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Abstract—In this paper, we suppose and analyze
a differential quadrature method for the numerical
solution of fractional Logistic differential equation.
The fractional derivative is described in the Caputo
sense. Explicit expressions of weighting coefficients
for approximation of fractional derivatives are derived
and are utilized to reduce the Logistic differential
equation to system of algebraic equations. The conver-
gence order of the proposed method is investigated in
the infinity norm. Numerical examples are presented
to verify the efficiency and accuracy of the proposed
method. The results reveal that the method is accu-
rate and easy to implement.

Index Terms—Logistic differential equation, Differ-
ential quadrature method, Caputo derivative, Conver-
gence analysis, Chebyshev polynomial.

I. Introduction

WE consider the fractional Logistic differential
equation of the form

Dαy(t) = ρy(t)(1 − y(t)), t ∈ [0, 1], ρ > 0, (1)

with the initial condition

y(0) = y0, y0 > 0. (2)

In this paper, Dαy(t), 0 < α ≤ 1 denotes the Caputo
derivative of order α. For α = 1 equation (1) is the
standard Logistic equation

y′(t) = ρy(t)(1 − y(t)), y(0) = y0.

The exact solution to the problem is

y(t) = y0

(1 − y0)e−ρt + y0
.

The existence and uniqueness of the problem (1) are
introduced in [1]. During the past decades, the problem of
fractional differential equations have been used to model
physical and engineering processes that are found to be
best described by fractional differential equations. Conse-
quently, the field of the fractional differential equations
has attracted interest of researcher in several areas in-
cluding physics, chemistry, engineering [2], [3]. Fractional
Logistic differential equation has been used to construct
many mathematical models in various ?elds, such as
population growth model [4], electroanalytical chemistry
[5], and signal process [6]. Most of fractional differential
equations do not have exact analytical solutions, hence
considerable heed has been focused on the approximate
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and numerical solutions of these equations. Recently, sev-
eral numerical methods to solve the fractional differential
equations have been given such as wavelet method [7],
[8], [9], Legendre polynomials operational matrix method
[10], [11], [12], homotopy perturbation method [13],
Adomian decomposition method [14], Adams-Bashforth-
Moulton method [15], [16], ant colony algorithm [17],
Laplace transform method [18] and other methods [19],
[20]. In particular, fractional Logistic differential equa-
tions have been solved by using the variational method,
finite difference method [21], embedding technique [22],
[4], Laguerre collocation method [23]. The main aim of
the presented paper is concerned with an extension of
the previous work on fractional differential equations and
derive some general approximate formulae of differential
quadrature method and then we applied these formulae
to obtain the numerical solution of fractional Logistic
differential equation. Also, we presented study of the
convergence analysis of the proposed method.

The differential quadrature method was introduced
by Richard Bellman and his associates in the early of
1970s, following the ideas of integral quadrature[24]. The
basic idea of the differential quadrature method is that
any derivative at a mesh point can be approximated
by a weighted linear sum of all the functional values
along a mesh line. The key procedure in the differential
quadrature method is the determination of weighting
coefficients. Later, Shu and Richards [25] obtained explic-
it formulations to compute weighting coefficients using
Lagrange interpolation polynomials as a set of basis.
Fung [26] introduced a modified differential quadrature
method to incorporate initial conditions. He also dis-
cussed at length the stability of various grid pattern in
the differential quadrature method. In addition, Chan
and Striz [27] derived different weighting coefficients form
previous studies and applied them to forth order differ-
ential equations. They defined the weighting coefficient
as Lagrange and Chebyshev basis functions.

For simplicity, the one-dimensional problem is chosen
to demonstrate the differential quadrature method. If a
function u(x) is sufficiently smooth on the domain a ≤
x ≤ b, the first and the second order derivatives of the
function u(x) with respect to x at a grid point xi are
approximated by a linear sum of all the functional values
in the domain, that is,

u′(xi) =
N∑

j=0
diju(xj), i = 0, 1, 2, · · · , N. (3)

where dij represent the weighting coefficients of the first
order derivative approximations. Then we can write (3)
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in the matrix form

U (1) = D(1)U (4)

where

U (1) = (u′(x0), u′(x1), · · · , u′(xN ))T

and
U = (u(x0), u(x1), · · · , u(xN ))T

Obviously, the key procedure in differential quadrature
method is to determine the weighting coefficients matrix
D(1).

II. Preliminaries and notations

In this section, we present some notations, definitions,
and preliminary facts that will be used further in this
paper.

A. Basic definitions of fractional calculus

There are various definitions of fractional integration
and derivatives. The widely used definition of a fractional
integration is the Riemann-Liouville definition and of a
fractional derivative is the Caputo definition.

Definition 2.1: A real function f(t), t > 0, is said to
be in the space Cµ, µ ∈ R, if there exists a real number
p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C(0, ∞),
and it is said to be in space Cn

µ if and only if f (n) ∈
Cµ, n ∈ N.

Definition 2.2: The Riemann-Liouville fractional inte-
gral operator of order α > 0, of a function f ∈ Cµ, µ ≥
−1, is defined as

Jαf(t) = 1
Γ (α)

∫ t

0
(t − s)α−1f(s)ds, α > 0

J0f(t) =f(t).

We note that

Jα(Dαf(t)) = f(t) −
n−1∑
k=0

f (k)(0) tk

k!
. (5)

Definition 2.3: The fractional derivative Dα of f(t) in
the Caputo’s sense is defined as

Dαf(t) = 1
Γ (n − α)

∫ t

0
(t − τ)n−α−1f (n)(τ)d(τ), (6)

for n − 1 < α ≤ n, n ∈ N, t > 0, f(t) ∈ Cn
−1.

For the Caputo derivative we have

Dαxβ =


0, for β ∈ N0 and β < ⌈α⌉;

Γ (β+1)
Γ (β+1−α) xβ−α, for β ∈ N0 and β ≥ ⌈α⌉

or β /∈ N0 and β > ⌊α⌋.
(7)

We use the ceiling function ⌈α⌉ to denote the smallest
integer greater than or equal to α, and the floor function
⌊α⌋ to denote the largest integer less than or equal to α.
Also N0 = {0, 1, 2, · · · }.

B. Chebyshev polynomials and their properties
The well known Chebyshev polynomial of the first kind

Tn(x) is the polynomial of degree n defined for x ∈ [−1, 1]
by

Tn(x) = cos(n arccos(x)), n = 0, 1, · · · .

Also they have the following properties:
• Three-term recurrence relation:

Tk+1(x) = 2xTk(x) − Tk−1(x),

with T0(x) = 1 and T1(x) = x.
• The expression of Tn(x) in terms of x is given by

[28]

Tn(x) =
⌊n/2⌋∑
k=0

c
(n)
k xn−2k (8)

where

c
(n)
k = (−1)k2n−2k−1 n

n − k

(
n − k

k

)
, (2k < n),

and
c

(2k)
k = (−1)k, (k ≥ 0).

• Discrete orthogonality relation.
With the extrema of Tn(x) as nodes: Let n >
0, r, s ≤ n, and xi = − cos(iπ/n), i = 0, 1, · · · , n.
Then

n∑′′

i=0
Tr(xi)Ts(xi) = Krδrs, (9)

where K0 = Kn = n and Kr = n/2 when 1 ≤
r ≤ n−1. The double prime indicates that the term
suffixes i = 0 and i = n are to be halved.

This discrete orthogonality property leads us to a very
efficient interpolation formula. For later use, we write the
interpolation polynomial IN u(x), interpolating u(x) in
the points xi = − cos(iπ/N), i = 0, 1, · · · , N , as a sum
of Chebyshev polynomials in the form

IN u(x) =
N∑′′

k=0

ckTk(x). (10)

The coefficient ck in (10) are given by the explicit
formula[29]

ck = 2
N

n∑′′

i=0
u(xi)Tk(xi), i = 0, 1, · · · , N. (11)

III. Weighting coefficients for
Chebyshev-based differential quadrature

A continuous and bounded function u(x) can be ap-
proximated by first kind Chebyshev polynomials in the
interval [−1, 1] by the formula

u(x) ≈ uN (x) =
N∑′′

k=0

ckTk(x) = T (x)T C, (12)

where C and T (x) are (N + 1) × 1 vectors given by

C = (c0/2, c1, · · · , cN−1, cN /2)T , (13)

and

T (x) = (T0(x), T1(x), · · · , TN−1(x), TN (x))T . (14)
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In order to obtain the weighting coefficients, the points
xi = − cos(iπ/N), i = 0, 1, · · · , N and (10) were applied.
In abbreviated form, uN (x) can expressed as

uN (x) = T (x) · P · U, (15)

where

P =


1

2N T0(x0) 2
2N T0(x1) · · · 1

2N T0(xN )
1
N T1(x0) 2

N T1(x1) · · · 1
N T1(xN )

1
N T2(x0) 2

N T2(x1) · · · 1
N T2(xN )

... · · ·
. . .

...
1

2N TN (x0) 2
2N TN (x1) · · · 1

2N TN (xN )

 ,

U =
(

u(x0), u(x1), u(x2), · · · , u(xN )
)T

.

The derivative u′
N (x) is as

u′
N (x) = T ′(x) · P · U. (16)

We know that

T ′(x) = T (x) · 2M, (17)

in which M is the (N + 1) × (N + 1) operational matrix
of derivative given by

M =


0 1

2 0 3
2 0 5

2 · · · m1
0 0 2 0 4 0 · · · m2
0 0 0 3 0 5 · · · m3
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 · · · 0


(N+1)×(N+1)

,

so that m1, m2 and m3 are respectively N/2, 0, N for odd
N and 0, N, 0 for even N . Then, we substitute equation
(17) into (16) to get

u′
N (x) = T (x) · 2M · P · U. (18)

Therefore the u′
N (x) can be expressed in the form, as

follows:
U (1) = Q · 2M · P · U,

where

Q =


T0(x0) T1(x0) T2(x0) · · · TN (x0)
T0(x1) T1(x1) T2(x1) · · · TN (x1)
T0(x2) T1(x2) T2(x2) · · · TN (x2)

...
...

...
. . .

...
T0(xN ) T1(xN ) T2(xN ) · · · TN (xN )

 .

So, we can get the the weighting coefficients matrix

D(1) = Q · 2M · P. (19)

Furthermore, the weighting coefficient of the n-order
derivative can be completely determined from those of
the first derivative

D(n) = D(1)D(1) · · · D(1) = P · 2nMn · Q.

IV. Calculation of weighting coefficients of
fractional order derivatives

In order to apply the Chebyshev polynomials in the
interval [0, 1], we used the shifted Chebyshev polynomials
T ∗

n(x) which defined in terms of the Chebyshev polyno-
mials Tn(x) by the following relation

T ∗
n(x) = Tn(2x − 1) (20)

A function u(x) ∈ [0, 1] is approximate by means of the
shifted Chebyshev polynomials. Similarly, the function
u(x) is approximated as

uN (x) = T ∗(x)P ∗U, (21)

where

T ∗ = (T ∗
0 (x), T ∗

1 (x), · · · , T ∗
N−1(x), T ∗

N (x)),

P ∗ =


1

2N T ∗
0 (x0) 2

2N T ∗
0 (x1) · · · 1

2N T ∗
0 (xN )

1
N T ∗

1 (x0) 2
N T ∗

1 (x1) · · · 1
N T ∗

1 (xN )
... · · ·

. . .
...

1
2N T ∗

N (x0) 2
2N T ∗

N (x1) · · · 1
2N T ∗

N (xN )


U = (u(x0), u(x1), u(x2), · · · , u(xN ))T

,

where xi = 1
2 [1 − cos(iπ/N)] , i = 0, 1, 2, · · · , N . Ac-

cording to the definition of Caputo fractional derivative,
we can write

DαuN (x) = DαT ∗(x) · P ∗ · U, (22)

where α > 0. The Caputo fractional derivative of the
vector T ∗(x) in (21) can be expressed as

DαT ∗(x) = DαXN (23)

where

N =


1 −1 1 · · · (−1)N

0 2 −8 · · · (−1)N−12N2

0 0 8 · · · (−1)N−2 2
3 N2(N2 − 1)

...
...

...
. . .

...
0 0 0 · · · 22N−1

 ,

and
X = (1, x, x2, · · · , xN ).

Using (7) we have

DαX =
(

0, · · · , 0, c⌈α⌉x⌈α⌉−α,

c⌈α⌉+1x⌈α⌉+1−α, · · · , cN−⌈α⌉xN−α
)

,
(24)

where

c⌈α⌉ = Γ (⌈α⌉ + 1)
Γ (⌈α⌉ + 1 − α)

,

c⌈α⌉+1 = Γ (⌈α⌉ + 2)
Γ (⌈α⌉ + 2 − α)

,

c⌈α⌉+1 = Γ (⌈α⌉ + 3)
Γ (⌈α⌉ + 3 − α)

,

...

cN−⌈α⌉ = Γ (N + 1)
Γ (N + 1 − α)
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Employing (22),(23) and (24) we get

U (α) = Γ · N · P ∗ · U, (25)

where

U (α) = (
u(α)(x0), u(α)(x1), u(α)(x2), · · · , u(α)(xN )

)T
,

Γ =


0 · · · 0 c⌈α⌉x

⌈α⌉−α
0 c⌈α⌉+1x

⌈α⌉+1−α
0

0 · · · 0 c⌈α⌉x
⌈α⌉−α
1 c⌈α⌉+1x

⌈α⌉+1−α
1

0 · · · 0 c⌈α⌉x
⌈α⌉−α
2 c⌈α⌉+1x

⌈α⌉+1−α
2

... · · ·
...

...
...

0 · · · 0 c⌈α⌉x
⌈α⌉−α
N c⌈α⌉+1x

⌈α⌉+1−α
N

c⌈α⌉+2x
⌈α⌉+2−α
0 · · · cN−⌈α⌉xN−α

0
c⌈α⌉+2x

⌈α⌉+2−α
1 · · · cN−⌈α⌉xN−α

1
c⌈α⌉+2x

⌈α⌉+2−α
2 · · · cN−⌈α⌉xN−α

2
. . . . . .

...
c⌈α⌉+2x

⌈α⌉+2−α
N · · · cN−⌈α⌉xN−α

N

 .

Then the weighting coefficient of the fractional deriva-
tive in matrix form:

D∗(α) = Γ · N · P ∗. (26)

The weighting coefficients can be written collectively in
matrix form as

D∗(α) =


d

(α)
00 d

(α)
01 · · · d

(α)
0N

d
(α)
10 d

(α)
11 · · · d

(α)
1N

...
...

. . .
...

d
(α)
N0 d

(α)
N1 · · · d

(α)
NN

 . (27)

V. Applications to fractional differential
equation

In order to show the fundamental importance of
weighting coefficients of fractional order derivatives in
the last section, we apply it for solving fractional L-
ogistic differential equation. To solve the problem, we
first consider incorporation of initial conditions. With the
weighting coefficients D∗(α), 0 < α ≤ 1 in (26),(27), ini-
tial condition is incorporated easily into the differential
quadrature adopting the same strategy as [26]

y(α)(xi) =
N∑

j=0
d

(α)
ij y(xj) = d

(α)
i0 y(0) +

N∑
j=1

d
(α)
ij y(xj)

The above equation can be rewritten in the matrix form
as follow:

y(α)(x1)
y(α)(x2)

...
y(α)(xN )

 = y(0)


d

(α)
10

d
(α)
20
...

d
(α)
N0



+


d

(α)
11 d

(α)
12 · · · d

(α)
1N

d
(α)
21 d

(α)
22 · · · d

(α)
2N

...
...

. . .
...

d
(α)
N1 d

(α)
N2 · · · d

(α)
NN




y(x1)
y(x2)

...
y(xN )

 .

(28)

TABLE I
Numerical results for various α using N = 8

t α = 1/4 α = 2/4 α = 3/4

0.1 0.3195860774 0.2853667858 0.2682051811
0.2 0.3282208872 0.3009352440 0.2815891319
0.3 0.3388679105 0.3137793200 0.2936890140
0.4 0.3492246185 0.3255048017 0.3052242536
0.5 0.3550030015 0.3356517345 0.3162870841
0.6 0.3593440986 0.3447525843 0.3269950903
0.7 0.3650080206 0.3534852539 0.3374840793
0.8 0.3702740202 0.3618243983 0.3478011827
0.9 0.3737782232 0.3695588313 0.3579396741
1.0 0.3778096931 0.3770071525 0.3679385593

TABLE II
Absolute errors for α = 1 using N = 4, 8, 12

t N = 4 N = 8 N = 12

0.1 2.2909 × 10−4 4.8450 × 10−7 3.8858 × 10−16

0.2 2.2717 × 10−4 8.5746 × 10−7 3.4972 × 10−15

0.3 1.7066 × 10−6 1.2052 × 10−6 1.6653 × 10−15

0.4 4.5271 × 10−4 1.4658 × 10−6 1.9429 × 10−15

0.5 1.1202 × 10−3 1.7399 × 10−6 1.2768 × 10−15

0.6 1.9979 × 10−3 2.0956 × 10−6 2.2760 × 10−15

0.7 3.0784 × 10−3 2.4480 × 10−6 3.8858 × 10−16

0.8 4.3538 × 10−3 2.7020 × 10−6 5.5511 × 10−16

0.9 5.8154 × 10−3 2.9496 × 10−6 6.6058 × 10−15

1.0 7.4536 × 10−3 3.1230 × 10−6 3.3307 × 10−15

In equation (28), the initial condition is naturally incor-
porated into the differential quadrature rule. By substi-
tuting the approximation (28) in (1) and by using the
initial condition (2) we get a system of algebraic equation

y(α)(x1)
y(α)(x2)

...
y(α)(xN )

 =


ρy(x1)
ρy(x2)

...
ρy(xN )

−


ρu2(y1)
ρu2(y2)

...
ρu2(yN )

 (29)

Solving the system of algebraic equations, we can obtain
the vector Y . Then using (21), we can get the output
response

yN (x) = T ∗(x) · P ∗ · Y. (30)

The numerical results for α = 1/4, 2/4, 3/4 and N = 8
are shown in Table 1 and Figure 1. Also the absolute
error for α = 1 and N = 4, 8, 12 are shown in Table 2.
The approximate solutions using the present method are
high agreement with the exact solutions for α = 1.

VI. Some useful Lemmas
In this section, we will provide some useful lemmas

which play a significant role in the convergence analysis.
We first introduce some notations that will be used. Let
I := (−1, 1) and L2

ωα,β (I) be the space of measurable
functions whose square is Lebesgue integrable in I rela-
tive to the weight function ωα,β(x). The inner produce
and norm of L2

ωα,β (I) are defined by

(u, v)ωα,β ,I =
∫ 1

−1
u(x)v(x)ωα,βdx, ∀u, v ∈ L2

ωα,β (I).

∥u∥L2
ωα,β

,I = (u, u)
1
2
ωα,β ,I

.
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Fig. 1. Comparison of u(t) for N = 8 and with α = 1/4, 2/4, 3/4, 1.

and
∥u∥L∞I = sup

−1≤x≤1
|u(x)|.

For a non-negative integer m, define

Hm
ωα,β,I :=

{
v : ∂k

xv ∈ L2
ωα,β (I), 0 ≤ k ≤ m

}
,

with the semi-norm and the norm as

|v|m,ωα,β = ∥∂m
x v∥ωα,β , ∥v∥m,ωα,β =

(
m∑

k=0

|v|2k,ωα,β

) 1
2

.

|v|Hm;N
ωα,β

I =

 m∑
k=min(m,N+1)

∥∂k
xv∥2

L2
ωα,β

(I)

 1
2

.

Particularly, let

ω(x) = ω− 1
2 ,− 1

2 (x)

be the Chebyshev weight function.
For a given positive integer N , we demote the points by

{xi}N
i=0, which is the set of N + 1 Gauss-Lobatto points,

corresponding to the weight ωα,β(x). For PN denote the
space of all polynomials of degree not exceeding N . For
all v ∈ C[−1, 1], we define the the Lagrange interpolating
polynomial IN v ∈ PN , satisfying

IN v(xi) = v(xi).

The Lagrange interpolating polynomial can be written in
the form

IN v(x) =
N∑

i=0
v(xi)Fi(x), 0 ≤ i ≤ N,

where Fi(x) is the Lagrange interpolation basis function
associated with {xi}N

i=0.
Lemma 6.1: ([30])Assume that v ∈ Hm

ω and denote
IN v its interpolation polynomial associated with the
Gauss-Lobatto points {xi}N

i=0, namely,

IN v(xi) = v(xi).

Then the following estimates hold

∥v − IN v∥L∞ ≤ CN
1
2 −m|v|Hm;N

ω

VII. Convergence analysis
In this section, an error estimate of the applied method

for the smooth solutions of fractional Logistic differential
equation will be provided. For the sake of applying the
theory of orthogonal polynomials we employ the variable
transformations t = (1+x)/2, and let u(x) = y((1+x)/2)
to rewrite (1), (2) as follows

Dαu(x) = ρu(x)(1 − u(x)), x > 0, ρ > 0, (31)

and

u(x) = 1
Γ (α)

(
T

2

)α ∫ x

−1
(x − s)α−1Dαu(s)ds + u(−1).

(32)
Theorem 7.1: Let u(x) be the exact solution of the

Logistic differential equation (31), which is assumed to
be sufficiently smooth. Let the approximate solution
uN (x) be obtained by using the differential quadrature
method together with a polynomial interpolation. If
u(x) ∈ Hm

ωc(I), then for sufficiently large N the following
error estimate holds

∥e(x)∥L∞ ≤ CN
1
2 −m(|u|Hm;N

ω
+ |Dαu|Hm;N

ω
+ |u2|Hm;N

ω
).

(33)
Proof: Firstly, equation (31) holds at the Gauss-

Lobatto points {xi}N
i=0 on [−1, 1]

Dαu(xi) = ρu(xi) − ρu2(xi), u(−1) = u−1. (34)

We use ui, 0 ≤ i ≤ N to approximate the function value
u(xi), 0 ≤ i ≤ N , and use

uN (x) =
N∑

i=0
uiFi(x) (35)

to approximate the function u(x), namely, u(xi) ≈
ui, u(x) ≈ uN (x). Then, the numerical scheme (29) can
be rewrite as

DαuN (xi) = ρui − ρu2
i , (36)

and

ui = 1
Γ (α)

(
1
2

)α ∫ xi

−1
(xi − s)α−1DαuN (s)ds + u(−1).

(37)
Let e(x) and Dαe(x) denote the error functions,

e(x) = u(t) − uN (x), Dαe(x) = Dαu(x) − DαuN (x).

Subtracting (36) from (34) gives the error equations:

Dα(u(xi)−uN (xi)) = ρ(u(xi)−ui)+ρ(u2(xi)−u2
i ). (38)

Multiply Fi(x) on both sides of (37),(38) and summing
up from i = 0 to i = N yields

Dαe(x) =ρe(x) + u(x) − IN u(x) + Dαu(x)
− IN Dαu(x) + IN

(
u2(x) − ux

N (t)
)

.
(39)

uN (x) = IN

(
1

Γ (α)

(
1
2

)α ∫ x

−1
(x − s)α−1Dαu(s)ds

)
− IN

(
1

Γ (α)

(
1
2

)α ∫ x

−1
(x − s)α−1Dαe(s)ds

)
(40)
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It follows from (5) that
uN (x) = IN u(x)−

IN

(
1

Γ (α)
(1
2

)α

∫ x

−1
(x − s)α−1Dαe(s)ds

)
.

(41)

Then we have

Dαe(x) = ρe(t) + J1 + J2 + J3. (42)

e(x) = 1
Γ (α)

(
1
2

)α ∫ x

−1
(x − s)α−1Dαe(s)ds + J1 + J3,

(43)
where

J1 = u(x) − IN u(x),
J2 = Dαu(x) − IN Dαu(x),
J3 = IIN (u2(x) − u2

N (x)),
and

J4 = 1
Γ (α)

(1
2

)α

[∫ x

−1
(x − s)α−1Dαe(s)ds−

IN (
∫ x

−1
(x − s)α−1Dαe(s)ds)

]
It follows from the results in [31] that

∥Dαe(x)∥L∞ ≤ C
4∑

i=1
∥Ji∥L∞ , (44)

∥e(x)∥L∞ ≤ C

4∑
i=1

∥Ji∥L∞ , (45)

Applying Lemma (6.1) to J1 and J2, we have

∥J1∥L∞ = ∥u(t) − IN u(t)∥L∞ ≤ CN
1
2 −m|u|Hm;N

ω
. (46)

∥J2∥L∞ =∥Dαu(t) − IN Dαu(t)∥L∞

≤ CN
1
2 −m|Dαu|Hm;N

ωc
.

(47)

We now estimate the third term ∥J3∥L∞ . By some simple
calculation we can rewrite J3 as

J3 = u2(x) − u2
N (x) + IN u2(x) − u2(x).

Therefore

∥J3∥L∞ ≤ ∥u2(x) − u2
N (x)∥L∞ + ∥u2(x) − IN u2(x)∥L∞ .

Since u2(x) − u2
N (x) = 2u(x)e(x) − e(x)2, we have

∥u2(x) − u2
N (x)∥L∞ ≤ C∥u(x)e(x)∥L∞ + ∥e(x)2∥L∞ .

As the analysis in [32], applying Banach algebra theory
we can obtain

∥u2(x) − u2
N (x)∥L∞ ≤ C∥u(x)∥L∞∥e(x)∥L∞ + ∥e(x)∥L∞ .

Due to Lemma 6.1, we have

∥u2(x) − IN u2(x)∥L∞ ≤ CN−m|u2|Hm;N
ωc

.

Consequently,

∥J3∥L∞ ≤ CN−m|u2|Hm;N
ωc

. (48)

As for the bound of ∥J4∥L∞ , we use the same idea as
([31]).

∥J4∥L∞ ≤ CN−κ log N∥Dαe(t)∥L∞ , (49)

where 0 < κ < 1/2. Therefore, a combination of (46),(47)
(48) and (49) yields the estimate (33).

VIII. Conclusion
A general formulation for the Chebyshev polynomial-

based weighting coefficients matrix for approximation of
fractional derivatives has been derived. The fractional
derivatives are described in the Caputo sense. The matrix
is used to approximate numerical solution of Logistic dif-
ferential equations. Our numerical results are compared
with exact solutions The solution obtained using the
present method shows that this approach can solve the
problem effectively.

The method of this article can be extended to the
system of fractional differential equations, linear and
nonlinear integro-differential equations of fractional or-
der, but some modifications are required.
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