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Abstract—The main aim of this paper is to establish iterative
algorithms for computing the Takagi factorization of complex
symmetric matrices. Similar to the classical iterative algorithms
of computing the eigenpairs of real symmetric matrices, we
derive power-like iterations for computing the Takagi values
and associated Takagi vectors of complex symmetric matrices,
i.e., the power-like method, the orthogonal-like iteration and
the complex symmetric QR-like iteration. We analyze the
convergence of these algorithms under some mild conditions.
We also investigate the Jacobi-like methods for computing
the Takagi factorization of complex symmetric matrices like
Jacobi’s methods for real symmetric eigenvalue problems. We
illustrate our algorithms via numerical examples.

Index Terms—Complex symmetric matrix, Takagi factor-
ization, Singular value decomposition, Power-like method,
Orthogonal-like iteration, Complex symmetric QR-like itera-
tion, Jacobi-like methods.

I. INTRODUCTION

RECENTLY, the study of complex symmetric matrices
can be divided into three categories: solving complex

symmetric linear systems (see [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10]), computing singular value decomposition
(SVD) of complex symmetric matrices (see [11], [12], [13],
[14]) and solving complex-symmetric eigenvalue problems
(see [15], [16], [17], [18], [19], [20]). A complex symmetric
matrix can be diagonalized by a unitary matrix, which is
referred to as the Autonne-Takagi factorization, sometimes
shortened by Takagi factorization. It is originally proved by
Leon Autonne [21] and Teiji Takagi [22]. One advantage of
Takagi factorization of a complex symmetric matrix is that it
reflects the symmetry of the complex symmetric matrix and
thus saves the storage and computation about half.

The Takagi factorization of a complex symmetric matrix
has many applications, such as the Grunsky inequalities [23],
computation of the near-best uniform polynomial or rational
approximation of a high degree polynomial on a disk [24],
the complex independent component analysis problems [25],
and nuclear magnetic resonance [26].

Unfortunately, Matlab and LAPACK [27] do not support
complex symmetric structures and treat it as a general
complex. To compute the SVD of a complex symmetric
matrix in LAPACK, the matrix is first reduced to a bidiagonal
matrix, in which the symmetric structure is lost. Similar to
the computation of the SVD (see [28]), a standard algorithm
for computing the Takagi factorization of a complex sym-
metric matrix consists of two stages. The first stage is to
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reduce a n × n complex symmetric matrix to a complex
symmetric tridiagonal matrix, and the second stage is to
compute the Takagi fctorization of the complex symmetric
tridiagonal matrix from the first stage. For the first stage,
Qiao, Liu and Xu [29] derive a block Lanczos method for
tridiagonalizing complex symmetric matrices. There are two
methods for implementing the second stage: the divide-and-
conquer method [30] and a twisted factorization method [13].

As we know, these methods for computing Takagi factor-
ization of complex symmetric matrices are the direct method.
Bunse-Gerstner and Gragg [11] derive an iterative algorithm
for computing the Takagi factorization of complex symmetric
matrices. In this paper, we focus on the computation of the
Takagi factorization of the complex symmetric matrices by
iterative methods, analogy to the symmetric QR iteration and
Jacobi’s methods for real symmetric matrices.

Throughout this paper, we use small letters x, u, v, . . .
for scalars, small bold letters x,u,v, . . . for vectors and
A,B,C, . . . for matrices. For a given integer n, denote
1 : n or [n] by the set of 1, 2, . . . , n. For a given matrix
A ∈ Cm×n, we use |A|, ‖A‖2 and ‖A‖F for the absolute
values, the largest singular value and the Frobenius norm
of A. In detailed algorithmic descriptions, we write A(i, j)
or use the Matlab [31] notation A(i : j, k : l) to denote
the submatrix of A lying in rows i through j and columns
k through l. For a given vector v ∈ Cn, diag(v) is a
n×n diagonal matrix where its diagonal entries are the same
as the entries of v. More generality, for given k matrices
Ak ∈ Cnk×nk , D = diag(A1, A2, . . . , Ak) is a k × k block
diagonal matrix with ith diagonal block equal Ai. 0m×n is
a m× n zero matrix and In is the n× n identity matrix.

The rest of our paper is organized as follows. Section 2
introduces the Takagi factorization of complex symmetric
matrices. We consider how to design iterative algorithms for
computing the Takagi factorization of a complex symmetric
matrix and analyze the convergence of these algorithms in
Section 3. In Section 4, we illustrate our algorithms via
numerical examples. We conclude our paper in Section 5.

II. PRELIMINARIES

In this section, we introduce the definition of the Takagi
factorization of complex symmetric matrices and establish
the relationship between the Takagi factorization and the
SVD of complex symmetric matrices.

A. Takagi factorization of complex symmetric matrices

The Takagi factorization [32] of a complex symmetric
matrix A can be written as:

A = V ΣV >, or

{
Avi = σivi,

Avi = σivi,
(II.1)
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where V = (v1,v2, . . . ,vn) is a unitary matrix, V > is the
transpose of V , and Σ is a nonnegative diagonal matrix. The
columns of V are called the Takagi vectors of A and the
diagonal elements of Σ are its Takagi values. More general,
V is called the Takagi vector matrix of A associated with the
Takagi value matrix Σ. Since V > = V

∗
, where V and V ∗

denote the complex conjugate and the complex conjugated
transpose of V , respectively, the Takagi factorization is a
symmetric form of the singular value decomposition (SVD);
but they are different. The relationships between the Takagi
vectors and left-right singular vectors are listed as follows:
(a) If v is a Takagi vector, then (v,v) is a pair of left-right

singular vectors;
(b) A left singular vector is not necessarily a Takagi vector,

Xu and Qiao [30] state an example to illustrate this case.
In order to analyze power-like ierations for computing

the Takagi factorization of complex symmetric matrices, it
is convenient to define an invariant Takagi subspace of a
complex symmetric matrix, which is generalized from a
Takagi vector.

Definition II.1. An invariant Takagi subspace of a complex
symmetric matrix A is a subspace X of Cn, with the
property that x ∈ X implies that Ax ∈ X . We also write
it as AX ⊆X , where X = {x | x ∈X }.

If all the Takagi values of A satisfy σ1 ≥ · · · ≥ σp >
σp+1 ≥ · · · ≥ σn, according to Definition II.1, the subspace
span{v1,v2, . . . ,vp} is called a p dominant invariant Takagi
subspace of a complex symmetric matrix A, where vi is the
Takagi vector corresponding to σi with i = 1, 2, . . . , p.

Meanwhile, for a given complex symmetric matrix A ∈
Cn×n, if the Takagi factorization of A is A = V ΣV >, for
any unitary diagonal matrix D ∈ Cn×n with dii = exp(ιϕi),
then

A = (V D−1/2)D1/2ΣD1/2(V D−1/2)>

= (V D−1/2)(DΣ)(V D−1/2)>

= (V D−1/2)(DΣ)(V D−1/2)>,

where ϕi ∈ (−π, π] for all i = 1, 2, . . . , n. Here, DΣ and
ΣD are complex diagonal matrices and the absolute values
of DΣ and ΣD are the same as Σ.

III. ALGORITHMS

In this section, we derive four algorithms for computing
the Takagi values and associated Takagi vectors of complex
symmetric matrices and analyze the convergence of the
algorithms. In details, we propose the power-like method of
the Takagi factorization for complex symmetric matrices, this
method can compute the largest Takagi value and associated
Takagi vector of complex symmetric matrices; secondly, we
extend the power-like method to compute a p dominant
invariant Takagi subspace of a complex symmetric matrix
with p > 1; we also get a complex symmetric QR-like
iteration for computing the Takagi factorization of complex
symmetric matrices, similar to the symmetric QR algorithm
(see, e.g., [33, Chapter 5.3]) for real symmetric matrices.
Under some wild conditions, we show that present three
algorithms are effectiveness. Finally, Jacobi-like methods are
presented to compute the Takagi factorization of complex
symmetric matrices.

For the Takagi factorization of complex symmetric matri-
ces, we have the following lemma.

Lemma III.1. ([34, Lemma 2]) For given two complex
symmetric matrices A,B ∈ Cn×n. Suppose that the Takagi
factorization of A is A = V ΣV >. If there exists a unitary
matrix Q ∈ Cn×n such that B = Q∗AQ, then the Takagi
values of A and B are the same and the Takagi factorization
of B is B = (Q∗V )Σ(Q∗V )>.

Proof: Since the Takagi factorization of A is A =
V ΣV >, where U ∈ Cn×n is unitary and Σ is a positive
semi-definite diagonal matrix, according to the assumptions,
we have

B = Q∗AQ = Q∗V ΣV >Q = (Q∗V )Σ(Q∗V )>.

Since Q∗Q = QQ∗ = In,

(Q∗V )(Q∗V )∗ = V ∗(QQ∗)V = In

and B = (Q∗V )Σ(Q∗V )> is the Takagi factorization of B.
We complete the proof.

The following lemma should be noted that the Takagi fac-
torization of complex symmetric matrices can be determined
via its singular value decomposition of matrix A.

Lemma III.2. ([11, Theorem 2.1]) Let A = UΣV ∗ be
singular value decomposition of the complex symmetric
matrix A ∈ Cn×n with the singular values of A satisfies
σµ(1) > σµ(2) > · · · > σµ(k) and ρ(l) the multiplicity of

the singular value σµ(l), so that
k∑
l=1

ρ(l) = n. Let Ul and

Vl be the n × ρ(l) sub-matrices of U and V containing
singular vectors corresponding to σµ(l). Then Wl = U>l Vl
is a ρ(l) × ρ(l) symmetric unitary matrix if σµ(l) > 0.
If for all l ∈ [k], Wl = QlQ

>
l is an symmetric SVD

of Wl and D is the unitary block diagonal matrix with
D = diag(Q1, Q2, . . . , Qk) then A = (UD)Σ(UD)> is a
Takagi factorization of A.

A. Power-like methods

Given a complex symmetric matrix A with σ1 > σ2 ≥
· · · ≥ σn, let v1 be the Takagi vector corresponding to σ1,
then, we have

B = (I − v1v
∗
1)A(I − v1v

>
1 ) = (I − v1v

∗
1)A(I − v1v

∗
1)>

is also complex symmetric matrix and

B = (I − v1v
∗
1)A(I − v1v

∗
1)>

= (I − v1v
∗
1)V ΣV >(I − v1v

∗
1)>

= V ΣBV
>,

where V is the same matrix in (II.1) and

ΣB = diag(0, σ2, σ3, . . . , σn).

It is obvious that Takagi values of B are same as those of
A except for σ1. Now, we design the power-like method for
computing the Takagi pair (σ1,v1) of A. The algorithm is
summarized as Algorithm III-A. Here, we select

‖Axk − λkxk‖2
‖|A||xk|+ |λk||xk|‖2

< tol
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or ∥∥∥Aṽk − σ̃kṽk∥∥∥
2∥∥∥|A||ṽk|+ |σ̃k||ṽk|∥∥∥

2

< tol, (III.1)

as the convergence criterion of Algorithm III-A, where tol (>
0) is arbitrarily small.

Algorithm III.1 Power-like method for complex symmetric
matrices

Input: Given a complex symmetric matrix A with σ1 >
σ2 ≥ · · · ≥ σn
Output: the Takagi value σ1 and the Takagi vector v1

Given an initial vector x0 ∈ Cn with ‖x0‖2 = 1
for k = 0, 1, 2, . . . do
yk+1 = Axk
xk+1 = yk+1/‖yk+1‖2
λk+1 = x∗k+1Axk+1

Set σ̃k+1 = |λk+1| and ṽk+1 = exp
(
ι arg(λk+1)

2

)
xk+1

end for

We first apply this algorithm to the case of A is a
diagonal matrix with A = diag(σ1, σ2, . . . , σn) satisfies
σ1 > σ2 ≥ · · · ≥ σn ≥ 0. In this case the Takagi vectors
are the column vectors ei (i = 1, 2, . . . , n) of the identity
matrix. According to the results about the power method for
diagonalizable matrices, the convergence of Algorithm III-A
is easy to prove.

We prove the convergence of Algorithm III-A if A ia a
diagonal positive semi-definite matrices. To analyze a more
general case, we rewrite A as A = V ΣV >, where V is a
unitary matrix and Σ = diag(σ1, σ2, . . . , σn) is nonnegative.
Let V = (v1,v2, . . . ,vn), where the columns vi are the
Takagi vectors satisfy ‖vi‖2 = 1. Since A = V ΣV ∗, for
k = 0, 1, 2, . . . , it is easy to check that

(AA)k = (V ΣV >V ΣV ∗)(V ΣV >V ΣV ∗)
. . . (V ΣV >V ΣV ∗)
= V Σ2kV ∗,

(AA)kA = (V ΣV >V ΣV ∗)(V ΣV >V ΣV ∗)
. . . (V ΣV >V ΣV ∗)V ΣV >

= V Σ2k+1V >,

which follows from V >V and V ∗V are the identity matrix
In.

For the case of (AA)k, let us write

x0 = V (V ∗x0) ≡ V [ξ1, ξ2, . . . , ξn]>.

It finally leads to

(AA)kx0 = (V Σ2kV ∗)V


ξ1
ξ2
...
ξn

 = V


ξ1σ

2k
1

ξ2σ
2k
2

...
ξnσ

2k
n



= ξ1σ
2k
1 V


1

ξ2σ
2k
2

ξ1σ2k
1

...
ξnσ

2k
n

ξ1σ2k
1

 .

As before, the vector in brackets converges to e1, so
(AA)kx0 gets closer and closer to a multiple of V e1 = v1,
the Takagi vector corresponding to σ1.

Meanwhile, for the case of (AA)kA, denotes

x0 = V (V >x0) ≡ V ([ξ1, ξ2, . . . , ξn]>).

It leads

(AA)kAx0 = (V Σ2k+1V >)V


ξ1
ξ2
...
ξn

 = V


ξ1σ

2k+1
1

ξ2σ
2k+1
2
...

ξnσ
2k+1
n



= ξ1σ
2k+1
1 V


1

ξ2σ
2k+1
2

ξ1σ
2k+1
1

...
ξnσ

2k+1
n

ξ1σ
2k+1
1

 .

Similarly, the vector in brackets converges to e1, so
(AA)kAx0 approximates closer and closer to a multiple
of V e1 = v1, the Takagi vector corresponding to σ1.
Combining these two cases, we prove the convergence of
Algorithm III-A, if the Takagi values of complex symmetric
matrices satisfy σ1 > σ2 ≥ · · · ≥ σn.

It is well known that the core computation of Algorithm
III-A is complex matrix-vector multiplication [28, Problem
4.2.1]. Let A = B+ιC and z = x+ιy, where B,C ∈ Rn×n
are two symmetric matrices and x,y ∈ Rn, then

Az = (B + ιC)(x + ιy) = (Bx− Cy) + ι(By + Cx).

Then, in each step, we need to implement Algorithm 1.2.3
in [28] eight times. Hence, the computation complexity of
Algorithm III-A is O(n2) flops, when A ∈ Cn×n is complex
symmetric.

B. Orthogonal-like iteration

Our next improvement is to present a algorithm which
can converge to a p(> 1)-dimensional invariant Takagi
subspace, rather than one Takagi vector at each time. It
is called orthogonal-like iteration (and sometimes Takagi
subspace iteration or Simultaneous Iteration). This algorithm
is summarized in Algorithm III-B.

We select ∑
i6=j

|Λk(i, j)|2 < tol, (III.2)

as the convergence criterion of Algorithm III-B, where tol (>
0) is arbitrarily small and Λk(i, j) is the (i, j)-entry of Λk.

Here is a detail analysis of this algorithm. Assume that
σp > σp+1. If p = 1, then this method and its analysis are
identical to the power-like method. When p > 1, we deduce
that span{Xk+1} = span{Yk+1} = span{AXk+1}, so we
have

span{X2k} = span
{

(AA)kX0

}
= span

{
V Σ2kV ∗X0

}
,

span{X2k+1} = span
{

(AA)kAX0

}
= span

{
V Σ2k+1V >X0

}
.
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Algorithm III.2 Orthogonal-like iteration for complex sym-
metric matrices

Input: Given a complex symmetric matrix A with σ1 ≥
· · · ≥ σp > σp+1 ≥ · · · ≥ σn
Output: Σp ∈ Rp×p is a nonnegative diagonal matrix and
Vp ∈ Cn×p such that AVp = VpΣp and V ∗p Vp = Ip
Given an initial matrix X0 ∈ Cn×p with X∗0X0 = Ip
for k = 0, 1, 2, . . . do
Yk+1 = AXk

Factor Yk+1 = Xk+1Rk+1 (QR decomposition)
Λk+1 = X∗k+1AXk+1

Set Σ̃k+1 = |Λk+1| and Ṽk+1 = Xk+1Dk+1,
where Dk+1 ∈ Cp×p is diagonal and Dk+1,jj =

exp
(
ι
arg(x∗k+1,jAxk+1,j)

2

)
with j ∈ [p] and Xk+1 =

(xk+1,1,xk+1,2, . . . ,xk+1,p).
end for

Note that
V Σ2kV ∗X0 = V diag(σ2k

1 , σ2k
2 , . . . , σ2k

n )V ∗X0

= σ2k
p V diag((

σ1
σp

)2k, . . . , 1 . . . , (
σn
σp

)2k)V ∗X0,

V Σ2k+1V >X0 = V diag(σ2k+1
1 , σ2k+1

2 , . . . , σ2k+1
n )V >X0

= σ2k+1
p V diag((

σ1
σp

)2k+1, . . . , 1 . . . , (
σn
σp

)2k+1)V >X0.

Since σi

σp
≥ 1 if i ≤ p, and σi

σp
< 1 if i > p, we denote

diag(
σ1
σp

)2k, . . . , 1 . . . , (
σn
σp

)2k)V ∗X0 =

(
P2k

Q2k

)
,

diag((
σ1
σp

)2k+1, . . . , 1 . . . , (
σn
σp

)2k+1)V >X0 =

(
P2k+1

Q2k+1

)
,

where Qk(∈ C(n−p)×p) approaches zero like (σp+1/σp)
k,

and Pk(∈ Cp×p) does not approach zero. Indeed, if P0 has
full rank, then Pk will have full rank too. Let the Takagi
vectors matrix be V = (v1,v2, . . . ,vn) ≡ (Vp, V̂p), i.e.,
Vp = (v1,v2, . . . ,vp), V̂p = (vp+1,vp+2, . . . ,vn). Then

V Σ2kV ∗X0 = σ2k
p V

(
P2k

Q2k

)
= σ2k

p (VpP2k + V̂pQ2k),

V Σ2k+1V >X0 = σ2k+1
p V

(
P2k+1

Q2k+1

)
= σ2k+1

p (VpP2k+1 + V̂pQ2k+1).

Thus span{Xk} converges to

span{X2k} = span
{

(AA)kX0

}
= span {VpX2k

+V̂pY2k

}
⇒ span {VpX2k} = span{Vp},

span{X2k+1} = span
{

(AA)kAX0

}
= span {VpX2k+1

+V̂pY2k+1

}
⇒ span{VpX2k+1} = span{Vp}.

Hence, the invariant Takagi subspace spanned by the first p
Takagi vectors, as desired.

It is well known that the core computation of Algorithm
III-B is complex matrix-matrix multiplication and computing
the thin QR decomposition [28, Theorem 5.2.3] of Yk+1. Let
A = B+ ιC and Z = X + ιY where B,C ∈ Rn×n are two
symmetric matrices and X,Y ∈ Rn×p, then

AZ = (B + ιC)(X + ιY ) = (BX − CY ) + ι(BY + CX).

Then, in each step, we need to implement Algorithm 1.2.3
in [28] 8p times. Hence, the computation complexity of
Algorithm III-A is O(pn2) flops, if A ∈ Cn×n is complex
symmetric.

Thus, we can let p = n and |X0| = In in the orthogonal-
like iteration (Algorithm III-B). The next theorem shows
that under certain assumptions, we can use orthogonal-like
iteration to compute the Takagi factorization of complex
symmetric matrices.

Theorem III.1. Suppose that A is a complex symmetric
matrix. Running orthogonal-like iteration (Algorithm III-B)
on matrix A with p = n and |X0| = In. If the Takagi values
of A have distinct values and the principal submatrices
V (1 : j, 1 : j) have full rank, then Ai = X∗i AXi

converges to DΣ, where D ∈ Cn×n satisfies |D| = In,
i.e., Ãi = Ṽ ∗i AṼi converges to Σ. The Takagi values will
appear in decreasing order.

Proof: The assumption about nonsingularity of V (1 :
j, 1 : j) for all j implies that X0 is nonsingular. Note that
Xk is a square unitary matrix, so the Takagi values of A
and Ak = X∗kAXk are the same. Write Xk = (X1k, X2k),
where X1k has p columns and X2k has n− p columns, thus

Ak = X∗kAXk =

(
X∗1kAX1k X∗1kAX2k

X∗2kAX1k X∗2kAX2k

)
.

Since span{X1k} converges to an invariant Takagi sub-
space of A, span{AX1k} converges to the same subspace,
X∗2kAX1k and (X∗1kAX2k)> = X∗2kAX1k converge to
X∗2kX1k = 0(n−p)×p. Since this is true for all p < n, every
off-diagonal entry of Ak converges to zero, so Ak converges
to a complex diagonal matrix.

C. Complex symmetric QR-like iteration

Now, our goal is to attain a complex symmetric QR-like
iteration for computing the Takagi factorization of complex
symmetric matrices, which is needed in the proof of Theorem
III.1. Algorithm III-C can realize this process.

Algorithm III.3 QR-like algorithm for computing the Takagi
factorization of complex symmetric matrices

Input: Given a complex symmetric matrix A0 and U0 ←
In
Output: Λ ∈ Cn×n is a complex diagonal matrix and
U ∈ Cn×n such that AU = UΛ and U∗U = In
for k = 0, 1, 2, . . . do

Factor Ak = QkRk (the QR decomposition)
Compute Ak+1 ← RkQk and Uk+1 ← UkQk

end for

In practice, the matrices Xk+1 in Algorithm III-B and the
matrices Qk in Algorithm III-C do not need to be computed
explicitly. Here, we choose∑

i6=j

|Ak,ij |2 < tol (III.3)

as the convergence criterion of Algorithm III-C, where
tol (> 0) is arbitrarily small and Ak(i, j) is the (i, j)-entry
of Ak with i, j ∈ [n]. We note that the absolute value of Ak
converges to Σ, i.e., DAkD → Σ and and UkD → V as
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k → ∞, where the ith entry of D is exp
(
ι arg(ai)2

)
and ai

is the ith entry of Ak with i ∈ [n].
Since Ak+1 = RkQk = Q∗kAkQk, Ak+1 and Ak have the

same Takagi values. We claim that the Ak computed by QR-
like iteration is identical to the matrix X∗kAXk implicitly
computed by orthogonal-like iteration.

Lemma III.3. Suppose that A ∈ Cn×n is complex symmetric
matrix and Ak = X∗kAXk, where Xk is the matrix computed
from orthogonal-like iteration (Algorithm III-B), then Ak
converges to DΣ if all the Takagi values are different, where
D ∈ Cn×n is diagonal with |D| = In. The choice of D
depends on all matrices Xk and A.

Proof: We use induction. Assume that Ak = X∗kAXk.
From Algorithm III-C, we can derive AXk = Xk+1Rk+1,
where Xk+1 is unitary and Rk+1 is upper triangular. Then
X∗kAXk = X∗k(Xk+1Rk+1) is the product of an unitary
matrix Q = X∗kXk+1 and an upper triangular matrix R =
Rk+1 = X∗k+1AXk; this must be the QR decomposition
Ak = QR, since the QR decomposition is unique (except
for possibly multiplying each column of Q and row of R by
−1). Then

X∗k+1AXk+1 = (X∗k+1AXk)(X>k Xk+1)
= Rk+1(X>k Xk+1)
= RQ.

This is precisely how the QR iteration maps Ak to Ak+1,
X∗k+1AXk+1 = Ak+1 as desired.

It is well known that we can use the symmetric QR
iteration (for example, see [33, Chapter 5.3]) to find all
eigenvalues and the eigenvectors of a real symmetric matrix.
The symmetric QR iteration can be divided into two phases:

1. Given a real symmetric matrix A, find an orthogonal Q
such that QAQ> = T is tridiagonal.

2. Employing the symmetric QR iteration to matrix T
and getting a tridiagonal matrices sequence T =
T0, T1, T2, . . . , which converges to a diagonal form.

It is obvious that QR iteration keeps all the Tk are tridiagonal
matrices, since QAQ> is symmetric and upper Hessenberg,
it must also be lower Hessenberg, i.e., tridiagonal.

Similar to this process, we consider how to efficiently
implement Algorithm III-C for computing the Takagi factor-
ization of complex symmetric matrices. The desired process
is also divided into three phases:

1. Given a complex symmetric matrix A, find an unitary
Q such that Q∗AQ = T is tridiagonal and complex
symmetric, for instance, Qiao, Liu and Xu [29] derive
an algorithm for implementing this purpose.

2. Apply the complex symmetric QR-like iteration to T
to get a sequence T = T0, T1, T2, . . . of tridiagonal
matrices converging to a complex diagonal form Σ̂.
(Note that: Bunse-Gerstner and Gragg [11] derive a
unitary matrix Q by computing the QR decomposition
of T ∗T to implement T converging to a diagonal form;
however, we derive a unitary matrix Q by computing
the QR decomposition of T .)

3. Convert the final complex diagonal form Σ̂ derived
above to a positive semi-definite diagonal form Σ and
derive the Takagi matrix V .

We can see that QR-like iteration keeps all the Tk tridiagonal
and complex symmetric, since Q∗AQ is complex symmetric

and upper Hessenberg, it must also be lower Hessenberg, i.e.,
tridiagonal. This keeps each QR iteration very cheap.

However, how to describe QR iteration with a shift for
computing the Takagi factorization of complex symmetric
matrices remains open.

D. Jacobi-like method

Jacobi’s method 1 is historically the oldest method for the
eigenvalue problem, dating to 1846. For a real symmetric
matrix A, Jacobi’s method does not start by reducing A
to a tridiagonal form as the symmetric QR method or
divide-conquer method, instead of working on the original
dense matrix. Now, we generate a Jacobi-like method for
computing the Takagi factorization of complex symmetric
matrices.

Given a complex symmetric matrix A = A0 ∈ Cn×n.
Jacobi’s like method produces a unitary matrices sequences
A1, A2, . . . , which eventually converges to a diagonal matrix
determined by the Takagi values. Ai+1 is obtained from Ai
by the formula Ai+1 = J>i AiJi, where Ji is a unitary matrix.
Thus

Am = J>m−1Am−1Jm−1 = J>m−1J
>
m−2Am−2Jm−2Jm−1 =

· · · = J>m−1J
>
m−2 . . . J

>
0 A0J0 . . . Jm−2Jm−1 ≡ J>AJ,

where J = J0 . . . Jm−2Jm−1 is a unitary matrix.
If we choose each Ji appropriately, then Am approaches

a diagonal matrix Λ for large m. Thus we can write Λ ≈
J>AJ or JΛJ∗ = (J)Λ(J)> ≈ A. Therefore, according to
(II.1) and Lemma III.1, the columns of J̄ are approximate
Takagi vectors of A.

We make J>AJ nearly diagonal by iteratively choosing Ji
to make one pair of off-diagonal entries of Ai+1 = J>i AiJi.
To do this, we first consider how to find a unitary matrix Q
for computing the Takagi factorization of a 2 × 2 complex
symmetric matrix A.

It is obvious that a 2× 2 unitary matrix Q can be written

as
(

ceιϕ1 seιϕ2

−se−ιϕ3 ceιϕ4

)
, where

(
c s
−s c

)
is an orthogonal

matrix and ϕ1 +ϕ3 = ϕ2−ϕ4±π with ϕi ∈ (−π, π], (i =
1, 2, 3, 4). For a given 2 × 2 complex symmetric matrix A,
we can derive a 2×2 unitary matrix Q such that Q>AQ is a
diagonal form by Algorithm III-C or some methods given in
[11], [30], [13]. Without loss of generality, we assume that
c and s are nonnegative.

We derive a Jacobi-like method for computing the Takagi
factorization of complex symmetric matrices, summarized in
Algorithm III-D.

Now, we analyze the convergence of Algorithm III-D and
give the convergent criterion. We first define the quantity
off(A) [28, Secion 8.5.1] as

off(A) =

√√√√√ n∑
i=1

n∑
j=1
j 6=i

|aij |2.

We see that off(A) is also the Frobenius norm of the off-
diagonal elements. The idea behind Jacobi’s-like method is
to systematically reduce off(A). The basic step in a Jacobi-
like Takagi value procedure involves these three phases:

1Demmel [33] describes some results about Jacobi’s method.
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Algorithm III.4 Jacobi-like method for computing the Tak-
agi factorization of complex symmetric matrices

Input: Given a complex symmetric matrix A and U ← In
Output: A unitary matrix U ∈ Cn×n such that U>AU is
a diagonal form
U ← In
for k = 0, 1, 2, . . . do

Step 1: Choose (p, q) such that |apq| = max
i6=j
|aij | with

p < q

Step 2: Write Â =

(
app apq
aqp aqq

)
Step 3: Compute a unitary matrix Q such that Q>ÂQ
is a diagonal form
Step 4: Form J such that J ← In except for(

Jpp Jpq
Jqp Jqq

)
← Q

Step 5: Compute A← J>AJ and U ← UJ
end for

(i) Choose an index pair (p, q) that satisfies 1 ≤ p < q ≤ n;
(ii) Compute a 6-tuple (c, s, ϕ1, ϕ2, ϕ3, ϕ4) such that(

ceιϕ1 seιϕ2

−se−ιϕ3 ceιϕ4

)>(
app apq
aqp aqq

)(
ceιϕ1 seιϕ2

−se−ιϕ3 ceιϕ4

)
(III.4)

is a diagonal form;
(iii) Overwrite A with B = J>AJ where J = In except for

(Jpp, Jpq, Jqp, Jqq) = (ceιϕ1 , seιϕ2 ,−se−ιϕ3 , ceιϕ4).

Observe that the matrix B agrees with A except in rows and
columns p and q. Moreover, for a given matrix A ∈ Cn×n,
when P,Q ∈ Cn×n are unitary, the Frobenius norm of A
and PAQ are the same, see, e.g., [28, Secion 2.3.5]. Hence,
we find that
|app|2 + |aqq|2 + 2|apq|2 = |bpp|2 + |bqq|2 + 2|bpq|2

= |bpp|2 + |bqq|2.
It follows that

off(B)2 =‖B‖2F −
n∑
i=1

|bii|2 = ‖A‖2F −
n∑
i=1

|aii|2

+ (|bpp|2 + |bqq|2 − |app|2 − |aqq|2)

=off(A)2 − 2|apq|2.

(III.5)

In this sense, A moves closer to diagonal form with each
Jacobi-like step. Since apq is the largest off-diagonal entry
in each Jacobi-like step of Algorithm III-D, then

off(A)2 ≤ N(|apq|2 + |aqp|2)

where N = n(n−1)
2 . It follows from (III.5) that

off(B)2 ≤
(

1− 1

N

)
off(A)2.

By induction, if A(k) denotes the matrix after k Jacobi-like
updates, then

off(A(k))2 ≤
(

1− 1

N

)k
off(A(0))2 =

(
1− 1

N

)k
off(A)2.

It implies that the classical Jacobi-like procedure converges
with a linear rate.

Next, we consider how to improve the Jacobi-like method
for computing the Takagi factorization of complex symmetric
matrices. First of all, we state that the trouble of Algorithm
III-D is that the updates involve O(n) complex flops while
the search for the optimal (p, q) is O(n2). We can overcome
this trouble by row-by-row fashion, (see [28, Section 8.5.4]).
The row Jacobi-like method for complex symmetric matrices
is summarized in Algorithm 3.5.

Algorithm III.5 Row Jacobi-like method for computing the
Takagi factorization of complex symmetric matrices

Input: Given a complex symmetric matrix A and U ← In
Output: A unitary matrix U ∈ Cn×n such that U>AU is
a diagonal form
for k = 0, 1, 2, . . . do

for p = 1 : n− 1 do
for q = p+ 1 : n do

Step 1: Write Â =

(
app apq
aqp aqq

)
Step 2: Compute a unitary matrix Q such that
Q>ÂQ is a diagonal form
Step 3: Form J such that J ← In except for(

Jpp Jpq
Jqp Jqq

)
← Q

Step 5: Compute A← J>AJ and U ← UJ
end for

end for
end for

When Algorithm III-D or 3.5 is terminated, we need to
convert the final diagonal form to Σ and the unitary matrix U
to the Takagi vector matrix V . Let Λ = diag(λ1, λ2, . . . , λn)
the final diagonal form, the strategy is:
(i) Form a diagonal matrix D as

diag

(
exp

(
ιarg

λ1
2

)
, exp

(
ιarg

λ1
2

)
, . . . , exp

(
ιarg

λ1
2

))
;

(ii) Compute Σ and V as

Σ = |Λ|, V = UD.

When Algorithm III-C is terminated, we also need to convert
the final diagonal form to the Takagi value matrix Σ and U
to the Takagi vector matrix V by the above strategy.

In following, for a given 2× 2 complex symmetric matrix
A, we consider how to more efficiently compute a unitary
Q such that Q>AQ is a diagonal form, similar to the
process about computing the Schur decomposition of 2 × 2
real symmetric matrices, (see [28, Section 8.5.2]), that is,
implementing Step 2 in Algorithm III-D or 3.5.

Let the 2× 2 complex symmetric matrix A as

A =

(
a1 a2
a2 a3

)
=

(
r1e

ιθ1 r2e
ιθ2

r2e
ιθ2 r3e

ιθ3

)
, (III.6)

where ai ∈ C, nonnegative ri ∈ R and θi ∈ (−π, π] with i =

1, 2, 3. When the matrix
(
app apq
aqp aqq

)
in (III.4) is replaced

by A, given in (III.6), and there exists a 2×2 unitary matrix
Q such that B = Q>AQ is a diagonal matrix, then b12 =
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b21 = 0, that is,

b12 = a1ce
ιϕ1seιϕ2 + a2ce

ιϕ1ceιϕ4 − a2seιϕ2se−ιϕ3

− a3ceιϕ4se−ιϕ3

= r1cse
ι(θ1+ϕ1+ϕ2) + r2c

2eι(θ2+ϕ1+ϕ4)

− r2s2eι(θ2+ϕ2−ϕ3) − r3cseι(θ3+ϕ4−ϕ3)

= 0,

where c and s are nonnegative, and ϕ1 +ϕ3 = ϕ2−ϕ4± π
with ϕi ∈ (−π, π] and i = 1, 2, 3, 4. We can find a unitary
matrix Q ∈ C2×2 such that Q>AQ is a diagonal form
through the process:
(i) Compute two nonnegative scalars c and s such that(

c s
−s c

)
|AA|

(
c s
−s c

)>
is a nonnegative diagonal matrix;
(ii) Choose a pair (ϕ1, ϕ2, ϕ3, ϕ4) such that

r1cse
ι(θ1+ϕ1+ϕ2) + r2c

2eι(θ2+ϕ1+ϕ4) − r2s2eι(θ2+ϕ2−ϕ3)

−r3cseι(θ3+ϕ4−ϕ3) = 0

where ϕ1 + ϕ3 = ϕ2 − ϕ4 ± π with ϕi ∈ (−π, π] and
i = 1, 2, 3, 4.

IV. NUMERICAL EXAMPLES

In this section, the computations are implemented in
Matlab Version 2013a on a laptop with Intel Core i5-4200M
CPU (2.50GHz) and 7.89GB RAM. We test the accuracy
and efficiency of our algorithms by computing the Taka-
gi factorization or the Takagi-like factorization of random
complex symmetric matrices. Suppose that the computational
accuracy tol is 10e− 10. All floating point numbers in each
example have 4 significant digits after the decimal point.

We assume that the dimension of testing matrices in each
example is 100 and program our Algorithms III-A, III-B and
III-C in Matlab for random generated complex symmetric
matrices. Random complex symmetric matrices with pre-
determined singular values in the following examples were
generated as follows 2. First, a vector s, which includes n
Takagi values, is initialized. Then, a random unitary matrix
V was generated by the QR decomposition of a random n×n
complex matrix. Finally, a complex symmetric matrix A was
obtained by the product V ΣV >, where Σ = diag(s).

Example IV.1. In this example, we use Algorithm III-A
to compute the largest Takagi value and associated Takagi
vector of a random complex symmetric matrix A, where the
largest Takagi value of A is larger than others of A and its
termination condition is given in (III.2).

Let σ be the largest Takagi value of A and v be the Takagi
vector corresponding to σ. Meanwhile, denoting v̂ and σ̂ as
the computed Takagi vector and Takagi value, respectively,
we compute the error, determined by the computed Takagi
value, via

γσ = ‖σ − σ̂‖2 ,

and the orthogonality of the computed Takagi vector v̂ made
by

γo = ‖v̂∗v̂ − 1‖2 .

2Xu and Qiao [13] use a similar strategy to generate random complex
symmetric tridiagonal matrices.

Fig. 1. All results about computing the largest Takagi value and associated
Takagi vector of random complex symmetric matrices by Algorithm III-A

Running Algorithm III-A 200 times, Figure 1 show the
computational results.

Example IV.2. In this example, we use Algorithm III-B to
compute the first p Takagi values and associated Takagi
vectors of a random generated complex symmetric matrix A,
where the first p Takagi values of A are larger than others
of A and the termination condition of algorithm is given in
(III.2).

Let sp be the vector determined by the first p Takagi values
of A and Vp be the Takagi vector matrix corresponding to
sp. Meanwhile, denoting V̂p and ŝp as the computed Takagi
vector matrix and the vector of the computed p Takagi values,
respectively, we compute the error in the p dominant Takagi
factorization measured by

γA =
∥∥∥AV̂p − V̂pdiag(ŝp)

∥∥∥
2
,

the error in the computed Takagi values had by

γs = ‖sp − ŝp‖2 ,

and the orthogonality of the computed Takagi vector V̂p
determined by

γo =
∥∥∥V̂ ∗p V̂p − Ip∥∥∥

2
,

where the order of all entries in sp is the same as the order
of all entries in ŝp.

Running Algorithm III-B 5 times, Table I show computa-
tional results with p = 5.

TABLE I
ALL RESULTS ABOUT THE ERROR IN THE LARGEST 5 COMPUTED

TAKAGI VALUES AND ASSOCIATED TAKAGI VECTORS OF RANDOM
COMPLEX SYMMETRIC MATRICES.

sample γA γs γo
1 0.001e-11 0.355e-11 0.001e-11
2 0.001e-11 0.260e-11 0.001e-11
3 0.438e-11 0.238e-11 0.001e-11
4 0.301e-10 0.679e-11 0.001e-11
5 0.1120e-10 0.5662e-11 0.0003e-11

Example IV.3. In this example, we use Algorithm III-C
to compute the Takagi factorization of a random complex
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symmetric matrix A, where all Takagi values of A are distinct
and its termination condition is given in (III.3).

Let s be the vector of all the Takagi values of A and V
be the Takagi vector matrix corresponding to s. Meanwhile,
denoting V̂ and ŝ as the computed Takagi vector matrix and
the vector of the computed Takagi values, respectively, we
compute the error in the Takagi factorization measured by

γA =
∥∥∥AV̂ − V̂ diag(ŝ)

∥∥∥
2
,

the error in the computed Takagi values made by

γs = ‖s− ŝ‖2 ,

and the orthogonality of the computed Takagi vector V̂
characterized by

γo =
∥∥∥V̂ ∗V̂ − In∥∥∥

2
,

where the order of all entries in sp is the same as the order
of all entries in ŝp.

Table II shows that the computed Takagi values and Takagi
vectors are accurate.

TABLE II
THE TAKAGI FACTORIZATION OF FIVE TESTING MATRICES WITH

DISTINCT TAKAGI VALUES.

sample γA γs γo
1 0.366e-10 0.356e-10 0.001e-11
2 0.971e-11 0.263e-11 0.002e-11
3 0.437e-11 0.238e-11 0.001e-11
4 0.301e-10 0.067e-10 0.001e-11
5 0.112e-10 0.056e-10 0.003e-11

Example IV.4. In this example, the testing matrix is chosen
from [3], [8]. The testing matrix A is

A = (−ω2M +K) + ι(ωCV + CH),

where M and K are the inertia and stiffness matrices,
respectively; CV and CH are the viscous and hysteretic
damping matrices, respectively; and ω is the driving circular
frequency.

We take CH = µK with µ = 0.02 being a damp-
ing coefficient, ω = 2π, CV = 1

2M , and K the five
point centered difference matrix approximating the negative
Laplacian operator with homogeneous Dirichlet boundary
condition on a uniform mrsh in the unit square [0, 1]× [0, 1]
with the mesh size h = 1

m+1 . In this case, the matrix
K ∈ Rm×m possesses the form K = Im ⊗ Vm + Vm ⊗ Im
with Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m.

In our example, we assume that m = 3. The meanings
of γA, γs and γo are given in Example IV.3. For different
matrices M , all results are given in Table III.

TABLE III
γA , γs AND γo FOR COMPLEX SYMMETRIC MATRICES.

M In 2In 5In 10In 15In
γA 0.114e-11 0.114e-11 0.025e-10 0.468e-11 0.083e-10
γs 0.049e-11 0.186e-11 0.112e-10 0.712e-11 0.122e-10
γo 0.001e-11 0.002e-11 0.001e-10 0.001e-11 0.002e-11

TABLE IV
γA , γs AND γo FOR COMPLEX SYMMETRIC MATRICES.

σ2 5 10 50 80 100
γA 0.157e-10 0.235e-11 0.311e-11 0.236e-11 0.146e-11
γs 0.371e-10 0.294e-11 0.112e-11 0.209e-11 0.219e-11
γo 0.001e-10 0.001e-11 0.001e-11 0.001e-11 0.001e-11

Example IV.5. In this example, the testing complex symmet-
ric matrix is chosen from [4], [6]. The testing matrix A is
given in

A = H + σ1In + ισ2In,

In addition, we set σ1 = 100 and H is the same as the matrix
K given in Example IV.4. We see that A is the coefficient
matrix of the complex symmetric linear system leaded by the
following form of the Helmholtz equation:

−4u+ σ1u+ ισ2u = f,

where σ1 and σ2 are real coefficient functions, u satisfies
Dirichlet boundary conditions in [0, 1]× [0, 1].

In our example, we assume that n = 9. The meanings
of γA, γs and γo are given in Example IV.3. For different
positive scalars σ2, all results are given in Table IV.

V. CONCLUSIONS

In this paper, we derive iterative algorithms for computing
the Takagi factorization of complex symmetric matrices and
analyze the convergence of these methods. Numerical exam-
ples show that our algorithms are accuracy for implementing
this process.

However, we do not consider how to implement efficiently
these algorithms for computing the Takagi factorization,
if the Takagi values are not always distinct. In the near
future, we shall consider how to improve these algorithms for
computing the US-eigenpairs of a complex symmetric tensor
and the U-eigenpairs of a generic complex tensor, which is
referred to Ni, Qi and Bai [35] or the generalized tensor
eigenvalue problems [36], [37], [38].
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