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Abstract—This paper concerns customers’ decision process
of joining or balking at their arrival instants in an observable
queue. Given partial information that different number of
moments of the service time is available to the arriving
customers, they need to estimate its distribution by using only
the information available and no other information based on
the maximum entropy principle to decide whether join or balk.
Respectively for the systems with risk-neutral and risk-averse
customers, if the actual service time distribution is exponential,
we numerically compare the customers’ equilibrium threshold
strategies under several types of partial information and socially
optimal as well as profit-maximizing threshold strategies. We
find that in general the equilibrium thresholds are no less than
the socially optimal one which is also no less than the profit-
maximizing one, and verify that more risk-averse customers
hold lower threshold.

Index Terms—Observable queue, Partial information, Mo-
ments, Equilibrium, Social optimization, Profit maximization.

I. INTRODUCTION

So far, much excellent literature on the relationship be-
tween the delay information and customers’ strategic behav-
ior came forth. Hassin and Haviv [1] gave an excellent survey
on this topic. Then Guo and Zipkin [2] considered three
levels of delay information: no information, queue length,
and exact waiting time. They focused on ways to compute
the performance measures in the three systems and proved
that social welfare need not increase when more accurate
delay information is available. This work is generalized into
a system with phase-type service times by Guo and Zipkin
[3]. Then they [4] considered two types of vague information
about delays, besides the basic three ones in Guo and Zipkin
[2]. In the first one with partition information, customers
learn a rough range of the current queue length, whereas
in the second one with phase information, customers learn
the total number of phases remaining in the system. Ibrahim
and Whitt [5] explored the performance of different real-
time delay estimators based on recent delay experiences
of customers, and Ibrahim and Whitt [6] proposed alterna-
tive, effective ways to implement better delay estimation in
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overloaded, many-server queues with customer abandonmen-
t. Armony et al. [7] investigated the performance impact
of making delay announcements to arriving customers in
a many-server queue setting with customer abandonment.
Furthermore, Jouini et al. [8] formulated a multi-class call
center model with priorities and impatient customers who
are announced the delay information upon their arrival. Then
Chen et al.[9] also analyzed a call center with partial closing
rules, feedback and impatient customers.

Recent years, Sun et al. [10][11] considered three types of
setup/closedown policies and derived customers’ equilibrium
threshold strategies in observable queues and equilibrium
mixed strategies in unobservable queues, respectively. Sub-
sequently, Guo and Hassin [12][13] studied homogeneous
and heterogeneous customers’ equilibrium and socially op-
timal behavior in observable and unobservable queues with
N -policy, respectively, then Economou et al. [14] derived
the customers’ optimal balking strategies in single-server
queues with general service and vacation times. As for
vacation queues, Sun and Li [15] compared equilibrium
mixed strategies of risk-neutral and risk-averse customers
with different decision criteria in some unobservable queues
with multiple vacations. With respect to different levels of
system information, Sun and Li [16], Sun et al. [17] and
Wang et al. [18] focused on customers’ equilibrium/socially
optimal balking behavior in Markovian queues with work-
ing vacations. Most recently, Panda et al. [19] considered
customers’ equilibrium and optimal balking behavior in a
single-server Markovian queue with multiple vacations and
geometric abandonments. Then Sun et al. [20] focused on the
same problem in unobservable queues with double adaptive
working vacations.

All the above works study information on queues, such
as queue length or waiting time, or server state. However,
in this paper we study the information on service times.
Considering very often the server doesn’t convey the ful-
l information about the service time he has acquired to
customers deliberately or because of objective factors, the
customers needs to estimate the probability distribution of
service time by using only the information available and no
other information to make decision of joining or balking at
their arrival instants. There exist few works studying this
type of information in a queue to analyze the customers’
behavior except for Guo et al. [21]. They studied customer
equilibrium as well as socially optimal strategies to join
an unobservable queue with only partial information on the
service time distribution, such as moments and the range.
However, this paper discusses customers’ joining-balking
behavior in an observable queue with partial information that

IAENG International Journal of Applied Mathematics, 48:3, IJAM_48_3_09

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



different number of raw moments of the service time.
For the estimation method, we assume the customers all

conform with the maximum entropy principle. To acquire
more, the beginner can consult the literature given by Kapur
and Kesavan [22] where an excellent and detailed introduc-
tion about the maximum entropy principle is presented. The
objective of the maximum entropy principle is to choose,
under given information, the maximum entropy distribution
in all possible compatible distributions. Based on the maxi-
mum entropy principle and by using Lagrange undetermined
multiplicator method, we may get the maximum entropy
distribution consistent with the given information. Therefore,
the maximum entropy distribution of the service time gives
customers the most unbiased and most objective distribution
consistent with the partial information.

We first derive the equilibrium thresholds under the partial
information that different number of service time moments
for both the systems with risk-neutral and risk-averse cus-
tomers. Especially given that the actual service time distri-
bution is exponential, we derive the socially optimal and
profit-maximizing thresholds for two risk-averse cases and
then numerically compare all kinds of thresholds, and find
that it is kept in general for the risk-neutral and risk-averse
customers that the equilibrium threshold(s) is (are) no less
than the socially optimal one(s) which is also no less than
the profit-maximizing one(s). Then we summarize that the
equilibrium threshold under the partial information of mean
and variance is greater than that under the partial information
of mean, and verify that the more risk-averse customers are,
the lower threshold they hold.

In Section 2, we first consider the customers’ equilibrium
threshold strategies under the partial information of different
number of service time moments. Given the actual service
time distribution is exponential, we get the corresponding
equilibrium thresholds and socially optimal one of the cus-
tomers in Section 3, and then derive the profit-maximizing
thresholds of the server for two risk-averse cases in Section
4. Meanwhile, we numerically compare the equilibrium and
socially optimal as well as profit-maximizing thresholds for
both the risk-neutral and risk-averse cases. Finally, we briefly
conclude the paper and put forward some future work.

II. EQUILIBRIUM

First assume service reward R and unit waiting cost c
if any customer joins, then a Poisson arrival process with
parameter λ to a single server system and a tagged customer
can observe the queue length n − 1 at his arrival instant,
whereas he is not told about the exact distribution function
FS of the service time S except some partial information—
some first moments of the service time. Denote F as the
distribution function of the customer’s sojourn time T =
S−
1 +S2+ · · ·+Sn, where S−

1 is the residual service time of
the customer who is just receiving service when the tagged
customer arrives. Specially given exponentially service time,
{S−

1 , Sk, 2 ≤ k ≤ n} are all i.i.d. random variables which
have the same distribution with S, that is, F is the n–fold
convolution of the service time distribution function FS .

A. Risk-Neutral Customers
First consider a system with risk-neutral customers, in

which any customer’s residual utility of joining Ujoin, maybe

positive or negative, can be expressed as

Ujoin =

∫ ∞

0

(R− ct)dF (t)

= R− cE[T ]

= R− c(n− 1)s1 − c
s2
2s1

,

(1)

where s1 = E[S] and s2 = E[S2]. As for E[T ], because
E[S−

1 ] = s2/(2s1), we have E[T ] = (n− 1)s1 + s2/(2s1).
Obviously, we should assume that the customer’s residual
utility of balking Ubalk = 0. If Ujoin > Ubalk = 0, then the
arriving customer will join the queue. Otherwise, the arriving
customer will balk.

If arriving customers only know the mean s1 of the
service time, then the following lemma shows the form
of the maximum entropy distribution based on the partial
information (see Kapur [22]).

Lemma 1 If the service time is positive with its mean s1,
then the maximum entropy distribution of the service time
is exponential with parameter 1/s1.

Theorem 1 If risk-neutral customers are informed of the
mean s1 of the service time in an observable queue, then the
equilibrium threshold

neM =

⌊
R

cs1

⌋
.

If 0 ≤ n < neM , they will join. Otherwise, they will balk.
If the partial information is s1 and s2 (or the variance

σ2
s = s2 − s21), then the equilibrium threshold is obviously

obtained by solving Ujoin = 0 and it is independent of the
actual service time distribution.

B. Risk-Averse Customers

Then we consider a system with risk-averse customers. In
this case, any customer’s residual utility of joining Ujoin can
be expressed explicitly as

Ujoin =

∫ ∞

0

(R− ctm+1)dF (t), ∀m ∈ N+, (2)

where m indicates the sensitive degree of the risk-averse
customers to the potential joining risk. Obviously, customers
are classified by their risk sensitivity that increases along
with the value of m.

We assume the precondition that the actual distribution of
the service time exists any order raw moment. If the arriving
customers know the first l raw moments {s1, s2, · · · , sl |
1 ≤ l ≤ m + 1} of the service time, where E[Sk] = sk,
1 ≤ k ≤ l, then the following lemma shows the maximum
entropy distribution of their sojourn time based on the partial
information (see Kapur [22]).

Lemma 2 If risk-averse customers are informed of the
first l (1 ≤ l ≤ m + 1) raw moments {s1, s2, · · · , sl} of
the service time in an observable queue, then the density
function of maximum entropy distribution of their sojourn
time is

f(t) = e−λ0−λ1t−λ2t
2−···−λlt

l

, (3)

and λ0, λ1, λ2, . . . , λl are the solutions of the following
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equations:
eλ0 =

∫ ∞

0

e−λ1t−λ2t
2−···−λlt

l

dt

E[T k]eλ0

=

∫ ∞

0

tke−λ1t−λ2t
2−···−λlt

l

dt, k = 1, 2, . . . , l

(4)

where (we denote s0 = 1)

E[T k] = E[(S−
1 + S2 + · · ·+ Sn)

k]

=
∑∑n

i=1
ki=k

Ck1

k Ck2

k−k1
· · ·Ckn

k−
∑n−1

j=1
kj

×

E
[
S−k1
1 Sk2

2 · · ·Skn
n

]
=

∑∑n

i=1
ki=k

k!

k1!(k − k1)!

(k − k1)!

k2!(k − k1 − k2)!

· · · ×
(k −

∑n−1
j=1 kj)!

kn!(k −
∑n

j=1 kj)!

n∏
j=2

E
[
S−k1
1

]
E
[
S
kj

j

]
=

∑∑n

i=1
ki=k

k!

k1!k2! · · · kn!

n∏
j=2

skjE[S−k1
1 ]

(5)

and E[S−k1
1 ] can be solved by differentiating the Laplace-

Stieltjes transform (LST) of the residual service time
S−∗(s) = (1− S∗(s))/(s1s).

Theorem 2 If risk-averse customers are informed of the
first l raw moments {s1, s2, · · · , sl} (1 ≤ l ≤ m+ 1) of the
service time in an observable queue, then the equilibrium
threshold nelM is the floor function of the solution of

R− c

∫ ∞

0

tm+1e−λ0−λ1t−λ2t
2−···−λlt

l

dt = 0, (6)

where λ0, λ1, λ2, . . . , λl are the solutions of Eqs.(4) and (5).

III. SOCIAL OPTIMIZATION

Now we respectively consider the socially optimal thresh-
olds of risk-neutral and risk-averse customers if the actual
service time distribution is exponential with parameter µ.

We first denote the expected social welfare per time unit by
SW and socially optimal threshold by n∗. Given a maximum
queue length n, the system is actually an M/M/1/n queue and
the stationary state probabilities {pi, i = 1, 2, . . . , n} are

pi = ρip0, ρ =
λ

µ
, i = 1, 2, . . . , n,

where p0 = (1 − ρ)/(1 − ρn+1). So the probability of
observing n customers in the system, that is, the system loss
probability, is

pn = ρnp0 =
(1− ρ)ρn

1− ρn+1
.

A. Risk-Neutral Customers

Given that the partial information is s1 = 1/µ, based on
Proposition 2.1, we have neM = ⌊Rµ/c⌋. The social welfare

per time unit, denoted by SW , is

SW = λ(1− pn)

(
R− c

∫ ∞

0

tdF (t)

)
= λ(1− pn) (R− cE[T ])

= λ(1− pn)

(
R− c

µ(1− pn)

n∑
i=1

ipi−1

)

= λ(1− pn)

(
R− c

µ(1− pn)

n−1∑
i=0

(i+ 1)pi

)
=

λ(1− ρn)

1− ρn+1

(
R− c

(
1

µ(1− ρ)
− nρn

µ(1− ρn)

))
.

(7)

So the socially optimal threshold n∗ is the floor function of
the maximizer of Eq.(7).

B. Risk-Averse Customers

Given risk-averse customers, the social welfare per time
unit SW is

SW = λ(1− pn)

(
R− c

∫ ∞

0

tm+1dF (t)

)
=

λ(1− ρn)

1− ρn+1

(
R− cE[Tm+1]

)
,

(8)

where

E[Tm+1]

=
∑∑n

i=1
ki=m+1

∑∑n

i=1
kijki

=m+1

m+1∏
ki=1

(
ki!

µki

)jki

=
1

µm+1

∑∑n

i=1
ki=m+1

∑∑n

i=1
kijki

=m+1

m+1∏
ki=1

(ki!)
jki .

1) Special Case: m = 1:
• Mean Based on Lemma 2.1, given that the partial

information is the mean s1 = 1/µ of the service time,
then the maximum entropy distribution is exponential
that just coincides with the actual distribution, that is,
the customers’ estimation is accurate. So the maxi-
mum entropy distribution of the sojourn time is Erlang
distribution with parameter n and 1/s1, then we get
Ujoin = R − cn(n + 1)s21. Solving Ujoin = 0, we get
the equilibrium threshold as

neM =

⌊
−1

2
+

√
1

4
+

Rµ2

c

⌋
. (9)

On the other hand, when m = 1 the expected social
welfare per time unit is

SW = λ(1− pn)

(
R− c

∫ ∞

0

t2dF (t)

)
= λ(1− pn)

(
R− cE[T 2]

)
= λ(1− pn)

(
R− c

µ2(1− pn)

n−1∑
i=0

(i+ 1)(i+ 2)pi

)
=

λ(1− ρn)

1− ρn+1

(
R− c

(
1

µ2(1− ρn)

(
2ρ2(1− ρn−2)

(1− ρ)2

−3nρn +
ρ+ ρn+1(n− 1)2 − ρn(n2 − 2)

1− ρ

)
+

2 + ρ

µ2(1− ρ)

))
,

(10)
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and the socially optimal threshold n∗ is the floor func-
tion of the maximizer of Eq.(10).

• Mean and Variance Given that the partial information
is both the mean s1 = 1/µ and variance σ2

s = 1/µ2 of
the service time, then it is enough for the customers to
make decisions so that the equilibrium threshold neMV

is equal to that given in Eq.(9).
2) Special Case: m = 2:
• Mean Given that the partial information is s1 = 1/µ of

the service time, we get Ujoin = R−cn(n+1)(n+2)s31.
So the equilibrium threshold neM is the floor function
of the solution of Ujoin = 0. On the other hand, when
m = 2,

SW = λ(1− pn)

(
R− c

∫ ∞

0

t3dF (t)

)
= λ(1− pn)

(
R− cE[T 3]

)
= λ(1− pn)

(
R− c

µ3(1− pn)

×
n−1∑
i=0

(i+ 1)(i+ 2)(i+ 3)pi

)
=

λ(1− ρn)

1− ρn+1

(
R− c

(
1− ρ

µ3(1− ρn)

×
(
S
(3)
n−1 + 3S

(2)
n−1

)
+

2

µ3(1− ρn)

(
ρ(1− ρn+1)

1− ρ
− ρn(ρ+ n)

)
+

3

µ3(1− ρn)

(
2ρ2(1− ρn−2)

(1− ρ)2

+
ρn+1(n− 1)2 − ρn(n2 − 2)

1− ρ
− nρn

+
ρ

1− ρ

)
+

3ρ

µ3(1− ρ)

+
6

µ3

(
1

1− ρ
− nρn

1− ρn

)))
,

(11)

where

S
(2)
n−1 =

n−1∑
i=1

i2ρi

=
ρ− ρn(n2 − 2) + ρn+1(n− 1)2

(1− ρ)2

+
2ρ2(1− ρn−2)

(1− ρ)3

and

S
(3)
n−1 =

n−1∑
i=1

i3ρi

=
2 + ρ

1− ρ

(
ρ− ρn(n2 − 2) + ρn+1(n− 1)2

(1− ρ)2

+
2ρ2(1− ρn−2)

(1− ρ)3

)
−
(
ρ2 − nρn

(1− ρ)2

+
ρ2(1− ρn−1)

(1− ρ)3

)
− n(n− 1)2ρn + ρ

1− ρ
,

the socially optimal threshold n∗ is the floor function
of the maximizer of Eq.(11).

• Mean and Variance When the actual service time dis-
tribution is exponential, maximum entropy distribution
of the service time is also exponential given both the
mean s1 = 1/µ and variance σ2

s = 1/µ2 (see Kapur

[22]). So the equilibrium threshold neMV coincides
with neM when m = 2.

• First Three Raw Moments Given that the partial
information is the first three raw moments s1, s2, s3 of
service time, then s1 = 1/µ, s2 = 2/µ2, s3 = 6/µ3.
Hence it is enough for the customers to make decisions
so that the equilibrium threshold ne3M equals to neM

when m = 2.

IV. PROFIT MAXIMIZATION

Besides the equilibrium and socially optimal thresholds,
we also consider the profit-maximizing threshold denoted by
nm, i.e., the desired threshold chosen by the server. For the
risk-neutral case, Hassin and Haviv [1] presented that the
profit-maximizing threshold nm is the floor function of the
solution of equation

ν +
(1− ρν−1)(1− ρν+1)

ρν−1(1− ρ)2
− Rµ

c
= 0.

Then we try to derive the profit-maximizing thresholds
for two risk-averse cases and first consider m = 1 then
m = 2. Conformed with the threshold nm, the price set by
the server, denoted by pm, is

pm = R− cE[T 2] = R− cnm(nm + 1)

µ
.

So the server’s profit, denoted by Pnm , is

Pnm = λ(1− pnm)pm

=
λ(1− ρnm)

1− ρnm+1

(
R− cnm(nm + 1)

µ

)
=

λR(1− ρnm)

1− ρnm+1

νe(νe + 1)− n(n+ 1)

νe(νe + 1)
,

(12)

where νe(νe + 1) = Rµ2/c. Because a profit-maximizing
threshold satisfies the following two conditions: Pnm >
Pnm−1 and Pnm

≤ Pnm+1(see Hassin [1]). Substituting
Eq.(12) into the first condition, then it amounts to

νe(νe + 1) > f1(nm),

where

f1(nm) = nm(nm + 1) +
2nm(1− ρnm−1)(1− ρnm+1)

ρnm−1(1− ρ)2
.

Substituting nm + 1 for nm and reversing direction of the
inequality, the second condition becomes νe(νe + 1) ≤
f1(nm + 1), where

f1(nm + 1) = (nm + 1)(nm + 2)

+
2(nm + 1)(1− ρnm)(1− ρnm+2)

ρnm(1− ρ)2
.

Then the two conditions can be summarized to

f1(nm) < νe(νe + 1) ≤ f1(nm + 1).

Define a function

f1(ν) = ν(ν + 1)

+
2ν(1− ρν−1)(1− ρν+1)

ρν−1(1− ρ)2
− νe(νe + 1),

(13)

which monotonously increases from 0 to ∞ with ν. So there
exists a unique solution ν1m to f1(ν) = 0 and then nm =
⌊ν1m⌋ when m = 1.
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Fig. 1. Comparison of thresholds when m = 0
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Fig. 2. Comparison of thresholds when m = 1

Similar to the risk-averse case m = 1, when m = 2, the
price set by the server is

pm = R− cE[T 3] = R− cnm(nm + 1)(nm + 2)

µ
.

So the server’s profit is

Pnm =
λR(1− ρnm)

1− ρnm+1

×νe(νe + 1)(νe + 2)− n(n+ 1)(n+ 2)

νe(νe + 1)(νe + 2)
,

(14)

where νe(νe + 1)(νe + 2) = Rµ3/c. After simplicities and
based on the same two conditions, we define another function

f2(ν) = ν(ν + 1)(ν + 2)

+
3ν(ν + 1)(1− ρν−1)(1− ρν+1)

ρν−1(1− ρ)2
− Rµ3

c
,

(15)

which also monotonously increases from 0 to ∞ with ν.
Hence there exists a unique solution ν2m to f2(ν) = 0 and
then nm = ⌊ν2m⌋ when m = 2.

Figs. 1–3 numerically make comparisons of the equilibri-
um threshold(s) ne and socially optimal threshold n∗ as well
as profit-maximizing threshold nm when m = 0, 1, 2 respec-
tively. They jointly show that the three types of thresholds
all decrease along with the increase of m.
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Fig. 3. Comparison of thresholds when m = 2

Moreover, Fig. 1 verifies the relationship pointed out by
Naor [23] that neM ≥ n∗ ≥ nm for the risk-neutral case.
However, Figs. 2 and 3 show that for the risk-averse case
the relationship neM = nm > n∗ is still possible for the
relatively smaller values of R. In addition, because of the
particularity of exponential distribution, we illustrate in Fig.
3 that ne3M = neMV = neM , i.e., the equilibrium thresholds
under the three types of partial information are all equal given
that the actual service time distribution is exponential.

V. CONCLUSION AND FUTURE WORK

Based on the maximum entropy principle and partial
service information, we considered customer threshold strate-
gies of joining or balking in an observable queue. Regardless
of risk-neutral and risk-averse customers, we observed that
the equilibrium thresholds are no less than the socially
optimal and profit-maximizing ones, and more risk-averse
customers hold lower threshold. What is interested for us
is the following question: Which is the minimax regret
distribution of the service time when partial information is
the mean or mean and variance? Considering the minimax
regret criterion is the most humanistic decision criterion, this
will be our next step work.
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