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Abstract—In this paper, Burr-X distribution with Type-I
hybrid censored data is considered. E-Bayesian estimation
(expectation of the Bayesian estimate) and the corresponding
maximum likelihood and Bayesian estimation methods are
discussed for the distribution parameter and the reliability
function. Bayesian and E-Bayesian estimates are derived by
using LINEX and squared error loss (SEL) functions. By
applying Markov chain Monte Carlo (MCMC) techniques
Bayesian and E-Bayesian estimates are obtained. An illustrative
examples of Type-I hybrid censored samples and real data
set are presented. Finally, a comparison among the proposed
estimation methods is conducted.

Index Terms—Bayesian estimation, Burr-X distribution, E-
Bayesian estimation, Hybrid censoring scheme, Maximum like-
lihood estimation, MCMC method.

I. INTRODUCTION

BURR-X distribution is a member of Burr distributions
family which was suggested by [1]. This distribution is

important in statistics and operations research. It is applied
in many fields such as health, agriculture and biology. The
probability density function (PDF) of Burr-X distribution is
given as follows:

f(x;α) = 2αx exp(−x2)(1−exp(−x2))α−1, x > 0, α > 0,
(1)

hence the cumulative distribution function (CDF) is given by

F (x;α) = (1− exp(−x2))α, x > 0, α > 0, (2)

where α is the shape parameter.

The reliability function R(t) and the hazard rate function
h(t) for Burr-X distribution are, respectively, given by

R(t) = 1− (1− exp(−t2))α, t > 0, (3)

and

h(t) =
2αt exp(−t2)(1− exp(−t2))α−1

1− (1− exp(−t2))α
, t > 0. (4)

Recently, there have been many publications on Burr-X
distribution, for example, ([2], [3], [4], [5] and [6]).

Hybrid censoring scheme (HCS) is a mixture of Type-I
and Type-II censoring schemes. In this type, the experiment
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is terminated when a pre-fixed number r, out of n items have
failed or when a pre-determined time T, has been reached.
In Type-I HCS, the life-testing experiment is terminated at a
random time T∗ = min{Xk:n, T}, where, Xk:n represents
the failure time of the kth item, T is the pre-fixed time
allowed for the test, k ∈ {1, 2, · · · , n} and T ∈ (0,∞) are
determined in advance. In other words, the experiment is
terminated as soon as a pre-determined number k out of n
items has failed or a pre-fixed time T has been reached.
In Type-II HCS, the life-testing experiment is terminated at
a random time T ∗ = max{Xk:n, T}, i.e. the experiment is
terminated when the later of two stopping rules is reached,
this guarantees that at least k failures will be observed.

In this paper, we use Type-I HCS, in which we have one
of the following types of censored data
Case I : {X1:n < X2:n < · · · < Xk:n}, if Xk:n < T ,
and pre-specified k number of failure occurred before the
censoring time T,

Case II : {X1:n < X2:n < · · · < Xm:n}, if
Xm:n ≤ T < Xm+1:n, and only m < k number of
failure occurred before the pre-specified censoring time T .

We suppose that X1:n, X2:n, · · · , Xn:n are n failure
lifetime observations under Type-I hybrid censored sample
from Burr-X distribution. Therefore, the likelihood function
for the considered cases is given by

Case I:

L(α) =
n!

(n− k)!

{
1− F (xk:n)

}n−k k∏
i=1

f(xi:n)

=
n!

(n− k)!

{
1−

(
1− exp(−x2

k:n)
)α}n−k

×
k∏

i=1

2αxi:n exp(−x2
i:n)

(
1− exp(−x2

i:n)
)α−1

.

(5)

Case II:

L(α) =
n!

(n−m)!

{
1− F (T )

}n−m m∏
i=1

f(xi:n)

=
n!

(n−m)!

{
1−

(
1− exp(−T 2)

)α}n−m

×
m∏
i=1

2αxi:n exp(−x2
i:n)

(
1− exp(−x2

i:n)
)α−1

.

(6)

By combining Eqs. (5) and (6), the likelihood function can
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be written as follows:

L(α) =
n!

(n− r)!

{
1−

(
1− exp(−s2)

)α}n−r

×
r∏

i=1

2αxi:n exp(−x2
i:n)

(
1− exp(−x2

i:n)
)α−1

,
(7)

where,

r =

 k, for Case I,

m, for Case II,

and

s =

 xk:n, for Case I,

T, for Case II.

The remainder of the paper is organized as follows. Max-
imum likelihood estimation is presented in Section II.
Bayesian estimation under SEL and LINEX loss functions is
described in Section III. In Section IV, E-Bayesian estimation
under SEL and LINEX loss functions is introduced. MCMC
method is presented in Section V. In Section VI, illustrative
examples, real data set and conclusion of the results are
reported.

II. MAXIMUM LIKELIHOOD ESTIMATION

By taking the logarithm of Eq. (7), the log-likelihood
function can be written as follows:

ℓ = lnL(α)

= (n− r) ln
{
1−

(
1− exp(−s2)

)α}
+ r ln(2α) +

r∑
i=1

lnxi:n +
r∑

i=1

(−x2
i:n)

+ (α− 1)

r∑
i=1

ln
(
1− exp(−x2

i:n)
)
.

(8)

The maximum likelihood estimate (MLE) of the unknown
parameter α, is obtained by setting the first partial derivative
of Eq. (8) to zero with respect to α and solving numerically
the following equation.

∂ℓ

∂α
= 0, (9)

we obtain α̂, the MLE of the unknown parameter α. Also,
we can obtain MLE ˆR(t) of the reliability function R(t) by
replacing α by its MLE, α̂, in Eq.(3) as follows:

ˆR(t) = 1− (1− exp(−t2))α̂. (10)

III. BAYESIAN ESTIMATION

In this section, we derive Bayesian estimates for the
parameter α and the reliability function R(t) of the Burr-
X distribution based on Type-I HCS. We consider the prior
PDF for the parameter α to be Gamma(a, b) and is written
as follows:

π(α) =
ba

Γ(a)
αa−1 exp(−bα), a, b > 0, (11)

from (7) and (11), the posterior PDF of α can be written in
the following form:

π(α|x) = K−1αr+a−1 exp(−bα)
{
1−Wα

s

}n−r

×
r∏

i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

,
(12)

where Ws = 1− exp(−s2), Wxi:n = 1− exp(−x2
i:n)

and K is a normalizing constant given by

K =

∫ ∞

0

π(α|x)dα. (13)

A. Bayesian Estimates under Squared Error Loss Function

The Bayesian estimate of the parameter α under SEL
function, is the posterior mean, i.e.

α̂BS = E[α|x]

=

∫ ∞

0

απ(α|x)dα

= K−1

∫ ∞

0

αr+a exp(−bα)
{
1−Wα

s

}n−r

×
r∏

i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

dα,

(14)

also, the Bayesian estimate of the reliability function R(t)
based on SEL function is given by

ˆR(t)BS = E[R(t)|x]

=

∫ ∞

0

R(t)π(α|x)dα

= K−1

∫ ∞

0

1− (1− exp(−t2))ααr+a−1 exp(−bα)

×
{
1−Wα

s

}n−r r∏
i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

dα.

(15)

B. Bayesian Estimates under LINEX Loss Function

Based on LINEX loss function, the Bayesian estimate of
the parameter α is given by

α̂BL =
−1

h
lnE[exp(−hα)|x]

=
−1

h
ln

∫ ∞

0

exp(−hα)π(α|x)dα

=
−1

Kh
ln

∫ ∞

0

αr+a−1 exp(−(b+ h)α)

×
{
1−Wα

s

}n−r r∏
i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

dα, h ̸= 0,

(16)
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also, the Bayesian estimate of the reliability function R(t),
under LINEX loss function, is given by

ˆR(t)BL =
−1

h
lnE[exp(−hR(t))|x]

=
−1

h
ln

∫ ∞

0

exp(−hR(t))π(α|x)dα

=
−1

Kh
ln

∫ ∞

0

αr+a−1e

(
h[(1−exp(−t2))α−1]−bα

)
×

{
1−Wα

s

}n−r r∏
i=1

xi:n exp(−x2
i:n)W

α−1
xi:n

dα,

h ̸= 0.
(17)

For more details about Byesian approach and reliability, one
can see, ([7], [8], and [9]).

IV. E-BAYESIAN ESTIMATION

According to [10], the prior parameters a and b should be
selected to guarantee that π(α) is a decreasing function of α.
The derivative of π(α) with respect to α is given as follows:

dπ(α)

dα
=

ba

Γ(a)
αa−2 exp(−bα)

{
(a− 1)− bα

}
.

Thus, for 0 < a < 1 and b > 0, the prior PDF π(α)
is a decreasing function of α. We assume that the hyper
parameters a and b are independent with bi-variate PDF as
follows:

π(a, b) = π1(a)π2(b),

the E-Bayesian estimate of the parameter α and the reliability
function R(t) are, respectively, given as follows:

α̂EB = E[αB |x] =
∫ ∫

α̂B(a, b)π(a, b)dadb, (18)

and

ˆR(t)EB = E[R(t)B|x] =
∫ ∫

ˆR(t)Bπ(a, b)dadb. (19)

where α̂B(a, b) and ˆR(t)B are the Bayesian estimate of the
parameter α and the reliability function R(t), respectively,
under SEL and LINEX loss functions. In recent years, there
has been an increasing interest in this approach of estimation,
see for example, ([11], [12], [13], [14], [15], [16] and [17]).

A. E-Bayesian Estimate of α

To derive the E-Bayesian estimate of α, we consider three
different distributions of a and b to illustrate the effect of
these prior PDFs on the E-Bayesian estimates. The prior
PDFs of a and b are given as follows:

π1(a, b) =
2a

c
, 0 < a < 1, 0 < b < c,

π2(a, b) =
2b

c2
, 0 < a < 1, 0 < b < c,

π3(a, b) =
3b2

c3
, 0 < a < 1, 0 < b < c,


(20)

the E-Bayesian estimate of α under SEL function can be
obtained from (14), (18) and (20) as follows:

α̂EBSj =

∫ ∫
α̂BS(a, b)πj(a, b)dadb, j = 1, 2, 3,

(21)

also, the E-Bayesian estimate of α under LINEX loss func-
tion can be obtained from (16), (18) and (20) as follows:

α̂EBLj =

∫ ∫
α̂BL(a, b)πj(a, b)dadb, j = 1, 2, 3.

(22)

B. E-Bayesian Estimate of The Reliability Function R(t)

The E-Bayesian estimate of the reliability function R(t)
under SEL function can be obtained from (15), (19) and (20)
as follows:

ˆR(t)EBSj
=

∫ ∫
ˆR(t)BSπj(a, b)dadb, j = 1, 2, 3,

(23)
also, the E-Bayesian estimate of the reliability function R(t)
by using LINEX loss function can be obtained from (17),
(19) and (20) and given by

ˆR(t)EBLj
=

∫ ∫
ˆR(t)BLπj(a, b)dadb, j = 1, 2, 3.

(24)
It is noticed that the Bayesian and E-Bayesian estimators can
not be expressed in an explicit form. Therefore, we use the
MCMC method to derive Bayesian and E-Bayesian estimates
of the parameter α and the reliability function R(t).

V. MCMC METHOD

This section describes the MCMC method that has been
used to derive Bayesian and E-Bayesian estimates of the
parameter α and the reliability function R(t) of Burr-X
distribution. We consider the Metropolis-Hastings algorithm,
to generate posterior sample for the parameter α from the
full conditional posterior PDF given in the following form.

π∗(α|x) = αr+a−1 exp(−bα)
{
1−Wα

s

}n−r r∏
i=1

Wα
xi:n

.

(25)
It is noticed from (25) that the full conditional posterior PDF
of the parameter α cannot be reduced to a well -known
distribution, so, we use normal distribution as a proposal
distribution.
Algorithm:

Step 1: Start with initial guess of α say α(0) = α̂MLE .
Step 2: At iteration j generate α(∗) from a normal distri-

bution as a proposal distribution.
Step 3: Generate a sample u from the uniform distribution

U(0, 1) and take z = logu.
Step 4: Calculate the acceptance probability

r(αj−1|α(∗)) = min
[
1,

π∗(α(∗)|x)
π∗(α(j−1)|x)

]
(26)

Step 5: If z < r accept α(∗) as α(j), otherwise, α(j) =
α(j−1)

Step 6: Compute R(t) as follows:

R(j)(t) = 1− (1− exp(−t2))α
(j)

. (27)

Step 7: Repeat (3−6) N times to obtain α(j) and R(j)(t),
j = M + 1, · · · , N.
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Step 8: Bayesian estimates for the parameter α and the
reliability function R(t) under SEL function are
given, respectively, by

α̂BS =
1

N −M

N∑
j=M+1

α(j). (28)

ˆR(t)BS =
1

N −M

N∑
j=M+1

R(j)(t). (29)

where M is an optional burn-in period.
Step 9: Bayesian estimates of the parameter α and the re-

liability function R(t), under LINEX loss function
are, respectively, given by

α̂BL = −1
h ln

[
1

N−M

N∑
j=M+1

e−hα(j)
]
, h ̸= 0,

(30)

ˆR(t)BL = −1
h ln

[
1

N−M

N∑
j=M+1

e−hR(j)(t)
]
, h ̸= 0.

(31)

A. Simulation Study

• We choose the values n, r, T, h.
• We generate a and b from (20).
• We generate α from Gamma(a,b).
• We generate a random sample of size n from U(0, 1).
• We generate Type-I hybrid censored sample from Burr-

X distribution using inverse function method as follows:

X = {− ln(1− U
1
α )} 1

2 .

• The MLEs of the unknown parameter α and the
reliability function R(t) are obtained from (9), (10),
respectively.

• Using Metropolis-Hastings, we generate a Markov chain
with 11000 observations, discarding the first 1000 ob-
servations as a ”burn-in”.

• Using MCMC samples, we compute Bayesian estimates
α̂BS and ˆR(t)BS under SEL function from (28) and
(29), respectively.

• We derive Bayesian estimates α̂BL and ˆR(t)BL under
LINEX loss function from (30) and (31), respectively.

• We compute E-Bayesian estimates α̂EBS and ˆR(t)EBS

under SEL function from (21) and (23), respectively.
• We compute E-Bayesian estimates α̂EBL and ˆR(t)EBL

under LINEX loss function from (22) and (24), respec-
tively.

• We compute (α̂− α)2 where α̂ is the estimate of α.
• We compute ( ˆR(t)−R(t))2 where ˆR(t) is the estimate

of R(t).
• We compute mean squared error (MSE) of estimates α

and R(t), respectively, by

MSE(α̂) =
1

1000

∑
(α̂− α)2

.
MSE( ˆR(t)) =

1

1000

∑
( ˆR(t)−R(t))2

.
• The numerical results are displayed in Tables(I-IV).

VI. ILLUSTRATIVE EXAMPLES

In this section, we consider a life test when 20 units of
lifetimes following Burr-X distribution are put under the test
with changing the value of T , the maximum allowable time
of the test, we can observe the following:

• When n = 20, r = 15, α = 1.83675 and
T = 0.95. In this case, we obtain the following
data: 0.421457, 0.534205, 0.596791, 0.638163,
0.770691, 0.772107, 0.778328, 0.883723, 1.06571,
1.11015, 1.20905, 1.30329, 1.3112, 1.33565
and 1.36371, hence the test is terminated at
T∗ = min{X15:20, T} = min{1.36371, 0.95} = 0.95.
That is only 8 items fail at random time T∗=0.95.

• When n = 20, r = 15, α = 1.83675 and T =
1.5. In this case, we obtain the following data:
0.582787, 0.699181, 0.776085, 0.786884, 0.830979,
1.00813, 1.0599, 1.07425, 1.07554, 1.08599, 1.24903,
1.25451, 1.32985, 1.33519 and 1.37724, hence the
test is terminated at T∗ = min{X15:20, T} =
min{1.37724, 1.5} = 1.37724. That is only 15 items
fail at random time T∗ = 1.37724

A. Example (Real Data Set)

We consider a numerical example of real testing data
set to illustrate the performance of the proposed methods
in a practical application. These data were reported by
[18], representing minority electron mobility for p-type
Ga1−xAlxAs with seven different values of mole fraction.
Only one data set related to the mole fractions 0.25 is
considered. This data set was used by [19] , who proved
that Burr-X distribution gives a good fit for this data set.
The data set is 21 observations given as follows:

Data Set (belongs to mole fraction 0.25):
3.051, 2.779, 2.604, 2.371, 2.214, 2.045, 1.715, 1.525, 1.296,
1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449, 0.8881,
1.115, 1.397, 1.506, and 1.528.

By applying Type-I HCS on these uncensored data,
we observe the following cases:

• When n = 21, r = 15, α = 2.15 and T = 1.6.
In this case, we obtained the following data:
0.6175, 0.6292, 0.6449, 0.7007, 0.7948, 0.8881, 1.016,
1.115, 1.154, 1.296, 1.397 1.506, 1.525, 1.528, 1.715,
hence the test is terminated at T∗ = min{X15:21, T} =
min{1.715, 1.6} = 1.6. That is only 14 items fail out
of 21, at a random time T∗ = 1.6.

• When n = 21, r = 15, α = 2.15 and T = 2.
In this case, we obtained the following data:
0.6175, 0.6292, 0.6449, 0.7007, 0.7948, 0.8881, 1.016,
1.115, 1.154, 1.296, 1.397, 1.506, 1.525, 1.528, 1.715,
hence the test is terminated at T∗ = min{X15:21, T} =
min{1.715, 2} = 1.715. That is only 15 items fail out
of 21, at a random time T∗ = 1.715.
All estimates of the distribution parameter and the
reliability function with respect to the real data set
are obtained based on the same loss functions and
procedures. The numerical results are displayed in
Tables (V-VI).
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TABLE I: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for α when T = 0.95,
α = 1.83675, c = 1, a = 0.8, b = 0.7 and h = 1.

n r Criteria MLE Bayesian Estimates E-Bayesian Estimates
α̂MLE α̂BS α̂BL α̂EBS1 α̂EBS2 α̂EBS3 α̂EBL1 α̂EBL2 α̂EBL3

20 10 Mean 1.0646 2.2257 2.1477 1.9942 1.7449 1.8322 1.9317 1.6971 1.7794

MSE 0.63830 0.19384 0.14055 0.05896 0.03458 0.02885 0.04419 0.04638 0.03294

20 15 Mean 1.0768 2.2343 2.1560 2.0019 1.7517 1.839 1.9392 1.7037 1.7863

MSE 0.61799 0.19792 0.14282 0.05928 0.03172 0.02701 0.04329 0.04277 0.03020

30 20 Mean 1.0264 2.2967 2.2365 2.0578 1.8006 1.8906 2.0096 1.7637 1.8499

MSE 0.68002 0.25219 0.20194 0.08148 0.02625 0.03041 0.06361 0.03107 0.02859

30 25 Mean 1.0336 2.3122 2.2522 2.0717 1.8127 1.9034 2.0237 1.7760 1.8629

MSE 0.66857 0.26583 0.21395 0.08715 0.02502 0.03139 0.06802 0.02892 0.02854

40 30 Mean 1.0021 2.3458 1.8673 2.1018 1.8391 1.9310 2.0619 1.8085 1.8974

MSE 0.71331 0.29569 0.24853 0.09962 0.02247 0.03367 0.08084 0.02381 0.02908

40 35 Mean 1.0100 2.3451 2.2953 2.1012 1.8386 1.9305 2.0613 1.8080 1.8968

MSE 0.70043 0.29322 0.24617 0.09785 0.02134 0.03233 0.07917 0.02277 0.02783

TABLE II: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for R(t) when T = 0.95,
α = 1.83675, R(1.42351) = 0.228654, c = 1, a = 0.8, b = 0.7 and h = 1.

n r Criteria MLE Bayesian Estimates E-Bayesian Estimates
R̂MLE R̂BS R̂BL R̂EBS1 R̂EBS2 R̂EBS3 R̂EBL1 R̂EBL2 R̂EBL3

20 10 Mean 0.13935 0.26848 0.26764 0.240558 0.21048 0.22101 0.23988 0.20997 0.22044

MSE 0.00858 0.00204 0.00198 0.00051 0.00061 0.00037 0.00050 0.00063 0.00038

20 15 Mean 0.14084 0.26938 0.26855 0.24137 0.2112 0.22176 0.24070 0.21068 0.22119

MSE 0.00829 0.00209 0.00203 0.00051 0.00057 0.00034 0.00049 0.00059 0.00035

30 20 Mean 0.13485 0.27605 0.27542 0.24734 0.21642 0.22725 0.24684 0.21604 0.22682

MSE 0.00914 0.00267 0.00262 0.00069 0.00041 0.00029 0.00068 0.00042 0.00029

30 25 Mean 0.13573 0.27764 0.27702 0.24877 0.21767 0.22856 0.24827 0.21729 0.22813

MSE 0.00898 0.00282 0.00276 0.00074 0.00038 0.00028 0.00072 0.00039 0.00028

40 30 Mean 0.13193 0.28123 0.28072 0.25198 0.22048 0.23151 0.25157 0.22017 0.23116

MSE 0.00960 0.00314 0.00309 0.00085 0.00030 0.00026 0.00083 0.00030 0.00026

40 35 Mean 0.13289 0.28118 0.28066 0.25194 0.22044 0.23147 0.25152 0.22013 0.23112

MSE 0.00942 0.00312 0.00307 0.00083 0.00029 0.00025 0.00081 0.00029 0.03117

TABLE III: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for α when T = 1.5,
α = 1.83675, c = 1, a = 0.8, b = 0.7 and h = 1.

n r Criteria MLE Bayesian Estimates E-Bayesian Estimates
α̂MLE α̂BS α̂BL α̂EBS1 α̂EBS2 α̂EBS3 α̂EBL1 α̂EBL2 α̂EBL3

20 10 Mean 1.24672 2.17574 2.09575 1.94947 1.70578 1.79107 1.88526 1.65664 1.73688

MSE 0.432209 0.145423 0.097591 0.037196 0.035903 0.022759 0.026905 0.051275 0.030726

20 15 Mean 1.58361 2.088 2.00982 1.87084 1.63699 1.71884 1.80801 1.58882 1.66575

MSE 0.194715 0.0980 0.063566 0.029161 0.061341 0.037537 0.02797 0.082374 0.052241

30 20 Mean 1.41277 2.16236 2.10092 1.93748 1.69529 1.78006 1.88812 1.65748 1.73837

MSE 0.247176 0.135264 0.098427 0.033621 0.037983 0.023029 0.025711 0.049865 0.029198

30 25 Mean 1.58984 2.10379 2.04372 1.8850 1.64937 1.73184 1.8367 1.61235 1.69104

MSE 0.137916 0.103753 0.074085 0.028373 0.05505 0.03299 0.025214 0.069761 0.042587

40 30 Mean 1.49899 2.15241 2.10286 1.92856 1.68749 1.77187 1.88874 1.65696 1.73822

MSE 0.17176 0.12793 0.098181 0.031139 0.039665 0.023379 0.024765 0.049288 0.028384

40 35 Mean 1.58899 2.12745 2.07854 1.9062 1.66792 1.75132 1.86688 1.63778 1.7181

MSE 0.112224 0.113601 0.086543 0.028179 0.046385 0.027014 0.02355 0.057005 0.033247
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TABLE IV: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for R(t) when T = 1.5,
α = 1.83675, R(1.42351) = 0.228654, c = 1, a = 0.8, b = 0.7 and h = 1.

n r Criteria MLE Bayesian Estimates E-Bayesian Estimates
R̂MLE R̂BS R̂BL R̂EBS1 R̂EBS2 R̂EBS3 R̂EBL1 R̂EBL2 R̂EBL3

20 10 Mean 0.160869 0.263347 0.262477 0.235959 0.206464 0.216787 0.23526 0.20592 0.21619

MSE 0.005739 0.00153 0.00148 0.00032 0.00069 0.00036 0.00031 0.00072 0.00038

20 15 Mean 0.19952 0.25413 0.2532 0.22770 0.19924 0.20920 0.22700 0.19870 0.20861

MSE 0.00245 0.00103 0.00099 0.00031 0.00110 0.00064 0.00031 0.00113 0.00066

30 20 Mean 0.18046 0.26222 0.26155 0.23495 0.20558 0.21586 0.23441 0.20517 0.2154

MSE 0.00320 0.00144 0.00140 0.00029 0.00072 0.0003 0.0002 0.00074 0.00039

30 25 Mean 0.20065 0.25608 0.25541 0.22945 0.20077 0.2108 0.22891 0.2003 0.21035

MSE 0.00174 0.0011 0.00107 0.00028 0.00099 0.00056 0.00028 0.0010 0.00057

40 30 Mean 0.19047 0.26136 0.26082 0.23418 0.20491 0.21515 0.23375 0.20457 0.21479

MSE 0.00219 0.00137 0.00134 0.00027 0.00075 0.00039 0.00027 0.00076 0.00040

40 35 Mean 0.20075 0.25876 0.25822 0.2318 0.20286 0.21301 0.23141 0.20253 0.21264

MSE 0.00141 0.00122 0.00119 0.00026 0.0008 0.0004 0.00026 0.00087 0.00047

TABLE V: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for α when α = 2.15,
c = 1, a = 0.8, b = 0.7 and h = 1.

n r T Criteria MLE Bayesian Estimates E-Bayesian Estimates
α̂MLE α̂BS α̂BL α̂EBS1 α̂EBS2 α̂EBS3 α̂EBL1 α̂EBL2 α̂EBL3

21 15 1.6 Mean 2.73145 2.70043 2.54784 2.41959 2.11714 2.22299 2.29614 2.02183 2.11823

MSE 0.338078 0.30311 0.15838 0.07279 0.00117 0.00542 0.02144 0.0165 0.00108

2 Mean 2.75234 2.68742 2.53546 2.40793 2.10694 2.21228 2.28499 2.01202 2.10794

MSE 0.362808 0.2889 0.14863 0.06659 0.0019 0.00393 0.01827 0.01908 0.00181

TABLE VI: Average estimates and MSEs of MLEs, Bayesian and E-Bayesian estimates for R(t = 1.25)
when α = 2.15, c = 1, a = 0.8, b = 0.7 and h = 1.

n r T Criteria MLE Bayesian Estimates E-Bayesian Estimates
R̂MLE R̂BS R̂BL R̂EBS1 R̂EBS2 R̂EBS3 R̂EBL1 R̂EBL2 R̂EBL3

21 15 1.6 Mean 0.474034 0.46542 0.46294 0.41702 0.36489 0.38313 0.41502 0.36336 0.38145

MSE 0.005943 0.00469 0.00436 0.0004 0.00103 0.00019 0.00033 0.00113 0.00024

2 Mean 0.476613 0.4638 0.46131 0.41557 0.36362 0.3818 0.41357 0.36209 0.38011

MSE 0.006347 0.00447 0.00414 0.00035 0.00111 0.00023 0.00028 0.00122 0.00028

B. Conclusion

This paper considers the maximum likelihood, Bayesian
and E-Bayesian estimation methods for estimating the pa-
rameter and the reliability function of Burr-X distribution
based on Type-I HCS. All estimates are derived by using
SEL and LINEX loss functions. MCMC method is used to

obtain Bayesian and E-Bayesian estimates of the parameter
and the reliability function of Burr-X distribution. Also, the
proposed methods are applied to a real testing data set for
the purpose of illustration. Based on the results are shown
in Tables (I-IV), we observe the following:

• Bayesian and E-Bayesian methods are better than the
maximum likelihood method in terms of MSEs.
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• Generally, the MSE of E-Bayesian estimates of α and
R(t) are the smallest comparing to the MSE of Bayesian
estimates and MLE.

• The E-Bayesian estimator is more efficient than
Bayesian and maximum likelihood estimators in terms
of MSEs.

• The MSEs of MLE, Bayesian and E-Bayesian estimates
increase when n increases in Tables (I-II). But the MSEs
of MLE, Bayesian and E-Bayesian estimates decrease
with increasing n and r when T becomes larger as in
Tables (III-IV).

• The results, as seen in Tables (V-VI), indicate that the
proposed methods are convenient for application.

• The proposed methods behave efficiently in the practical
performance.

• Also, the E-Bayesian method is the best when com-
pared with the maximum likelihood and the Bayesian
estimation methods.

• It has shown from Tables (I-VI), that the E-Bayesian
method is more effective and practical than the maxi-
mum likelihood and the Bayesian estimation methods.
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