indicated

in Table 1. The parameters of our model introduced in Section

III are also indicated in Table 1. In addition, Table 2 shows

problem sizes.

We used a Pentium 4 computer (3.2 GHz and 2 GB). The

programming language was C++ for the proposed algorithm.

Gurobi was processed on a web server with Intel Xeon CPU

(3.4GHz, 4 cores, and 20GB).

C. Results

We executed the proposed algorithm ten times using

respectively data of Case 1 and Case 2. The limit time of each

execution was six hours for Case 1, and 24hours for Case 2.

In the beginning, we indicate one of results of Case 1. After

that, the numerical summary of the results are described on the

basis of the evaluation criteria mentioned above.

Table 3 shows one of the schedules created by the proposed

algorithm. Though some train units were sequentially

assigned to some train-circulations with inspection

availability, inspections were assigned to only some of them.

To minimize the inspection cost, it is desirable that the interval

of inspections is close to the inspection cycle. In the result

described in Table 3, all intervals were four or five days, which

were close to the inspection cycle.

In this case, the basic order-pattern consisted of from T.C. 1

to T.C.7. The T.C.10 was irregular, and was only set in day 1

and day 2. The order-patterns were underlined using dashed

line. For example, train unit 0 was sequentially assigned to

train-circulations 1, 2 and 3 as with the order-patterns. While

the assignments of train units mostly kept to the

order-patterns, there were some disconnections of the

order-patterns, such as days 5, 6 and 8. It was probably caused

by the buffers included in the order-patterns. In the

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

Day 1 Day 2 Day 3 Day 4 Day 5

1

2

3

4

5

6

7

10

00

00

T.U.0

T.U.1

T.U.2

T.U.3

T.U.4

T.U.5

T.U.6

T.U.7

T.U.8

T.U.9

T.U.: Train Unit

1

2

3

4

5

6

7

10

00

00

1

2

3

4

5

6

7

00

00

00

1

2

3

4

5

6

7

00

00

00

1

2

3

4

5

6

7

00

00

00

・・・

・・・

・・・

・・・

・・・

・・・

・・・

・・・

・・・

・・・

: included in an order-pattern

Fig.6 A part of the network model for the schedule shown in Table 3

Table 4. Result in Case 1

Inspection

Cost

Inspection

Cost

(Variance)

Number of

Inspections

in Pre-defined

(Average)

Number of

Inspections not

in Pre-defined

(Average)

Rate of

Inspections in

Pre-defined

[%]

Convergence T ime

[seconds]

Proposed 32.5 0.25 32.5 0.0 100.0 3066.0

Gurobi
50.0

(Interim)
- - - - ≥ 86400

order-patterns, only T.C.1 and T.C.4 had inspection

availabilities. Whereas the intervals between them, which were

“from T.C.1 to T.C.4” and “from T.C.4 to T.C.1”, were three and

four, the inspection cycle was five days. Therefore, if we

assigned train units to train-circulations using the

order-patterns, the intervals of inspections were three and four

days. It were shorter than inspection cycles. To minimize

inspection cost, the proposed algorithm created the schedule

as partially disconnecting the sequential of the order-patterns.

Figure 6 shows a part of the network model that created for

calculating the schedule of Train Unit 0 in the same case of

Table 3. The arcs between the train unit and the nodes of the

first day were created, only if the arcs kept consistency with

the place where the train unit was stored at the day before the

first day. Train unit 0 was assigned to T.C.10 and T.C.1 at day

1 and day 2 respectively. Since the arcs from train unit 0 to the

nodes of the day 1 were weighted equally, the arcs were

selected in order of the identity. In the same way, the arc from

the node of day 1 to the node of day 2 was selected. At day 3,

the weight of the arc linked from the node of T.C.1 to the node

of T.C.2 was smaller than the ones of the other arcs, because

the arc was a part of order-pattern. Therefore the arc was

selected. In this way, the schedules of the train units were

created.

Next, the numerical summary of the results are described.

(1) Optimality: Table 4 shows comparison between the result

of the proposed algorithm and the result of Gurobi in Case 1.

The results of the proposed algorithm are average of ten

trails. Gurobi could not finish searching an optimal solution

within feasible time, which is 24 hours. So, the result of Gurobi

described in Table 4 is about an interim solution.

In Table 4, the proposed algorithm searched a better solution,

in which the inspection cost was 35.0 percent lower, than

Gurobi. In the proposed algorithm, all inspections were

scheduled in pre-defined window. It means all nodes assigned

inspections have availability of inspection, which is

pre-defined (see section III). The detailed result of Gurobi was

unknown because the result was interim and the detailed

results were not output in the process of calculation.

(2) Stability: In Table 4, the proposed algorithm could get

solutions within 0.25 variances in cases 1. Furthermore, Figure

7 shows a convergence process of case 1. Gurobi got an

interim solution with inspection cost 50.0 at the beginning of

the process. After that, it could not get the better solution. In

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

Table 5. Result in Case 2

Inspection

Cost

Inspection

Cost

(Variance)

Number of

Inspections

in Pre-defined

(Average)

Number of

Inspections not

in Pre-defined

(Average)

Rate of

Inspections in

Pre-defined

[%]

Convergence T ime

[seconds]

Proposed 609.1 3.08 430.3 429.1 96.0 55946.4

30

35

40

45

50

55
0

0
.4

2

0
.8

4

1
.2

6

1
.6

8

2
.1

2
.5

2

2
.9

4

3
.3

6

3
.7

8

4
.2

4
.6

2

5
.0

4

5
.4

6

5
.8

8

6
.3

6
.7

2

7
.1

4

7
.5

6

7
.9

8

8
.4

8
.8

2

9
.2

4

9
.6

6

1
0

.0
8

1
0

.5

In
sp

ec
ti

o
n

 C
o

st

Processing TIme [10^3 seconds]

Gurobi

Proposed

Fig.7 Searching Process (Case1)

the case of the proposed method, it could got a solution near

to the best solution, with 106.3 percent of the best solution’s

cost mentioned above, at the beginning of processing time

within one minute. In addition, the method could get the best

solution within one hour. These results indicate our method

can get a solution within feasible time in small data set.

(3) Scalability: Table 5 shows the result of Case 2. The

calculation time was about 15.5 hours. Although the problem

size of Case 2 was about 63 times larger than Case 1, the

calculation time was only about 18.3 times longer than Case 1.

The calculation time is much less than “n log n”, n is the total

number of decision variables. This indicates that our method

can deal with large case within feasible time.

VI. CONCLUSION

We proposed an algorithm of making a train-unit-assignment

schedule using order-patterns. Whereas some constraints of

this problem can be represented by a network model, others

cannot be represented. If constraints are represented by a

network model, there are efficient methods for considering the

constraints. Therefore, we divided the problem into two

problems on the basis of the type of constraints:

train-circulation assignment and inspection assignment. To

avoid a too restricted of a limitation of a search space, the

proposed algorithm searches for a solution that bridges the

two problems by the network model.

Numerical experiments using actual data indicated that the

proposed algorithm could search a better solution than

commercial solver Gurobi, which uses several algorithms of

optimization like branch-and-cut, in feasible processing time.

The inspection cost of the proposed algorithm was 35.0

percent lower than the one of Gurobi. In addition, the variance

of inspection costs of ten trials was 0.25 and 3.08 in case of

small and large data respectively. The result indicates the

proposed algorithm is stable though the proposed algorithm

randomly searches the best solution. From the viewpoint of

processing time, the algorithm converged within one hour and

16 hours in case of small and large data respectively. The

calculation time is much less than “n log n”, n is the total

number of decision variables. These results indicates the

proposed algorithm is scalable even if problem size becomes

large.

From the above, we confirm that the proposed algorithm is

feasible and scalable against actual data. To apply the

proposed algorithm to actual use, we need to verify the best

limitation of processing time considering the method’s

stability.

REFERENCES

[1] Z. Lin, R. S. K. Kwan, “A branch-and-price approach for solving

the train unit scheduling problem,” Transportation Research Part

B: Methodological, Vol. 94, 2016, pp. 97-120.

[2] L. Cadarsoa, A. Marin, “Improving robustness of rolling stock

circulations in rapid transit networks,” Computers & Operations

Research, Vol. 51, 2014, pp. 146-159.

[3] A. Alfieri, R. Groot, L. Kroon, A. Schrijver, “Efficient Circulation

of Railway Rolling Stock,” Transportation Science, Vol. 40, No. 3,

2006, pp.378-391.

[4] M. Peeters, L. G. Kroon, “Circulation of Railway Rolling Stock: a

Branch-and-Price Approach,” Computers & Operations Research,

Vol. 35, No.2, 2008, pp.538–556.

[5] E. J. W. Abbink, B. W. V. van den Berg, L. G. Kroon, M. Salomon,

“Allocation of Railway Rolling Stock for Passenger Trains,”

Transportation Science, Vol.38, 2004, pp.33–42.

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

[6] G. L. Giacco, A. D’Ariano, D. Pacciarelli, “Rolling Stock Rostering

Optimization Under Maintenance Constraints,” Journal of

Intelligent Transportation Systems: Technology, Planning, and

Operations, Vol. 18, Issue 1, 2013, pp. 95-105.

[7] P. horlacius, J. arsen, M. Laumanns, “An integrated rolling stock

planning model for the Copenhagen suburban passenger railway ,”

Journal of Rail Transport 2 Planning & Management, Vol. 5, No.

4, 2015, pp. 240-262.

[8] V. Cacchiani , A. Caprara, P. Toth, “A Lagrangian heuristic for a

train-unit assignment problem,” Discrete Applied Mathematics,

Vol. 161, Issue 12, 2013, pp.1707-1718.

[9] J. Haahra, R. M. Lusby, “Integrating rolling stock scheduling with

train unit shunting,” European Journal of Operational Research,

Vol. 259, Issue 2, 2017, pp. 452-468.

[10] G. Mar´oti, L. G. Kroon, “Maintenance Routing for Train Units:

the Transition Model,” Transportation Science, Vol. 39, No. 4 ,

2005, pp.518–525.

[11] N. Lingaya, J. F. Cordeau, G. Desaulniers, J. Desrosiers, F. Soumis,

“Operational car assignment at VIA Rail Canada,” Transportation

Research Part B Methodological, Vol. 36, No.9, pp.755-778.

[12] J. Andrésa, L. Cadarsob, Á. Marína, “Maintenance Scheduling in

Rolling Stock Circulations in Rapid Transit Networks,”

Transportation Research Procedia, Vol. 10 , 2015, pp.524-533.

[13] Giovanni Luca Giacco, Donato Carillo, Andrea D’Ariano, Dario

Pacciarelli, Ángel Marín, “Short -term rolling stock rostering and

maintenance scheduling”, Transportation Research Procedia,

Volume 3, pp.651-659, 2014.

[14] Tatsushi Nishi, Akiyoshi Ohno, Masahiro Inuiguchi, Satoru

Takahashi, Kenji Ueda, “A Combined column generation and

heuristics for railway short -term rolling stock planning with

regular inspection constraints”, Computers & Operations Research,

Volume 81, pp. 14–25, 2017.

[15] G. L. Giacco. D. Carillo., A. D’Ariano, D. Pacciarelli, A. G. Marin,

“Short-term Rail Rolling Stock Rostering and Maintenance

Scheduling,” Transportation Research Procedia, Vol. 3, 2014, pp.

651-659.

[16] Yung-Cheng (Rex) Lai, Shao-Wei Wang, and Kwei-Long Huang,

“Optimized Train-Set Rostering Plan for Taiwan High-Speed Rail”,

IEEE Transactions on Automation Science and Engineering,

Vol.14, Issue 1, pp.286-298, 2017.

[17] T. Tomiyama, T . Sato, K. Okada, T . Wakamiya, “Rescheduling

Algorithm Using Operational Patterns for Rolling Stock

Operation at Train Depots,” Computers in Railways XIII, Vol.127,

2012, pp.555-566.

[18] Gurobi, http://www.gurobi.com/

IAENG International Journal of Applied Mathematics, 48:2, IJAM_48_2_16

(Advance online publication: 28 May 2018)

__

