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Abstract—In this paper, we study numerical approximations
for the fluid-fluid interaction problems. As a simplified model,
the convection-dominated convection-diffusion-reaction equa-
tions are coupled by an interface condition. The implicit-explicit
time stepping streamline diffusion method for the problem
is proposed. The stability analysis and error estimates for
the proposed scheme are derived. Computational tests are
performed to demonstrate the robustness of this scheme.

Index Terms—fluid-fluid interaction problems, implicit-
explicit method, streamline diffusion, stability analysis, error
estimates.

I. INTRODUCTION

THERE are many problems in which different physical
models, different parameter regimes, or different so-

lution behaviors are coupled across interfaces. Monolithic
solution methods for solving the coupled problems are alter-
native. But these methods preclude usage of highly optimized
black box subdomain solvers. Decoupling methods have
obvious and large advantages in these aspects over mono-
lithic solution methods. Among these decoupling methods,
partitioned time stepping scheme is promising for solving the
coupled problems. In this scheme, a convenient decoupling
strategy for large problems is provided. At each time step,
we solve the coupled problems by passing information across
interface, then the coupled problems are decoupled into
individual subproblems independently. Typical applications
in which the partitioned time stepping scheme is highly
desirable include atmosphere-ocean coupling and fluid-solid
interaction problems [3], [4], [5].

In this paper, we consider a simplified model of two
convection-diffusion equations coupled across their common
interface through a jump condition. This reduced problem
still retains the essential difficulty of the coupled problems.
Fig. 1 illustrates the subdomains considered here, and the
domain consists of two subdomains Ω1 and Ω2 coupled
across an interface I = ∂Ω1 ∩ ∂Ω2, where Ωi ⊂ R2 is
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a bounded domain with piecewise smooth boundary ∂Ωi.
We set Γi = ∂Ωi\I , for i = 1, 2. The problem studied
in this paper is: given µi > 0 (i=1,2), k ∈ R, find
ui : Ωi × [0, T ] → R satisfying
ui,t − µi∆ui + β⃗i(x, t) · ∇ui + σi(x, t)ui = fi in Ωi,

−µi∇ui · n⃗i = k(ui − uj) on I, i, j = 1, 2, i ̸= j,

ui (x, 0) = u0i (x) in Ωi,

ui = 0 on Γi,

(1)

where ui,t = ∂ui

∂t , β⃗i(x, t) ∈ L∞(0, T ;W 1,∞(Ωi)) and
σi(x, t) ∈ L∞(0, T ;L∞(Ωi)), µi ≪ |β⃗i| =

√
β2
i1 + β2

i2. In
the following, it is assumed that there is a positive constant
γ0 such that

0 < γ0 ≤ σi(x, t)−
1

2
div β⃗i(x, t) ∀(x, t) ∈ Ωi × [0, T ].

This is a standard assumption in the analysis of the problem
(1).

Denote Qi = Ωi × [0, T ], b0 = max
i

sup
Qi

|β⃗i(x, t)|,

b1 = max
i

||div β⃗i(x, t)||L∞(Qi), µ0 = min{µ1, µ2}, σ0 =

max
i

||σi(x, t)||L∞(Qi). Let Xi :=
{
vi ∈ H1(Ωi) : vi =

0 on Γi

}
. For ui ∈ Xi, set u = (u1, u2) and X :={

(v1, v2) : vi ∈ H1(Ωi) : vi = 0 on Γi, i = 1, 2
}

. A natural
subdomain variational formulation for the problem (1) is to
find (for i, j = 1, 2, i ̸= j ) ui : [0, T ] → Xi satisfying

(ui,t, vi)Ωi + µi(∇ui,∇vi)Ωi +

∫
I

k(ui − uj)vids

+(β⃗i · ∇ui, vi)Ωi
+ (σiui, vi)Ωi

= (fi, vi)Ωi
, (2)

for all vi ∈ Xi. The natural monolithic variational formula-
tion for (1) is to find u : [0, T ] → X satisfying

(ut,v) + µ(∇u,∇v) +

∫
I

k[u][v]ds+ (β⃗ · ∇u,v)

+(σu,v) = (f,v), (3)

for all v ∈ X , where [·] denotes the jump across the interface
I , (· , ·) is the L2(Ω1∪Ω2) inner product and µ = µi, f = fi
in Ωi.

It is well known that dominating convection feature has a
hyperbolic nature. Standard applications of the finite element
method to convection-dominated problems usually lead to
unstable numerical schemes. To overcome these difficulties,
some modified nonstandard finite element methods can be
used such as the streamline diffusion (SD) method [10],
[13], [14], [15], [16], [17]. The SD method has both stability
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Fig. 1: Example adjoining subdomains

properties and higher accuracy. For time-dependent problem-
s, we use the SD finite element method discrete only in space
variables and the finite difference discrete in time direction
[12], [21], [22]. This method keeps the essential aspect of
the original SD method and simplifies the algorithm structure
[1], [6], [8], [9], [18], [20], [23], [24].

In this paper, an implicit-explicit time stepping scheme
based on the SD method is proposed for the two
domain convection-dominated convection-diffusion-reaction
problem. The natural combination of partitioned implicit-
explicit time stepping scheme with the SD method retains
the best features of both methods, then the proposed method
has a number of attractive computational properties for
this problem: stable convergence, convenience to decouple
large problems, easy implementation of subdomain solvers,
parallel computation in decoupled subdomain equations. The
stability analysis and error estimates of the proposed method
are developed. Finally, some numerical experiments are given
to compare this new scheme with the standard implicit-
explicit time stepping scheme for this problem.

The remainder of this work is organized as follows:
in Section 2, the implicit-explicit time stepping algorithm
is described. Stability analysis of the proposed method is
presented in Section 3. Convergence results of the proposed
method are provided in Section 4, and computations are
performed to investigate stability and accuracy of this new
algorithm in Section 5. Finally, Section 6 presents the con-
clusions and future research directions.

II. PRELIMINARIES

Set L2(Ω) = L2(Ω1)×L2(Ω2). For u, v ∈ X , define the
L2 inner product

(u,v) =
∑
i=1,2

∫
Ωi

uividx,

and the H1 inner product

(u,v)X =
∑
i=1,2

(

∫
Ωi

uividx+

∫
Ωi

∇ui · ∇vidx),

and the induced norms ||v|| = (v,v)
1
2 , and ||v||X =

(v,v)
1
2

X .
Let Ti be a triangulation of Ωi and Th = T1∪T2, h be the

mesh parameter of Th and 0 < h ≤ h0 < 1. Take Xi,h ⊂ Xi

to be conforming finite element spaces for i = 1, 2, and
define Xh = X1,h×X2,h ⊂ X . It follows that Xh ⊂ X is a
Hilbert space with corresponding inner product and induced
norm. For u ∈ X , we define the operators A, B : X → (X)

′

via the Riesz representation theorem as

(Au,v) =
∑
i=1,2

µi

∫
Ωi

∇ui · ∇vidx ∀v ∈ X, (4)

(Bu,v) = k

∫
I

[u][v]ds ∀v ∈ X. (5)

The discrete operators Ah, Bh : Xh → (Xh)
′
= Xh are

defined analogously by restricting (4) and (5) to vh ∈ Xh.
The partitioned time stepping scheme based on the SD

method can be stated as follows: find ui : [0, T ] → Xi, such
that

(ui,t, vi + δvi
β⃗i
)Ωi + µi(∇ui,∇vi)Ωi

+

∫
I

k(ui − uj)vids− µi(∆ui, δvi
β⃗i
)Ωi (6)

+ (uβ⃗i
+ σiui, vi + δvi

β⃗i
)Ωi = (fi, vi + δvi

β⃗i
)Ωi , ∀vi ∈ Xi,

where vi
β⃗i

△
= β⃗i · ∇vi and δ > 0 is an appropriate artifi-

cial diffusion parameter. We propose the following choice:
restricting ∆t ≤ ah and taking

δ =

{
δ1 = a1∆t, if µ0

b0
≤ h ≤ h0,

δ2 = a2∆t
2, if h < µ0

b0
,

(7)

here a1 and a2 are two positive constants. The choice for a1
and a2 will be specified in Theorem 3.1. The corresponding
monolithic variational formulation is to find u : [0, T ] → X
satisfying

(ut,v + δvβ⃗) + (Au,v) + (Bu,v)− µ(∆u, δvβ⃗)

+ (uβ⃗ + σu,v + δvβ⃗) = (f,v + δvβ⃗) ∀ v ∈ X. (8)

Now the implicit-explicit time stepping scheme based on
the SD method is stated as follows:

Let ∆t > 0, for each M ∈ N ,M ≤ T
∆t , given un ∈

Xh, n = 0, 1, · · · ,M − 1, find un+1 ∈ Xh satisfying

(
un+1 − un

∆t
,v + δvβ⃗) + (Ahu

n+1,v) + (Bhu
n,v)

− µ(∆un+1, δvβ⃗) + (un+1

β⃗
+ σun+1,v + δvβ⃗) (9)

= (f(tn+1),v + δvβ⃗), ∀ v ∈ Xh.
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In order to analysis the stability and convergence, it is
necessary to work with norms induced by the operators A
and B and relate these norms to || · || and || · ||X .

Lemma 2.1: [7] Let v = (v1, v2) ∈ X and α ≥ 0. Then

||v||A+αI ={∑
i=1,2

µi

∫
Ωi

|∇vi|2dx+ α
∑
i=1,2

∫
Ωi

|vi|2dx
}1/2

(10)

defines a norm on X . Furthermore, there exists a constant
C > 0 such that if α ∈ R+ satisfies

α ≥ Ck2 max{µ−1
1 , µ−1

2 }, (11)

then it follows that

||v||A+αI−B =

{∑
i=1,2

µi

∫
Ωi

|∇vi|2dx

+ α
∑
i=1,2

∫
Ωi

|vi|2dx− k

∫
I

|v1 − v2|2ds
}1/2

(12)

defines a norm on X . The above norms are equivalent to
|| · ||X .

The following discrete Gronwall lemma will also be
utilized in the subsequent analysis.

Lemma 2.2: [11] Let l, m, and as, bs, ds, gs, for integers
s ≥ 0, be nonnegative numbers such that

an + l
n∑

s=0

bs ≤ l
n∑

s=0

dsas + l
n∑

s=0

gs +m, ∀n ≥ 0. (13)

Suppose that lds < 1 for all s, and set ρs ≡ (1 − lds)
−1.

Then

an + l
n∑

s=0

bs

≤ exp

(
l

n∑
s=0

ρsds

){
l

n∑
s=0

gs +m

}
, ∀n ≥ 0. (14)

III. STABILITY ANALYSIS

In this section, we will give the stability analysis of the
presented scheme. Throughout this paper, Ci denotes positive
constant independent of µ, ∆t and h .

Theorem 3.1: Let un+1 ∈ Xh satisfy (9) for each n ∈
{0, 1, · · · , T

∆t − 1}, and 0 < ∆t < (2α + b20)
−1 for α

satisfying (11). Then there exists nonnegative numbers C1(α)
and C2(α) such that

||un+1||2 +∆t

n+1∑
k=0

||uk||2X +
δ∆t

4

n∑
k=0

||uk
β⃗
||2

≤ C1(α)e
C2(α)T

{
||u0||2 +∆t||u0||2X

+∆t

n+1∑
k=0

||f(tk+1)||2
}
. (15)

Proof. Taking v = uk+1 in (9), it follows that

(
uk+1 − uk

∆t
,uk+1 + δuk+1

β⃗
) + (Ahu

k+1,uk+1)

+ (Bhu
k,uk+1)− µ(∆uk+1, δuk+1

β⃗
)

+ (uk+1

β⃗
+ σuk+1,uk+1

+ δuk+1

β⃗
) = (f(tk+1),uk+1 + δuk+1

β⃗
). (16)

At first, we estimate the terms of left-hand sides of (16). It
is easy to see that

(
uk+1 − uk

∆t
,uk+1) ≥ 1

2∆t
(||uk+1||2 − ||uk||2), (17)

(
uk+1 − uk

∆t
, δuk+1

β⃗
) =

δ

∆t
[(uk+1,uk+1

β⃗
)− (uk,uk+1

β⃗
)]

≥ −1

2

{
δ

∆t
b1||uk+1||2 + (

δ

∆t
)2||∇uk+1||2 + b20||uk||2

}
.

For case δ = δ1, that is δ
∆t = a1, choose a1 > 0 such that

a21 ≤ µ0 and a1b1 ≤ 1

2
γ0.

If δ = δ2, then δ
∆t = a2∆t and h < µ0

b0
, ∆t ≤ ah < aµ0

b0
,

we can choose a2 > 0 such that

a22a
2 ≤ b20

µ0
and a2ab1

µ0

b0
≤ 1

2
γ0.

Then in the above two cases, we have

(
uk+1 − uk

∆t
, δuk+1

β⃗
) ≥ −1

2

{
µ0||∇uk+1||2

+
1

2
γ0||uk+1||2 + b20||uk||2

}
. (18)

In addition

(uk+1

β⃗
+ σk+1uk+1,uk+1 + δuk+1

β⃗
) = δ||uk+1

β⃗
||2

+ ((σk+1 − 1

2
div β⃗k+1)uk+1,uk+1) + δ(σk+1uk+1,uk+1

β⃗
)

≥ δ

2
||uk+1

β⃗
||2 − δ

2
σ2
0 ||uk+1||2 + γ0||uk+1||2.

Choosing a1 and a2 again, such that

a1ah0σ
2
0 ≤ 1

2
γ0 and a2a

2(
µ0

b0
)2σ2

0 ≤ 1

2
γ0,

then we have

(uk+1

β⃗
+ σk+1uk+1,uk+1 + δuk+1

β⃗
)

≥ δ

2
||uk+1

β⃗
||2 + 3

4
γ0||uk+1||2, (19)

and

(µ∆uk+1, δuk+1

β⃗
) ≤ δ

4
||uk+1

β⃗
||2 + δµ2C2

0h
−2||∇uk+1||2.

In the case δ = δ1, we have µ0

b0
≤ h ≤ h0, choosing a1 such

that

aa1h0µ
2C2

0h
−2 ≤ aa1h0C

2
0b

2
0 ≤ 1

2
µ0.

In the case δ = δ2 = a2∆t
2 ≤ a2a

2h2, choosing a2 > 0,
such that

a2a
2h2C2

0h
−2µ2 ≤ 1

2
µ0,

then we get

(µ∆uk+1, δuk+1

β⃗
) ≤ δ

4
||uk+1

β⃗
||2 + µ0

2
||∇uk+1||2. (20)
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Since δ ≤ max{a1ah0, a2a2(µ0

b0
)2}, combing (16)-(20), we

have

1

2∆t
(||uk+1||2 − ||uk||2) + (Ahu

k+1,uk+1)

+ (Bhu
k,uk+1) +

δ

4
||uk+1

β⃗
||2 + γ0

2
||uk+1||2 − b20

2
||uk||2

= (f(tk+1),uk+1) + (f(tk+1), δuk+1

β⃗
) ≤ γ0

2
||uk+1||2

+
1

2γ0
||f(tk+1)||2 + δ

8
||uk+1

β⃗
||2 + 2

δ
||f(tk+1)||2

≤ γ0
2
||uk+1||2 + δ

8
||uk+1

β⃗
||2 + C1||f(tk+1)||2. (21)

Adding α(uk+1,uk+1) to both sides of (21), and applying
Lemma 2.1, it follows

1

2∆t
(||uk+1||2 − ||uk||2) + ||uk+1||2A+αI

+ (Bhu
k,uk+1) +

δ

8
||uk+1

β⃗
||2 − b20

2
||uk||2

≤ C1||f(tk+1)||2 + α||uk+1||2. (22)

Note that

(Bhu
k,uk+1)

≥ −1

2
(Bhu

k+1,uk+1)− 1

2
(Bhu

k,uk), (23)

combining (12), (22)-(23), we get

1

2∆t
(||uk+1||2 − ||uk||2) + 1

2
||uk+1||2A+αI−B

+
1

2
(||uk+1||2A+αI − ||uk||2A+αI)

+
1

2
||uk||2A+αI−B +

δ

8
||uk+1

β⃗
||2 ≤ C1||f(tk+1)||2

+ α||uk+1||2 + b20
2
||uk||2. (24)

Summing over k = 0, 1, · · · , n for (24) yields

1

2∆t
(||un+1||2 − ||u0||2) + 1

2
(||un+1||2A+αI − ||u0||2A+αI)

+
1

2

n∑
k=0

(||uk+1||2A+αI−B + ||uk||2A+αI−B) +
δ

8

n∑
k=0

||uk+1

β⃗
||2

≤
n∑

k=0

(C1||f(tk+1)||2 + α||uk+1||2 + b20
2
||uk||2). (25)

After multiplying by 2∆t and rearranging terms of (25), we
obtain

||un+1||2 +∆t||un+1||2A+αI +∆t

n∑
k=0

(
||uk+1||2A+αI−B

+ ||uk||2A+αI−B

)
+
δ

4
∆t

n∑
k=0

||uk+1

β⃗
||2

≤ ||u0||2 +∆t||u0||2A+αI + C1∆t
n∑

k=0

||f(tk+1)||2

+ (2α+ b20)∆t
n∑

k=0

||uk+1||2. (26)

Taking dn ≡ 2α + b20 and using Lemma 2.2 for (26), it
follows that

||un+1||2 +∆t||un+1||2A+αI +∆t

n∑
k=0

(||uk+1||2A+αI−B

+ ||uk||2A+αI−B) +
δ

4
∆t

n∑
k=0

||uk+1

β⃗
||2

≤ eC2(α)T

{
||u0||2 +∆t||u0||2A+αI +∆t

n∑
k=0

||f(tk+1)||2
}
,

where C2(α) = (2α+b20)(1−(2α+b20)∆t)
−1. From Lemma

2.1, the norms of || · ||A+αI and || · ||A+αI−B are equivalent
to ||·||X , we can determine C1(α) and derive the final result.

IV. CONVERGENCE RESULTS

Theorem 4.1: Let u(t;x) ∈ X for all t ∈ (0, T ) solve the
problem (1) such that ut ∈ L2(0, T ;X) and utt ∈ L2(Ω).
There exists nonnegative numbers C3(α) and C4(α), for any
n ∈ {0, 1, · · · , T

∆t − 1}, and 0 < ∆t < (2α+ b20 +2)−1 for
α satisfying (11), the solution un+1 ∈ Xh of (9) satisfies

||u(tn+1)− un+1||2 +∆t||u(tn+1)− un+1||2X

+
∆t

2

n∑
k=0

||u(tk+1)− uk+1||2X +
δ∆t

12

n∑
k=0

||uβ⃗(t
k+1)− uk

β⃗
||2

≤ C3(α)e
C4(α)T

{
||u(0)− u0||2 +∆t||u(0)− u0||2X

+ (∆t)2||ut||2L2(0,T ;X) + (4δ + 1)(∆t)2||utt||2L2(0,T ;L2(Ω))

+ inf
v0∈Xh

{
||u(0)− v0||2 +∆t||u(0)− v0||2X

}
+ (12δ + 1) inf

v∈Xh

||(u(0)− v)t||2

+ T max
k=0,1,··· ,n+1

inf
vk∈Xh

||u(tk)− vk||2X

+ µ2δT max
k=0,1,··· ,n+1

inf
vk∈Xh

||∆(u(tk)− vk)||2
}
. (27)

Proof. Restricting test functions to Xh, subtracting (9) from
(8) yields the error equation

(ut(t
k+1)− uk+1 − uk

∆t
,v + δvβ⃗)

+ (A(u(tk+1)− uk+1),v) + (B(u(tk+1)− uk),v)

− µ(∆(u(tk+1)− uk+1), δvβ⃗)

+ ((uβ⃗ + σu)(tk+1)− (uk+1

β⃗
+ σk+1uk+1),v + δvβ⃗)

= 0. (28)

Define rk+1 = ut(t
k+1)−u(tk+1)−u(tk)

∆t and rearrange terms

(rk+1,v + δvβ⃗)

+ (
u(tk+1)− uk+1

∆t
− u(tk)− uk

∆t
,v + δvβ⃗)

+ (A(u(tk+1)− uk+1),v) + (B(u(tk+1)− uk),v)

− µ(∆(u(tk+1)− uk+1), δvβ⃗) + ((uβ⃗ + σu)(tk+1)

− (uk+1

β⃗
+ σk+1uk+1),v + δvβ⃗) = 0. (29)

Define for each k = 0, 1, · · · the functions (u(tk) − vk) +
(vk − uk) = ηk + ξk, where vk ∈ Xh is arbitrary. Then by

IAENG International Journal of Applied Mathematics, 48:3, IJAM_48_3_06

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



adding and subtracting vk, (29) may be rewritten as

1

∆t
(ξk+1 − ξk,v + δvβ⃗) + (Aξk+1,v)

+ (B(u(tk+1)− uk),v)− (µ∆ξk+1, δvβ⃗)

= − 1

∆t
(ηk+1 − ηk,v + δvβ⃗)− (Aηk+1,v)

− (rk+1,v + δvβ⃗) + µ(∆ηk+1, δvβ⃗).

− (ηk+1

β⃗
+ σk+1ηk+1,v + δvβ⃗) (30)

Note that

Bu(tk+1)−Buk = B(u(tk+1)− u(tk)) +Bηk +Bξk,

hence by choosing v = ξk+1, we have

1

∆t
(ξk+1 − ξk, ξk+1 + δξk+1

β⃗
) + (Aξk+1, ξk+1)

+ (Bξk, ξk+1)− (µ∆ξk+1, δξk+1

β⃗
)

+ (ξk+1

β⃗
+ σk+1ξk+1, ξk+1 + δξk+1

β⃗
)

= − 1

∆t
(ηk+1 − ηk, ξk+1 + δξk+1

β⃗
)

− (rk+1, ξk+1 + δξk+1

β⃗
)− (Aηk+1, ξk+1)

− (ηk+1

β⃗
+ σk+1ηk+1, ξk+1 + δξk+1

β⃗
)

+ µ(∆ηk+1, δξk+1

β⃗
)− (Bηk, ξk+1)

− (B(u(tk+1)− u(tk)), ξk+1). (31)

The terms on the left-hand side of (31) are bounded below as
in the proof of Theorem 3.1. Adding α||ξk+1||2A+αI to both
sides, and applying ||ξk+1||2A + α||ξk+1||2 = ||ξk+1||2A+αI ,
it follows

1

2∆t
(||ξk+1||2 − ||ξk||2) + ||ξk+1||2A+αI + (Bξk, ξk+1)

+
δ

4
||ξk+1

β⃗
||2 + γ0

2
||ξk+1||2 − b20

2
||ξk||2

≤ − 1

∆t
(ηk+1 − ηk, ξk+1 + δξk+1

β⃗
)

− (rk+1, ξk+1 + δξk+1

β⃗
)− (Aηk+1, ξk+1)

+ µ(∆ηk+1, δξk+1

β⃗
)− (Bηk, ξk+1)

− (ηk+1

β⃗
+ σk+1ηk+1, ξk+1 + δξk+1

β⃗
)

− (B(u(tk+1)− u(tk)), ξk+1) + α||ξk+1||2. (32)

The error terms involving the operator B must be absorbed
into the A+αI norms. Using similar technique in Theorem
3.1, we have

1

2∆t
(||ξk+1||2 − ||ξk||2) + 1

2
||ξk+1||2A+αI−B

+
1

2
(||ξk+1||2A+αI − ||ξk||2A+αI) +

1

2
||ξk||2A+αI−B

+
δ

4
||ξk+1

β⃗
||2 + γ0

2
||ξk+1||2 − b20

2
||ξk||2

≤ − 1

∆t
(ηk+1 − ηk, ξk+1 + δξk+1

β⃗
)− (Aηk+1, ξk+1)

− (rk+1, ξk+1 + δξk+1

β⃗
) + µ(∆ηk+1, δξk+1

β⃗
)

− (ηk+1

β⃗
+ σk+1ηk+1, ξk+1 + δξk+1

β⃗
)− (Bηk, ξk+1)

− (B(u(tk+1)− u(tk)), ξk+1) + α||ξk+1||2. (33)

Now we estimate the terms of the right-hand side in (33), it
is easy to see

− 1

∆t
(ηk+1 − ηk, ξk+1)− (rk+1, ξk+1)

≤ 1

2
||η

k+1 − ηk

∆t
||2 + 1

2
||rk+1||2 + ||ξk+1||2,

− 1

∆t
(ηk+1 − ηk, δξk+1

β⃗
)− (rk+1, δξk+1

β⃗
)

≤ 6δ||η
k+1 − ηk

∆t
||2 + 6δ||rk+1||2 + δ

12
||ξk+1

β⃗
||2,

− (ηk+1

β⃗
+ σk+1ηk+1, ξk+1)

= (ηk+1, ξk+1

β⃗
)− ((σk+1 − divβ⃗k+1)ηk+1, ξk+1)

≤ δ

24
||ξk+1

β⃗
||2 + 6

δ
||ηk+1||2 + C3||ηk+1||2 + γ0

2
||ξk+1||2,

− (ηk+1

β⃗
+ σk+1ηk+1, δξk+1

β⃗
) ≤ δ

24
||ξk+1

β⃗
||2 + C4||ηk+1||2X ,

µ(∆ηk+1, δξk+1

β⃗
) ≤ δ

24
||ξk+1

β⃗
||2 + 6µ2δ||∆ηk+1||2.

The remaining three terms of the right hand in (33) require
special treatment. Note that

− (Aηk+1, ξk+1) =
∑
i=1,2

{
µi

∫
Ωi

∇ηk+1
i · ∇ξk+1

i dx

}

≤
∑
i=1,2

µi

{∫
Ωi

|∇ηk+1
i |2dx

}1/2{∫
Ωi

|∇ξk+1
i |2dx

}1/2

≤ C(µ1, µ2)||ηk+1||X ||ξk+1||X ,

and ||ξk+1||X ≤ C||ξk+1||A+αI−B , applying Lemma 2.1,
and using Young’s inequality yield

−(Aηk+1, ξk+1) ≤ C||ηk+1||2X +
1

12
||ξk+1||2A+αI−B .

The two remaining terms of the right hand in (33) are treated
in the same way. In general, for ϕ = (ϕ1, ϕ2) ∈ X and
ψ = (ψ1, ψ2) ∈ Xh, we can bound the term −(Bϕ,ψ) as
follows

− 2(Bϕ,ψ) = k

∫
I

(ϕ1 − ϕ2)(ψ1 − ψ2)ds

≤ k

{∫
I

|ϕ1 − ϕ2|2ds
}1/2{∫

I

|ψ1 − ψ2|2ds
}1/2

≤ C(k,Ω1,Ω2)||ϕ||X ||ψ||X
≤ C||ϕ||X ||ψ||A+αI−B

≤ C||ϕ||2X +
1

12
||ψ||2A+αI−B . (34)

Hence taking ψ = ξk+1, and ϕ = u(tk+1) − u(tk) or
ϕ = ηk+1 in (34), provides the needed bounds for (33).
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Combining the above results, we get

1

2∆t
(||ξk+1||2 − ||ξk||2) + 1

2
||ξk+1||2A+αI−B

+
1

2
(||ξk+1||2A+αI − ||ξk||2A+αI) +

1

2
||ξk||2A+αI−B

+
δ

4
||ξk+1

β⃗
||2 + γ0

2
||ξk+1||2 − b20

2
||ξk||2

≤ (6δ +
1

2
)||η

k+1 − ηk

∆t
||2 + 5δ

24
||ξk+1

β⃗
||2

+ (6δ +
1

2
)||rk+1||2 + γ0

2
||ξk+1||2 + (C3 +

6

δ
)||ηk+1||2

+ (C + C4)||ηk+1||2X + 6µ2δ||∆ηk+1||2

+
1

4
||ξk+1||2A+αI−B + (α+ 1)||ξk+1||2. (35)

After multiplying by 2∆t and summing over k = 0, 1, · · · , n,
it follows that

||ξn+1||2 +∆t||ξn+1||2A+αI +
∆t

2

n∑
k=0

||ξk+1||2A+αI−B

+∆t
n∑

k=0

||ξk||2A+αI−B +
δ

12
∆t

n∑
k=0

||ξk+1

β⃗
||2

≤ ||ξ0||2 +∆t||ξ0||2A+αI + 2(α+ 1)∆t
n∑

k=0

||ξk+1||2

+ (12δ + 1)∆t
n∑

k=0

{
||η

k+1 − ηk

∆t
||2 + ||rk+1||2

}
+ b20∆t

n∑
k=0

||ξk||2 + C∆t
n∑

k=0

{
||ηk+1||2X + ||ηk+1||2

+ ||u(tk+1)− u(tk)||2X + µ2δ||∆ηk+1||2
}
. (36)

The discrete Gronwall lemma may be applied to (36). We
give a simplified bound as follows

||ξn+1||2 +∆t||ξn+1||2A+αI +
∆t

2

n∑
k=0

||ξk+1||2A+αI−B

+
δ

12
∆t

n∑
k=0

||ξk+1

β⃗
||2 ≤ eC4(α)T

{
||ξ0||2 +∆t||ξ0||2A+αI

+ C∆t
n+1∑
k=0

||ηk||2X + µ2δ∆t
n∑

k=0

||∆ηk+1||2

+ (12δ + 1)∆t
n∑

k=0

{
||η

k+1 − ηk

∆t
||2 + ||rk+1||2

}

+ C∆t
n∑

k=0

{
||u(tk+1)− u(tk)||2X

}}
, (37)

with C4(α) = (2α+b20+2)(1−∆t(2α+b20+2))−1. Bounds
for the last three terms in (37) can be derived using well

known arguments [7]. Indeed, the following inequalities hold

∆t
n∑

k=0

||η
k+1 − ηk

∆t
||2

≤
∫ tn+1

0

||ηt||2dt ≤ ||ηt||2L2(0,T ;L2(Ω)),

∆t
n∑

k=0

||u(tk+1)− u(tk)||2X

≤ ∆t2
∫ tn+1

0

||ut||2X ≤ ∆t2||ut||2L2(0,T ;X), (38)

∆t
n∑

k=0

||rk+1||2

≤ ∆t2

3

∫ tn+1

0

||utt||2dt ≤
∆t2

3
||utt||2L2(0,T ;L2(Ω)).

Applying the triangle inequality, recalling ηk = u(tk)−vk

for any vk ∈ Xh, taking the infimum over vk ∈ Xh, and
combining three inequalities in (38), it follows that

||ξn+1||2 +∆t||ξn+1||2A+αI +
∆t

2

n+1∑
k=0

||ξk+1||2A+αI−B

+
δ

12
∆t

n∑
k=0

||ξk+1

β⃗
||2 ≤ C3(α)e

C4(α)T

{
||u(0)− u0||2

+∆t||u(0)− u0||2A+αI +∆t inf
vk∈Xh

n+1∑
k=0

||ηk||2X

+ µ2δ∆t inf
vk∈Xh

n∑
k=0

||∆ηk+1||2 +∆t2||ut||2L2(0,T ;X)

+ (4δ + 1)∆t2||utt||2L2(0,T ;L2(Ω))

+ inf
v0∈Xh

{||η0||2 +∆t||η0||2A+αI}

+ (12δ + 1) inf
v∈Xh

||ηt||2L2(0,T ;L2(Ω))

}
.

Now we can replace all norms of type || · ||A+αI−B and
|| · ||A+αI with the norm || · ||X by using Lemma 2.1.

Furthermore, it is obvious that

∆t inf
vk∈Xh

n+1∑
k=0

||ηk||2X ≤ T max
k=0,1,··· ,n+1

inf
vk∈Xh

||ηk||2X ,

and

µ2δ∆t inf
vk∈Xh

n∑
k=0

||∆ηk+1||2

≤ µ2δT max
k=0,1,··· ,n+1

inf
vk∈Xh

||∆ηk||2.

Finally we obtain the convergence results by one more ap-
plication of the triangle inequality and rearranging constants.

Remark 4.2. Let Xh ⊂ X be a finite element space cor-
responding to continuous piecewise polynomials of degree
k. If u(·, t) is a solution of (1) satisfying the assumptions of
Theorem 4.1 and u0 approximates u(·, 0) such that

∥u(·, 0)− u0∥ = O(hk),
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then the corresponding approximations (9) converge at the
rate O(∆t+ hk) in the norm{

∆t

n∑
k=0

||u(tk)− uk||2X
} 1

2

.

V. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments
to illustrate the theoretical results obtained in the previous
section and show the efficiency of the new method.

A. Example 1

We first consider the experiment to test the convergence
rates for the problem Ω1 = [0, 1] × [0, 1], and Ω2 =
[0, 1] × [−1, 0], so I is the portion of the x-axis from 0
to 1. Then n1 = [0,−1]T and n2 = [0, 1]T . The right-hand
side function f is chosen to ensure that{

u1(t, x, y) = x(1− x)(1− y)e−t,

u2(t, x, y) = x(1− x)(c1 + c2y + c3y
2)e−t.

u1 and u2 satisfy (1) with β⃗i = (1, 1)T , σi = 1, (i = 1, 2).
The constants c1, c2 and c3 are determined from the interface
conditions and boundary conditions for u2. Obviously, it is
very important for the selection of parameters µ1, µ2, δ1, δ2
and k from the stability and convergence analysis. In the
first test problems, we choose k = 1, µ1 = 10−1 and
µ2 = 10−1. Simultaneously, we compare our method with
the standard implicit-explicit method without based on the
SD method. For test problems, computations are performed
with the finite element spaces consisting of continuous
piecewise polynomials of degree 1. Although the analysis
does not require the meshes on Ω1 and Ω2 to match on
the interface I , the meshes used for tests herein are chosen
to match on the interface I . By choosing ∆t = h the
expected convergence rate of O(∆t) is achieved by our new
scheme and the standard implicit-explicit method. In our
proposed method, we choose δ1 = h2/( 1

∆th
2 + 6µ1) and

δ2 = h2/( 1
∆th

2 + 6µ2). In the following tests, the norm
||u|| is taken the discrete L2(0, T ;H1(Ω)) norm given by

||u|| =

(
N∑

n=1

∆t|u(tn)|H1(Ω)

)1/2

,

where N = T/∆t.
The domain is partitioned into triangles with the mesh

size h = 1
N for N = 2, 4, 8, 16, 32 respectively. We first

compare the proposed method with the standard implicit-
explicit method, the errors of u1(t

n), u2(t
n), u(tn) and

corresponding convergence rate of these two methods are
shown in Tables I-II.

Similarly, in order to demonstrate our method prefer to
smaller viscosity coefficient, we change µ1 = µ2 = 10−3

and k = 0.5, the rest of the parameters retains the same,
the standard implicit-explicit method does not converge, but
our proposed method can achieve the expected convergence
rate. Furthermore, even the values of µ1 and µ2 are further
reduced to 10−7, our proposed method is still effective. The
results are presented in Tables III-IV, respectively.

In Tables I-II, we show the convergence of our method and
the standard implicit-explicit time stepping scheme respec-
tively, which agrees with our theoretical results in Theorem

4.2. And these two methods are more effective for moderate
viscosity coefficient µ1 = µ2 = 10−1. From Tables III-IV,
we find for the smaller viscosity coefficient µ1 = µ2 = 10−3

and µ1 = µ2 = 10−7, the proposed method is still effective
and retains the convergent order of approximation accuracy.
But the standard implicit-explicit time stepping scheme is
failed.

In Fig. 2, a plot of ||u|| computed by each of the
solution methods and exact solution for decreasing time
step size is given. In this figure, standard IMEX stands for
the implicit-explicit time stepping without the SD method,
IMEXSD represents the proposed method. From these plots,
µ1 = µ2 = 10−2, as the size of k grows, it is observed that
the stability of the standard IMEX method decreases, but the
IMEXSD method is more exact and effective.

In Fig. 3, the isovalues of u are compared to exaction
isovalues by the standard IMEX and IMEXSD methods
respectively. In these plots, we choose k = 0.5 and µ1 =
µ2 = 10−2.

In summary, these experiments confirm the efficiency of
our proposed method.

B. Example 2
We consider a coupled system with Ω1 = (0, 10)× (0, 1)

and Ω2 = {(x, y) : 16(x−5)4

104 − 1 ≤ y ≤ 0, x ∈ (0, 10)}. Let{
u1 = x(10− x)(1− y)exp(−t),
u2 = x(10− x)(c1 + c2y + c3y

2)exp(−t),

where c1, c2 and c3 are determined by the interface
condition. In this example, we choose k = 1,
µ1 = µ2 = 10−3, ∆t = 0.0002 and T = 0.2 (i.e.,
1000 time steps). The mesh and isovalue of u for exact
solution and numerical solution are shown in Fig. 4.

C. Example 3
In this example we assume that there is a submarine

mountain (i.e., the subdomain Ω2 is nonconvex) whereas Ω1

is the same as in Example 2. Ω2 is given by

Ω2 ={(x, y) : 0 ≥ y ≥ α− 0.175(2x− 10) sin(0.35(2x− 10)),

x ∈ (0, 10)},

where α = 1.75 sin(3.5). The boundary and initial
conditions are the same as Example 2. In this example, we
choose k = 1, µ1 = µ2 = 10−3, ∆t = 0.0002 and T = 0.2
(i.e., 1000 time steps). The mesh and isovalue of u for
exact solution and numerical solution are shown in Fig. 5.
We can notice that the presence of the submarine mountain
dramatically affects the flow in Ω2. Indeed, the flow slows
down before arriving to the straitness and accelerates again
after crossing it.

VI. CONCLUSION

We present a new implicit-explicit time stepping scheme
based on the SD method for the two domain convection-
dominated convection-diffusion-reaction problem. The pro-
posed method provides a convenient decoupling strategy for

IAENG International Journal of Applied Mathematics, 48:3, IJAM_48_3_06

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



TABLE I: Numerical results of the standard implicit-explicit method with µ1 = µ2 = 10−1

h = ∆t ||Err(u1)|| Convergence rate ||Err(u2)|| Convergence rate ||Err(u)|| Convergence rate
h = 1

2
0.01905 - 0.06499 - 0.06773 -

h = 1
4

0.02466 - 0.02644 1.30 0.03616 0.91
h = 1

8
0.04221 - 0.02982 - 0.05168 -

h = 1
16

0.00501 3.07 0.00605 2.30 0.00785 2.72
h = 1

32
0.00229 1.13 0.00267 1.18 0.00352 1.16

TABLE II: Numerical results of the proposed method with µ1 = µ2 = 10−1

h = ∆t ||Err(u1)|| Convergence rate ||Err(u2)|| Convergence rate ||Err(u)|| Convergence rate
h = 1

2
0.01811 - 0.07986 - 0.08189 -

h = 1
4

0.03929 - 0.03510 1.19 0.05268 0.64
h = 1

8
0.02865 0.46 0.02343 0.58 0.03701 0.51

h = 1
16

0.00444 2.70 0.00585 2.00 0.00734 2.33
h = 1

32
0.00228 0.96 0.00263 1.15 0.00348 1.08

TABLE III: Numerical results of the proposed method with µ1 = µ2 = 10−3

h = ∆t ||Err(u1)|| Convergence rate ||Err(u2)|| Convergence rate ||Err(u)|| Convergence rate
h = 1

2
0.02127 - 0.06213 - 0.06567 -

h = 1
4

0.02300 - 0.02706 1.20 0.03551 0.89
h = 1

8
0.01114 1.05 0.01843 0.55 0.02153 0.72

h = 1
16

0.00783 0.51 0.01059 0.80 0.01318 0.71
h = 1

32
0.00395 0.99 0.00469 1.18 0.00613 1.10

TABLE IV: Numerical results of the proposed method with µ1 = µ2 = 10−7

h = ∆t ||Err(u1)|| Convergence rate ||Err(u2)|| Convergence rate ||Err(u)|| Convergence rate
h = 1

2
0.02131 - 0.06193 - 0.06550 -

h = 1
4

0.02298 - 0.02709 1.20 0.03552 0.88
h = 1

8
0.01138 1.01 0.01872 0.55 0.02191 0.70

h = 1
16

0.00897 0.34 0.01162 0.80 0.01468 0.58
h = 1

32
0.00452 0.99 0.00531 1.18 0.00697 1.07
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Fig. 2: Stability of u as ∆t→ 0, different values of k
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Fig. 3: (a) Isovalue of u by standard IMEX ;(b) Isovalue of u by exact solution; (c) Isovalue of u by IMEXSD
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Fig. 4: (a) Mesh ; (b) Isovalue of u for exact solution; (c) Isovalue of u for numerical solution
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Fig. 5: (a) Mesh ; (b) Isovalue of u for exact solution; (c) Isovalue of u for numerical solution

large problems, allowing easy implementation of subdomain
solvers. At each time step data is explicitly passed across
the interface and the decoupled subdomain equations are
then solved in parallel. In addition, stability and convergence
are maintained. Further study is underway to improve the
simulation by extending to more realistic problems.
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