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Abstract—The Picard-HSS iterative method is proposed to
solve the absolute value equation (AVE). To further improve
its performance, a nonlinear HSS-like iterative method is pro-
posed. Compared to that the Picard-HSS method is an inner-
outer double-layer iterative scheme, the proposed nonlinear
HSS-like iteration is only a monolayer iterative method and
the iteration vector could be updated timely. Some numerical
experiments are used to demonstrate that the nonlinear HSS-
like method is feasible, robust and effective.

Index Terms—absolute value equation, nonlinear HSS-like
iteration, fixed point iteration, positive definite.

I. INTRODUCTION

THE solution of the absolute value equation (AVE) with
the following form is considered:

Ax − |x |=b. (1)

Here, A ∈Rn×n , x , b ∈Rn and |x | denotes the component-
wise absolute value of vector x , i.e.,

|x |= (|x1|, |x2|, ..., |xn |)T .

The AVE (1) is a special case of the generalized absolute
value equation (GAVE) of the type

Ax − B |x |=b , (2)

where A, B ∈ Rm×n and x , b ∈ Rm . The GAVE (2) was
introduced in [1] and investigated in a more general
context in [2]–[4]. Recently, these problems have been
investigated in the literature [4]–[8].

The AVE (1) arises in linear programs, quadratic pro-
grams, bimatrix games and other problems, which can all
be reduced to a linear complementarity problem (LCP)
[9]–[11], and the LCP is equivalent to the AVE (1). This
implies that AVE is NP-hard in its general form [4], [6],
[7]. Beside, if B = 0, then the generalized AVE (2) reduces
to the system of linear equations Ax =b , which have many
applications in scientific computation [7], [12], [13].

The main research of the AVE includes two aspects: one
is the theoretical analysis, which focuses on the theorem
of alternatives, various equivalent reformulations, and the
existence of solutions; see [1], [2], [5], [14]. And the other
is how to solve the AVE. We mainly pay attention to the
latter.

In the last decade, based on the fact that the LCP is
equivalent to the AVE and the special structure of AVE,
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a large variety of methods for solving AVE (1) can be
found in the literature; See [3], [7], [8], [15]. The finite
succession of linear programs (SLP) is established in [6],
[15], which arise from a reformulation of the AVE as the
minimization of a piecewise-linear concave function on
a polyhedral set and solving the latter by successive lin-
earization. Mangasarian [16] and Caccetta [14] present the
semi-smooth Newton method and the smoothing Newton
method to solve the AVE, respectively. In 2015, Haghani
[17] propose an improved Newton method with two-step
form, called Traub’s method, whose effectiveness is better
than that of Mangasarian in [16]. To utilize the semi-
smooth property, the generalized Newton method [18], the
modified generalized Newton method [19], the improved
generalized Newton method [20] and the inexact semi-
smooth Newton algorithm [21] are further put forward for
solving the AVE. These methods are all globally convergent
under certain conditions.

Recently, the Picard-HSS iterative method is proposed
to solve AVE by Salkuyeh in [22], which is originally
designed to solve weakly nonlinear systems [23] and its
generalizations are also paid attention [24], [25]. The suf-
ficient conditions to guarantee the convergence and some
numerical experiments are given to show the effectiveness
of the method. However, the numbers of the inner HSS
iteration steps are often problem-dependent and difficult
to be determined in actual computations. Moreover, the
iteration vector can not be updated timely. In this paper,
we present the nonlinear HSS-like iterative method to
overcome the defect of the mentioned above method in
[22].

The rest of this paper is organized as follows. In Sec-
tion II, the HSS and Picard-HSS iteration methods are
reviewed. In Section III, the nonlinear HSS-like iterative
method for solving AVE (1) is described. Numerical ex-
periments are presented in Section IV, to further shown
the feasibility and effectiveness of the nonlinear HSS-like
method. Finally, some conclusions are draw in Section V.

II. THE HSS AND PICARD-HSS ITERATION METHODS

IN this section, the HSS iterative method for solving
the non-Hermitian linear systems and the Picard-HSS

iterative method for solving the AVE (1) are reviewed.
Let A ∈ Rn×n be a non-Hermitian positive definite

matrix, B ∈Rn×n be a zero matrix, the GAVE (2) reduced
to the non-Hermitian system of linear equations

Ax =b. (3)

Because any square matrix A possesses a Hermitian and
skew-Hermitian splitting (HSS)

A =H +S, H =
1

2
(A +AH ) and S =

1

2
(A −AH ), (4)

IAENG International Journal of Applied Mathematics, 48:3, IJAM_48_3_10

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



the following HSS iterative method is first introduced by
Bai, Golub and Ng in [26] for solving the non-Hermitian
positive definite system of linear equations (3).

Algorithm 1. (The HSS iterative method.)
Given an initial guess x (0) ∈ Rn , compute x (k ) for k =
0, 1, 2, ... using the following iterative scheme until
{x (k )}∞k=0 converges,
¨

(αI +H )x (k+
1
2
) = (αI −S)x (k )+b ,

(αI +S)x (k+1) = (αI −H )x (k+
1
2
)+b ,

where α is a positive constant and I is the identity matrix.

When the Hermitian part H = 1
2
(A +AH ) of the matrix

A is positive definite, Bai et al. proved that the spectral
radius of the HSS iteration matrix is less than 1 for any
positive parameters α, i.e., the HSS iterative method is
unconditionally convergent; see [26].

For the convenience of the subsequent discussion, the
AVE (1) can be rewritten as its equivalent form:

Ax = f (x ), f (x ) = |x |+b.

Recalling that the linear term Ax and the nonlinear term
f (x ) = |x |+b are well separated and the Picard iterative
method is a fixed-point iteration, the Picard iteration

Ax (k+1) = f (x (k )), k = 0, 1, ....,

can be used to solve the AVE (1). When the matrix
A ∈ Rn×n is large sparse and positive definite, the next
iteration x (k+1) may be inexactly computed by HSS itera-
tion. This naturally lead to the following iterative method
proposed in [22] for solving the AVE (1).

Algorithm 2. (The Picard-HSS iterative method)
Let A ∈Rn×n be a sparse and positive definite matrix, H =
1
2
(A +AH ) and S = 1

2
(A −AH ) be its Hermitian and skew-

Hermitian parts respectively. Given an initial guess x (0) ∈
Rn and a sequence {`k }∞k=0 of positive integers, compute
x (k+1) for k = 0, 1, 2, . . . using the following iterative scheme
until {x (k )} satisfies the stopping criterion:

(1) Set x (k ,0) := x (k );
(2) For ` = 0, 1, . . . ,`k − 1, solve the following linear

systems to obtain x (k ,`+1):
¨

(αI +H )x (k ,`+ 1
2
) = (αI −S)x (k ,`)+ |x (k )|+b ,

(αI +S)x (k ,`+1) = (αI −H )x (k ,`+ 1
2
)+ |x (k )|+b ,

where α is a given positive constant and I is the identity
matrix;

(3) Set x (k+1) := x (k ,`k ).

The advantage of the Picard-HSS iterative method is
obvious. Firstly, the two linear sub-systems in all inner
HSS iterations have the same shifted Hermitian coefficient
matrix αI + H and shifted skew-Hermitian coefficient
matrix αI + S, which are constant with respect to the
iteration index k . Secondly, as the coefficient matrix αI+H
and αI+S are Hermitian and skew-Hermitian respectively,
the first sub-system can be solved exactly by making use
of the Cholesky factorization and the second one by the
LU factorization. The lastly, these two sub-systems can
be solve approximately by the conjugate gradient method
and a Krylov subspace method like GMRES, respectively;
see [22], [23].

III. THE NONLINEAR HSS-LIKE ITERATIVE METHOD

IN the Picard-HSS iteration, the numbers `k , k =
0, 1, 2, ... of the inner HSS iteration steps are often

problem-dependent and difficult to be determined in
actual computations [23]. Moreover, the iteration vector
can not be updated timely. Thus, to avoid these defect and
still preserve the advantages of the Picard-HSS iterative
method, based on the HSS (4) and the nonlinear fixed-
point equations

(αI +H )x = (αI −S)x + |x |+b ,

and
(αI +S)x = (αI −H )x + |x |+b ,

the following nonlinear HSS-like iterative method is pro-
posed to solve the AVE (1).

Algorithm 3. (The nonlinear HSS-like iterative method.)
Let A ∈Rn×n be a sparse and positive definite matrix, H =
1
2
(A +AH ) and S = 1

2
(A −AH ) be its Hermitian and skew-

Hermitian parts, respectively. Given an initial guess x (0) ∈
Rn , compute x (k+1) for k = 0, 1, 2, . . . using the following
iterative scheme until {x (k )} satisfies the stopping criterion:
¨

(αI +H )x (k+
1
2
) = (αI −S)x (k )+ |x (k )|+b ,

(αI +S)x (k+1) = (αI −H )x (k+
1
2
)+ |x (k+

1
2
)|+b ,

where α is a given positive constant and I is the identity
matrix.

It is obvious that both x and |x | in the second step
are updated in the nonlinear HSS-like iteration, but only
x is updated in the Picard-HSS iteration. Furthermore,
the nonlinear HSS-like iteration is a monolayer iterative
scheme, and the Picard-HSS is an inner-outer double-layer
iterative scheme.

To obtain a one-step form of the nonlinear HSS-like
iteration, the following symbols are introduced

U (x ) = (αI +H )−1((αI −S)x + |x |+b ),
V (x ) = (αI +S)−1((αI −H )x + |x |+b ),

and
ψ(x ) :=V ◦U (x ) =V (U (x )).

Then the nonlinear HSS-like iterative scheme can be
equivalently expressed as

x (k+1) =ψ(x (k )).

The Ostrowski theorem, i.e., Theorem 10.1.3 in [27],
gives a local convergence theory about a one-step s-
tationary nonlinear iteration. Based on this, Bai et al.
established the local convergence theory for the nonlinear
HSS-like iterative method in [23]. However, this conver-
gence theory has a strict requirement that f (x ) = |x |+b
must be F -differentiable at a point x ∗ ∈ D such that
Ax ∗ − |x ∗| = b . Obviously, the absolute value function |x |
is non-differentiable. Thus, the convergence analysis of
the nonlinear HSS-like iterative method for solving weakly
nonlinear linear systems is unsuitable for solving AVE, and
need further discuss.

At the end of this section, we remark that the nonlinear
HSS-like iterative method can be alternatively reformulat-
ed into residual-updating form as follows.
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Algorithm 4. (The residual-updating variant of the nonlin-
ear HSS-like method) Given an initial guess x (0) ∈D⊂Rn ,
compute x (k+1) for k = 0, 1, 2, . . . using the following iterative
procedure until {x (k )} satisfies the stopping criterion:

(1) Set r (k ) := |x (k )|+b −Ax (k ),
(2) Solve (αI +H )v = r (k ),
(3) Set x (k+

1
2
) = x (k )+v , r (k ) := |x (k+

1
2
)|+b −Ax (k+

1
2
),

(4) Solve (αI +S)v = r (k ),
(5) Set x (k+1) = x (k+

1
2
)+v ,

where α is a given positive constant and I is the identity
matrix.

IV. NUMERICAL EXPERIMENTS

IN this section, the numerical properties of the Picard,
Picard-HSS and nonlinear HSS-like methods are ex-

amined and compared experimentally by a suit of test
problems.

All the tests are performed in MATLAB R2013a on
Intel(R) Core(TM) i5-3470 CPU 3.20 GHz and 8.00 GB of
RAM, with machine precision 10−16, and terminated when
the current residual satisfies

‖Ax (k )− |x (k )| −b‖2

‖b‖2
≤ 10−5,

where x (k ) is the computed solution by each of the
methods at iteration k , and a maximum number of the
iterations 500 is used.

In addition, the stopping criterion for the inner itera-
tions of the Picard-HSS method is set to be

‖b (k )−A s (k ,`k )‖2

‖b (k )‖2
≤ηk ,

where b (k ) = |x (k )|+b −Ax (k ), s (k ,`k ) = x (k ,`k ) − x (k ,`k−1), `k

is the number of the inner iteration steps and ηk is the
prescribed tolerance for controlling the accuracy of the
inner iterations at the k -th outer iteration. If ηk is fixed
for all k , then it is simply denoted by η. Here, we take
η= 0.1.

The first subsystem with the Hermitian positive definite
coefficient matrix (αI +H ) in (3) is solved by the Cholesky
factorization, and the second subsystem with the skew-
Hermitian coefficient matrix (αI +S) in (3) is solved by
the LU factorization.

The optimal parameters employed in the Picard-HSS
and nonlinear HSS-like iteration methods have been ob-
tained experimentally. In fact, the experimentally found
optimal parameters are the ones resulting in the least
numbers of iterations and CPU times [22]. As mentioned
in [23] the computation of the optimal parameter is
often problem-dependent and generally difficult to be
determined.

We consider the two-dimensional convection-diffusion
equation

(

−(ux x +u y y )+q (ux +u y )+p u = f (x , y ), (x , y )∈Ω,

u (x , y ) = 0, (x , y )∈ ∂ Ω,

where Ω= (0, 1)× (0, 1), ∂ Ω is its boundary, q is a positive
constant used to measure the magnitude of the diffusive
term and p is a real number.

Let h = 1/(m + 1) and Re = (qh)/2 denote the equidis-
tant step size and the mesh Reynolds number, respectively.
We use the five-point finite difference scheme to the
diffusive term and the central difference scheme to the
convective term. Then we get a system of linear equations
Ax = d , where A is a matrix of order n =m 2 of the form

A = Tx ⊗ Im + Im ⊗Ty +p In , (5)

with

Tx = tridiag(t2, t1, t3)m×m and Ty = tridiag(t2, 0, t3)m×m ,

where t1 = 4, t2 =−1−Re , t3 =−1+Re , Im and In are the
identity matrices of order m and n respectively, ⊗ means
the Kronecker product.

In our numerical experiments, the matrix A in AVE
(1) is defined by (5) with different values of q (q =
0, 1, 10, 100 and 1000) and p (p = 0 and 0.5). It is easy to
find that the matrix A is in general non-symmetric positive
definite for any nonnegative number q [22]. The zero
vector is used as the initial guess, and the right-hand side
vector b of AVE (1) is taken in such a way that the vector
x = (x1,x2, . . . ,xn )T with xk = (−1)k i (k = 1, 2, . . . , n ) is the
exact solution, where i denotes the imaginary unit.

TABLE I: The optimal parameters values α (p=0).

Optimal parameters m=10 m=20 m=40 m=80

q=0 HSS-like 1.3 1.0 1.0 1.0

Picard-HSS 1.1 0.5 0.2 0.1

q=1 HSS-like 1.4 1.0 1.0 1.0

Picard-HSS 1.1 0.6 0.3 0.2

q=10 HSS-like 1.7 1.1 1.0 1.0

Picard-HSS 1.6 0.8 0.4 0.2

q=100 HSS-like 2.5 2.7 1.7 1.2

Picard-HSS 2.4 2.7 1.8 0.9

TABLE II: The optimal parameters values α (p=0.5).

Optimal parameters m=10 m=20 m=40 m=80

q=0 HSS-like 2.4 2.2 2.1 2.0

Picard-HSS 2.2 2.0 1.8 1.8

q=1 HSS-like 2.4 2.2 2.1 2.0

Picard-HSS 2.3 2.0 1.8 1.8

q=10 HSS-like 2.6 2.3 2.2 2.1

Picard-HSS 2.4 2.3 2.0 1.9

q=100 HSS-like 3.4 2.9 2.3 2.3

Picard-HSS 3.5 3.0 2.3 2.1

The numerical results of the Picard, Picard-HSS and
nonlinear HSS-like iterations are list in Tables III and IV,
and the experimentally optimal parameters used in the
Picard-HSS and nonlinear HSS-like iterations are those
given in Tables I and II. We give the elapsed CPU time in
seconds for the convergence (denoted as CPU), the norm
of absolute residual vectors (denoted as RES), and the
number of outer, inner and total iteration steps (outer and
inner iterations only for Picard-HSS) for the convergence
(denoted as ITout, ITint and IT, respectively). The number
of outer iteration steps for Picard-HSS and the number of
iteration steps for Picard and HSS-like iteration methods
larger than 500 are simply listed by the symbol "–".
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From these two tables, we see that both the HSS-
like and Picard-HSS methods can successfully produced
approximate solution to the AVE for all of the problem-
scales n =m 2 and the convective measurements q , while
the Picard iteration converges only for some special cases.
Here, it is necessary to mention that the shifted matrices
αI +H and αI +S are usually more well-conditioned than
the matrix A [22].

For the convergent cases, the number of iteration steps
for the Picard and HSS-like methods and the number
of inner iteration steps for the Picard-HSS method are
increase rapidly with the increasing of problem-scale,
while the number of outer iteration steps is fixed. The
CPU time also increases rapidly with the increasing of the
problem-scale for all iteration methods.

When the convective measurements q become large, for
all iterative method, both the number of iteration steps
(except outer iteration for Picard-HSS) and the amount of
CPU times decrease slightly.

Clearly, the iteration steps of the nonlinear HSS-like
method are more robust than those of the Picard-HSS,
and the iteration steps of the Picard method are more
than 500 , then the nonlinear HSS-like method performs
much better than the Picard-HSS in terms of iteration
step; In terms of CPU time, the situation is almost the
same, i.e., the nonlinear HSS-like iterative method is the

TABLE III: Numerical results for test problems with differ-
ent values of m and q (p = 0, RES(×10−6) ).

Methods m=10 m=20 m=40 m=80

q=0 Picard IT – – – –

CPU – – – –

RES – – – –

Picard-HSS ITout 5 5 5 5

ITint 7.2 13.8 33 62.6

IT 36 69 165 313

CPU 0.0084 0.0250 0.2310 2.0708

RES 5.2907 7.1401 7.9627 9.1458

HSS-like IT 27 35 65 81

CPU 0.0375 0.0146 0.1016 0.6085

RES 9.4084 8.7487 9.9395 9.9502

q=1 Picard IT – – – –

CPU – – – –

RES – – – –

Picard-HSS ITout 5 5 5 5

ITint 7.2 13.6 27 64.8

IT 36 68 135 324

CPU 0.0050 0.0317 0.2527 3.0404

RES 6.3073 8.0703 7.7121 9.3360

HSS-like IT 28 38 65 81

CPU 0.0044 0.0199 0.1343 0.8436

RES 8.7445 9.5272 9.9148 9.9588

q=10 Picard IT – – – –

CPU – – – –

RES – – – –

Picard-HSS ITout 5 5 5 5

ITint 3.8 7 13.2 25.4

IT 19 35 66 127

CPU 0.0031 0.0174 0.1285 1.2305

RES 2.6888 4.0994 5.9529 7.1369

HSS-like IT 17 32 51 85

CPU 0.0029 0.0176 0.1077 0.8857

RES 7.8979 7.2166 9.3825 9.8324

most time-efficient in the convergent cases. Therefore, the
nonlinear HSS-like method are the winners for solving this
test problem when the convective measurements q is not
large.

V. CONCLUSIONS

IN this paper, the nonlinear HSS-like iterative method
is proposed to solve the absolute value equation (AVE),

which is based on two aspects: the first is the separable
property of the linear term Ax and nonlinear term |x |+
b , and the second is the Hermitian and skew-Hermitian
splitting of the involved matrix A. Compared to that the
Picard-HSS iterative scheme is an inner-outer double-layer
iterative scheme, the new nonlinear HSS-like iteration is a
monolayer iterative method and the iteration vector could
be updated timely. Numerical experiments have shown
that the nonlinear HSS-like method is feasible, robust and
efficient nonlinear solver.
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TABLE IV: Numerical results for test problems with differ-
ent values of m and q (p = 0.5, RES(×10−6) ).

Methods m=10 m=20 m=40 m=80

q=0 Picard IT 9 – – –

CPU 0.0010 – – –

RES 0.0016 – – –

Picard-HSS ITout 5 5 5 5

ITint 7 14.6 35 66.4

IT 35 73 175 332

CPU 0.0040 0.0261 0.2420 2.2039

RES 5.4444 7.4483 8.1466 9.3423

HSS-like IT 29 38 36 35

CPU 0.0037 0.0155 0.0590 0.2849

RES 7.7828 8.0756 9.6565 8.8724

q=1 Picard IT 9 – – –

CPU 0.0011 – – –

RES 0.0011 – – –

Picard-HSS ITout 5 5 5 5

ITint 7.8 14.4 28 42

IT 39 72 140 210

CPU 0.0052 0.0335 0.2612 1.9946

RES 4.2330 5.3548 8.8367 8.5786

HSS-like IT 29 42 38 36

CPU 0.0044 0.0218 0.0824 0.4113

RES 8.1442 8.5129 9.8553 8.2976

q=10 Picard IT 7 – – –

CPU 0.0009 – – –

RES 0.1525 – – –

Picard-HSS ITout 5 5 5 5

ITint 4 7 13.6 25

IT 20 35 68 125

CPU 0.0032 0.0179 0.1379 1.2244

RES 1.5905 5.9853 5.1449 8.9996

HSS-like IT 18 34 45 42

CPU 0.0030 0.0183 0.0960 0.4848

RES 8.1728 6.0961 8.8821 9.2731
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