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The Research on the Calculation of Barrier
Options under Stochastic Volatility Models
Based on the Exact Simulation

Yuting Yang, Junmei Ma*, Yijuan Liang

Abstract— This work researched the exact simulation
problem of the two kinds of stochastic volatility models based
on the Broadie and Kaya’s work. Rejection sampling technique
was deeply discussed in the exact simulation process based on
the moment analysis. Then conditional Monte Carlo and
antithetic variable techniques were used to reduce the variance
of Monte Carlo simulation when calculating the price and
Greeks of Barrier Options. The numerical results show that the
combination of exact simulation and conditional Monte Carlo
method can get unbiased estimation and smaller variance,
compared with the crude Monte Carlo with Euler
discretization. This algorithm in the paper can be used to solve
the calculation of other more complicated products under the
stochastic volatility models.

Index Terms— Accelerate, Barrier option, conditional Monte
Carlo, exact simulation, Greeks, stochastic volatility

I. INTRODUCTION

In 1973, Black and Scholes proposed the famous option

pricing formula, then pricing problems of financial
derivative instrument became the core research content in the
field of financial mathematics. Black-Scholes (BS) model
indicated the price of derivative securities as a function of
underlying asset price. BS model is simple and easy to
calculate, while the volatility of stock price is assumed to be
constant which 1s not consistent with observed results of the
real market. Therefore, many research scholars devoted
themselves to the improvement of BiS model, and stochastic
volatility model was one of them, which set the volatility of
stock price as another random process. In fact, the concept of
stochastic volatility was firstly raised by Hull and White
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(1987) [6]. Then Scott (1987) [7], Stein-Stein (1987) [8] and
Heston (1993) [2] conducted a further development for the
relevant research works and came up with different stochastic
volatility models.

Option is a common derivative product in the financial
market, and 1t 1s also a class of financial contract that grants
investors the power of buying or selling a certain underlying
asset with the pre-determined price at a time in the future. It
possesses a strong flexibility that is capable of offering
investors an effective risk management. The type of options
can be divided in terms of different modes [9]. In particular,
barrier option is a type of exotic option widely applied in the
financial market, and its return is depended on whether the
path of underlying asset price has reached a pre-determined
level. Besides, it belongs to a type of conditional option, of
which the effect is decided by whether the underlying asset
price encounters barriers within its validity. Barmer option is
divided into two categories: knock-in option and knock-out
option. Knock-in option refers to that an option begins to
function only if the underlying asset price reaches the
pre-determined level (barrier price), while knock-out option
refers to that an option expires worthless only if the
underlying asset price reaches the barrier price. In addition, it
can be also divided into up barrier option and down barrier
option 1n accordance with the barrier price that underlying
asset price rises to or declines to. Theoretical researches on
pricing algorithm of barrier option are very important, and a
great number of theories can be generalized for the pricing of
credit derivatives product, e.g. CDS and etc. Giary Okten[10]
researched the pricing of barrier option under the constant
volatility by Monte Carlo simulation.

Along with the rapid development of financial derivative
market, category and structure of financial products are
becoming increasingly diversified and complicated. A
majority of financial products’ price cannot be solved under
stochastic volatility models, and need to be solved by
numerical methods. Under the two stochastic volatility
models, this paper will focus on the study of accelerating
simulation theory for option pricing and sensitivity estimate,
based on the exact simulation sampling algorithm.
Calculation for barrier option is taken as an example, by
which the theory of algorithms mentioned in this paper can
also be further applied in other more complicated calculating
study of financial products.

II. MONTE CARLO SIMULATION METHOD

Monte Carle method is also referred to as a stochastic
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simulation approach, and 1t adopts random numbers to solve
practical issues on the basis of probability theory. In practical
applications, Monte Carlo method is to build a random model
at first, to make variable of the model equal to the solution of
the required problem. Next, it calculates statistical
characteristics of analogue variable, and finally gives an
approximate solution of the model, ie an approximate
solution to the primary problem, whose simulation precision
can be measured by standard error of the estimated value.
The law of large numbers ensures the estimated value
approaches the correct value along with the increase of
simulation times, and at the same time central-limit theorem
provides estimation for error limit of limited total times
simulation.

To apply Monte Carlo method to solve problems, it is first
to establish a probability space, and then determine a
statistical magnitude g(x) in this probability space. This
statistical magnitude relies on random variable X, and the
mathematical expectation of g(X) is:

E(g) = j 4(x) dF (x)

wherein, F(x) is the distribution function of random variable
X.E(g)is equal to the required value G. According to the
distribution of X, 1t conducts sampling simulation to
generate simple sample of the random variable X, by
arithmetic mean value of the corresponding statistical

magnitude g(x,), ..., g(%n): .
1
6= g(x)
i=1

As approximate estimated value of G, Gy, is convergent to
the required value & in probability, when Vg > (, there is:
lim P(|G,-G| < &) =1
n—oo

And approximate equation 1s as followed:

P(GG GA) JLIH'%d 1
Gl <—=A|= edt=1—-a
|Gn-G| 7 Al

If g 2 Q, then the error g of Monte Carle method is:
o
gE=—=1

7

It can be seen from the formulas above, both of g and n
decide the error £ of Monte Carlo method, and the error
form ¢ /y/n is the main characteristic of the method. On the
condition that ¢ 1s invariable, it requires to increase 71 by 100
times so as to enhance the accuracy of one-digit number,
which greatly increases the computational workload.
However, from another perspective, on the condition that g
decreases by 10 times, which can reduce workload by 100
times.

In order to improve the simulated efficiency of Monte
Carlo method, many scholars have put forward various
variance reduction techniques [1], such as control variant
technique[15], importance sampling technique, conditional
Monte Carlo[12], stratify sampling algorithm and etc. This
paper does not intend to introduce them in detail here, but
mainly introduces the concept of acceleration technique of
conditional Monte Carle.

The major principle of conditional Monte Carlo is

conditional variance formula[11]. To calculate the
expectation of random variable G, for an arbitrary random
variable H, E[G|H] expresses the conditional expectation of
G under the given condition H. This is a random variable
about H, there is double expectation formula:

E[6] = E[E[G|H])].

Conditional variance formula:

var(G) = var(E[G|H]) + Elvar(G|H)]

Since E[var(G|H)] = 0. there is:

var(G) 2 var(E[G|H])

It follows that the variance of the random variable E[G|H]
is smaller than the original random variable &, so that it
achieves the objective of variance reduction in case the exact
value E[G|H] is known.

Conditional Monte Carlo can be used to improve the
simulation efficiency under stochastic volatility model. To
simulate price on the condition of volatility that can reduce
problems’ dimensions and thereby enhance accuracy. This
method is very suitable for calculating path-dependent option
with a solution under determined volatility.

III. STOCHASTIC VOLATILITY MODEL AND EXACT
SIMULATION ALGORITHM

This section will discuss two types of Heston SV model
and SVCI model, as well as their exact simulation
algorithms. SV and SVCJ models describe a dynamic
variation process between underlying asset price and instant
variance rate under continuous time case, whilst
continuous-time dynamic vanation cannot be directly
simulated by computer simulation. Generally, it is required to
firstly discretize continuous time into discrete time for
processing. Euler discretization method 1s often used
approximately to estimate the path of underlying processes at
discrete time. However, Euler discretization method usually
causes bias, and sometimes reaches to the degree that it
cannot be ignored [1] [3] Monte Carlo accelerating
simulation technique is also investigated, it also requires to
research exact simulation algorithm of the underlying
processes.

Based on the Broadie and Kaya’s exact simulation method
[3-4], this section will further deeply discuss the applications
of rejection sampling technique introduced n D'ippoliti [5],
which proposed sampling from Gamma distribution instead.
This paper researched the choice of parameters for the new
rejection sampling density in detail from the moment analysis,
in order to improve the effect of accurate sampling. Then
exact simulation algorithms for the two types of stochastic
volatility models-----SV and SVCI, will be proposed, and
combined with the application of several kinds of variance
reduction in barrier option pricing will be investigated.

A. Accelerating Simulation Algorithm for Barrier
Option Pricing under SV model
Introduction of SV Model
Heston Model 1s a mathematical model for describing the
dynamic process of underlying asset under stochastic
volatility provided by Steven Heston in 1993 [2]. In risk
neutral measure, it assumes that underlying asset S, and
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instant variance rate J, satisfy the stochastic differential

equation model as following:
ds, = rSdt + .5, [pa’W}” Lyl P dﬁg@)] )
v, =x(0-V, )t +o,JV,am?, @)
Equation (1) describes the dynamic variation of underlying

asset, wherein S: means the underlying asset price at time f,

# means risk neutral drift ratio and \/17; means volatility.
As for Equation (2), it describes the dynamic variation of
instant variance rate V,, wherein £ means long-term mean
square deviation, X' means regression speed of variance 1.e.

the speed of V), regressing to #, and O, means the
corresponding volatility of this variance process. W;(I) and

Wt(z) are two independent Brownian motion processes,
£ means the correlation coefficient between stock process
and volatility process.

When the time # <7, underlying asset price SM and

instant variance rate J', known, Equation (1) and (2) can be

written as followed:
8, =5, exp{f(fu);J:Kdef‘/ﬁ w1 pzj“/i dWS(Z)} (3

Vt:Vu+K19(t—u)—K£Vsds+o-v£\/Ed;,V5(l) )

SV Model and Exact Simulation Algorithm

Exact simulation algorithm suggested by Broadie and
Kaya[3-4] 1s a type of unbiased method aiming at the
simulation of sampling the original random process in terms
of its accurate distribution, which is able to eliminate the bias
caused by continuous-time discretization. Under SV model,
the detailed procedures of exact simulation are in order:

Divide time0=¢, <.. <¢,=T,0<i < j<m, and consider

time interval|f ¢ j] . detailed descriptions for each procedure
will be conducted:
(1)Sample from the distribution of V, according to V
J i
In 1984, Cox proposed that when V, is known,
(1,: < fj) 2 ]7;}

and can be expressed as:

o O'f(lfe_x(t“’_r’)) 2[

follows non-centrally chi-square distribution,

4 )
)

2 i A

If;}rj >t ()

j[;(l) means random variable of non-centrally

chi-square distribution for degree of freedom ¢ and

non-centrality parameter A , wherein:

Axce ] ABic
A= r)d=

=) 2
Then non-centrally chi-square distribution Zﬁ;z(i) can
be expressed by centrally chi-square distribution ;{;_1 and
normal distribution /7 ~ NI (O,l), which 1s:
V3 (A)=(2+V7) + 2k,
In case degree of freedom o >0 , non-centrally

chi-square  distribution (ﬂu) and y:.,, centrally

chi-square distribution have the same probability
distribution, wherein 1s the random variable of Poisson

1
distribution for expectation — A . In this case, it can firstly

simulate the random number of Poisson distribution, and then
generate non-centrally chi-square distribution on  the
condition.

;.
(2)Sample from the distribution of I ’ Vsds according
%
tolV, and 1,
i i
After sampling J/, , it can be obtained r’ I ds in
j y
accordance with I, and //, . Broadie and Kaya obtained the
i J
conditional characteristic function (I)(a) of J.tj V.ds by
t

Laplace transform [3]:
®(a)= E[exp(faf’ Vsds)lVr! 7, }

~0.5( (a5 )t 1) (1 _ gl )
K(].— e—r(f’)(%—ﬁ ) )

v, +V, K(1+ e"“(““*)) y(a)(1+ e—r(a)(ﬁ—a))

£,

_ ;/(a)e

bed

exp

2

fo 1— e_’((ri_r!) 1— e“ﬂ")(ﬁ‘ _r!)
ay(a)e et
Losaa Vr! Vrj 2 o)
o (1 —e o )
X
—0.5%(¢;-4)
dxe /
50 T/; v

wherein, ;/(a)= V&’ —20%a and fv(x) is the
first-class modified Bessel function.

It is assumed that on the condition that Vi and Vt are
1 J

‘s
known and random variable V(tl,t j) and J.JI/SdS are
ff

identically distributed, then applying Fourier expansion it can

solve cumulative distribution function /' (JC) of V(fl.,f j)

by conditional characteristic function d)(a) ;
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Flx)= P, 1)< 5)= % ijT%(a)da:% [ Refo(a

Y

The density function f(x) is:
Flx)= 2 [ cos(ux)Re[D(a)lda
T

It is worth noting that density function is an integral from C
to infinite region, and it cannot be directly solved by Matlab.
However, it can be transformed into integral on finite interval
by applying Trapezoid formula. In order to effectively use the
trapezoid formula, it needs to draw the image of integrand
E
i

Matlab at first. See Figure 1.

fx)== coslex)Re|D(a)| and independent variable & by

Asg can be seen from Figure 1, the choice of the integral
interval should be related with 7 . In addition, K ,VO and

imtial quantity algo influence the selection of integral
interval. Therefore, it is required to consider selecting an
appropriate integral domain for different initial values.

For this, when using computer simulation, we can make
use of trapezoid formula to calculate the integral value on a
finite interval, thus approximately obtain a density function.
However, we need to pay special attention to the time
division.

Although the density function f(x) of J.:J V;ds can be
obtained by trapezoid formula, direct sampling is not easy

due to the complicated form of f(x) Then rejection

sampling technique can be considered to sample points from

A
the distribution of jj Vs , the procedures are as followed:
f!

(1) Select an appropriate density fimction g(x) , so that
Jfor all constants ¢ = 1, f(x) < cg(x) is satisfied:
(2)Sample X from g(x) and sample U from uniform
distribution U ~ U(O,l);

(3) Examine whether 1 < is satisfied.

cg(x)
If inequality is satisfied, accept x as the sampling from
i
J.j V.ds, else refuse x and repeat procedures mentioned
t!

above.

In order to select an appropriate g(x), it needs to draw

s
the image of density function J.J V.ds first. According to
rl

£ .
observation Fig.2, image ofJ. " V. ds s density function f(x)
5

approaches to GAMMA distribution, and thereby it can be
considered that selecting density function g(x) that follows
the distribution of GAMMA(ex, /7).
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As the more similar the original density, the rejection sample
density, the more efficient rejection sampling is. Their
corresponding parameters ¢z, f3 can be obtained by making

their first two moments equal to make sure these two density
functions more alike. The moments of V(t;: tj) 1s attained

from the characteristic function (Ib(a) of er;dS as
]

followed:

plx]- 2O £lx?]= -0'(0)

1
So

E]

10 S 1)
SO0 TSI
To draw the image ofg(x) :
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Fig 3. Image of rejection sampling density function g(x)
small ¢=1.1

When selecting a the 1images of

>

f(X) and cg(x) are as follows in Fig.4. Soc =1.1 satisfies the

condition of rejection sampling method, which can be used to
sample much effectively the corresponding sampling points

i . :
of J; V.ds. A smaller ¢ a better sampling efficiency.

(3) Calculate the value of J‘tj fVS dWS(l) according tol/, ,
2 i

i
V, and J;fVSdS

i
F F
When V| Vr and J' Vsds are obtained, we can sample
i 7 t
300
—— g
—1x
20
g o}
a
o
a
g 150
£
‘T
g 100+
=
a0 \
0

_ 1 L 1 L 1 1 1 1 ]
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Fig 4. Image of rejection sampling density g(x) and original density f(x)

tf . i
J; ,/ V.dW S(l) from the following equation:

[/ T = (v, v, —xéle,~¢ )} [ Va5

: : 2
Since random process F, and Brownian movement VV;( )

are independent, when the path generated by V, is known,
J

b
which follows the normal distribution of V| (0, LJ Vsdsj .

oy rJ
@) Sample § : based on the condition of .[* VSd.S' and
g @
jt(_ JV. v,

¢
From the procedures above, it can be obtained IJ V. ds
fl

¢
and J;’,/K,dW S(l) , then taking these two results as

conditions, we can obtain S, that follows logarithmic

normal distribution.

Define the variance of mean between £, 7, as:

—2 (17102),[:_JV56£Y.
gj=—>

-t

Define the auxiliary variable
)
— PP Y@ |
& exp[ > .[ VSdSerJ; I dw, j

If variance path and the underlying asset price .S, at

are known, it can be obtained the expression of St_ as
&

follows:
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S, =8,¢, exp{[rif ](tj —1, )+o-J / tz}

Thus, paths of underlying asset price and variance can be
simulated under 3V model.

Conditional Monte Carlo Algorithm for Barrier

Option Pricing under SV Model

Considering a down-and-out call option, whose execution
date is 7", exercise price is K , initial underlying asset price
18 So , volatility is constant ¢ , and barrier price is /7 , its

analytical solution can be written as [12]:

1- 22 5
BS(SO,O')[%] “ BS[‘;I G}
o]

SV model refers to that both the asset price and the
variance process meet the following stochastic model:

dS, = rS,di+JV,S, [pdm/; 04 J1-p2. th(z)l

av, = {0 -V, )dt+c,V,dw"

T T
wherein jo V ds and .[0 NS dW;(l) can be sampled in the

first three steps of the exact simulation method under SV
model. Willard [11] put forward that when taking them as

conditions, S, accords with logarithm normal distribution:

Define the variance of mean between O and T as:
— J(lpz)fféds .
N 7
Define the auxiliary variable:

e )

Here, S, satisfies:
—2
S, = Sofexp{[r - %]T +;-JFZ} :

Then, it can be obtained that the down-and-out call option
price under SV model by conditional Monte Carlo as:

)- K Umins, > )]

}“ Vdsj Jawt ﬂ

-F SO§-N(d1)Ke*T-N(dZ){E} _[Hz Nd,)- K'T-N(ag)};cr

=B (sl

B 217 (50)- ) in(s)

H S,¢
) S§1? JH L
= | BS(S,Z, ){HJ (Sog’g}’g

Where

392 [ +§EZJT .
d — H
12 O'\/_

B. Accelerating Simulation Algorithm for Barrier
Option Pricing under SVCJ model

Exact Simulation Algorithm of SVCJ model
SVCJ model adds the jump process of variance on the basis

of Heston SV model. It assumes underlying asset 5, and

instantaneous variance ¥, satisfy the following dynamic

stochastic model:
R O ) ) [de I prawt J+S( 1w,
(6)
v, =x(0-7,)dt+ o, V.awl + SN,

Equation (6) manifests underlying asset’s dynamic

change, wherein S: indicates the underlving asset price at
the time 7,7 indicates risk-neutral drift rate, 1/1/; indicates

volatility; equation (7) manifests instantaneous variance Vs

dynamic change, wherein € indicates long-term

mean-square deviation, K indicates the regression speed of

variance, namely the speed at which I, regresses to &, and
O, is the volatility corresponding to this variance process;

and Wt(z) are two independent Brownian motion

W, 1)

4

processes, 0 indicates the correlation coefficient between
stock process and volatility process. N, is a Poisson process
of parameter A,, and it is independent from the Poisson

process;J * represents underlying asset price’s relative jump

v . . .
range, JJ " represents variance’s jump range. In particular,
underlying asset price is correlative to variance’s jump range,

which means that they have a simultaneous jump; if they

have a jump at time?f, then S, =8, J°, V,, =V,_+J",
and there is a correlation coefficient o, between them.

Jump range J' follows the exponential distribution of

expectation &, . When ./’ is given, ./ accords with

lognormal distribution, logJ* ~ N (ﬂ +p,J ",O'SZ), here

ol
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parameters f{  and ;1 are correlated and satisfy the

expression

w0, =loglll+a1- p,u, |- % o;

Likewise, in order to sample the final underlying asset
price, we can first sample the change process of variance and
subsequently simulate the underlying asset price. Specific
steps are as follows:

Divide time as 0=¢, <..<f{ =7,0=<i<j=m, and

consider time interval |{, IJ,] ;

(1)Simulate variance jump numbers 72, interval [fz,tj],

and update time as f, < Ui 1 <0< tﬂmp,nj

-V ,V;i from V;i

jumpinj

<l‘j;

(2)Generate sample V]

Jump 1 "

according to V.

f‘um r'um £y
(3)Generate J-J P"ngs,J.J P'Zl’/sa’s,...,jj
4 3 13
1 jump_1

-ing to I, and V}

£ Jump_1 >

V.ds accord

Jump_ng

re K 51/5 >
Jump_n;j i

(4)Simulate each jump size J~ S and

Jump 127700 pump By 2

update I;;,mp_; =V, +J

Jump _i Jump_i

,lSzSnj;

i
(3) Compute the value of ij VY dWS(l) accordingto V, ,

i!
r]
th and L Vs,
(6)Determine .S,
f j \/FS dWS(I) ’

J v

Jump 127702 fump w2

i,
. J

on conditions of J.V;ds ,
4

jump numbers 7, and jump size

The first five-step stimulations are basically identical to
SV model, the sixth step will be explained in detail.

: ¢
On the premise that iJVst , £11/VvdWS(l) . Jump

and jump size J J

numbers n, pump 172 pump_n,

during
temporal interval [l‘!,l‘ ;] are given, we can sample S, ,

which conforms to lognormal distribution.
Define the variance of mean between 7,.7, as:
_, nol+ (1 - pZ)J-tJ 7. ds
5 .

oy = >

¢, — 1,

Define the auxiliary variable:

"y

2 - 2
¢ = exp[Z[,uS +J;pj+023}}w(tj ‘-‘a)‘%ffﬂwfpf\/idm[” .

k=l
On the condition that variance path and the underlying

asset price S, attime/, are known, it can be concluded that

the expression of the underlying asset price .S, at ¢ , as!
E
—2

S, =8,8, exp[[ro; ](fJ 7rl)+;”/tj 1‘12}-

Thereby it can simulate the underlying asset price path of
SVCI model.

Conditional Monte Carlo Algorithm for Barrier Option
Pricing under SVCJ Model

In order to compute a down-and-out call option price with
the acceleration technique of conditional Monte Carlo under
SVCJ model, it is required to determine the down-and-out
call option price under the constant-volatility and
Jjump-diffusion model. We adopt the probabilistic method to
deduce the option price’s analytical solution, which is shown
as Theorem 1. The detailed proof can be seen in the appendix.

Theorem 1 When underlying asset price satisfies the
following stochastic process under risk-neutral measure () :

dS, = (r— Ap)s,de+ oS 7, +8,(7° ~ 1)V, )
wherein N, is a Poisson process with parameter A, , and itis

independent from the Brownian Motion J¥,;.J* represents
underlying asset price’s relative jump range. In particular, if
it has a jump at time £, then S,, =S, J°. J” accords with

lognormal distribution, namely logJ® ~ N (,uS +pJ ol );

therein, parameters £, is related with ; and satisfy the
. - 1

expression: ;= 10g(1+ /“)*50'52 .

The analytical solution of the down-and-out call option
price under the model (8) can be obtained as:

wg””(l‘f’)n ~nJ !H% —r %
=3 —a -[S,,N[a’nl)—Ke : -N(a',,ﬁ)]— Se FN[d, ) Kot g,
- efz‘r(i'ip)" P 1-5235‘ i
3 [( o) (5 w{2.c]
Therein:
hl[ij+[r”ilcrij
A _ K 2 " )
e o-nwfi’T
[Ex) (3
In +| 7 Etso T
S & 27 :
d”z Fq -
o, N

¥, —rﬂ;Jr%[/uS +%o‘2];crs :Jz.t,_;gs;ﬂ :/l(l+ ﬂ)

T T
As known that I Vds and _[) 1U/;.cﬂ/f/;(l) can be
0

sampled through the exact simulation method of SVCIJ
meodel. Similar to the deduction of SV, it can be obtained that
the barrier option price under SVCJ model by conditional
Monte
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¢ = B (s(r)- &) 1{min(s,) > 7}

=K E{e"T(S(T)— EY1{min(s,) > H}“.DTdes,LT J7aw, (l)ﬂ
[ . [s,& wla, )- ke wla, )]
=F iie (ﬂT . 5270 L/ o
S e ) o )
w _—AT{ 4 1= 2 _
-F Zﬂ- BS(Suf,crn,rn)—(EJ % BS[H—,CFH,F”] -
n=0 nl H Soé
Therein:
B ln[s}:f }*[7?1 J_r%o'm ]T :
2y Ay O’rz T
ln[ #? ]+[r +lcr ]T
g \SEE n=7 ;
127 TN
A=l ik
o — 5 4+ no; |
" e

_ 2
7, r—ﬂ#+;[ys+J;pJ+Gg ];

Here, define the average volatility between O and T as:

And define the auxiliary variable:
2
L )

IV. NUMERICAL SIMULATION RESULTS OF OPTION
PRICING

In this section, it will respectively examine the acceleration
effect that crude Monte Carle method, antithetic variable
method and conditional Monte Carlo method exert on the
down-and-out call option price estimation, based on exact
simulation algorithm. Meanwhile, initial parameters involved
m SV and SVCJ models are K,T,T’,VB,K‘,O',Q,D,
ATV Ry IR In view of these different parameters will

influence the price and the error in Monte Carlo method, this
paper will analyze these influences.

It can be observed that along with the increase of
simulation path number, price estimations of Monte Carlo,
antithetic variable and conditional Monte Carlo all tend to
converge. In comparison, variances of conditional Monte
Carlo are the smallest under SV model, but variances of
antithetic variable
are the smallest under SVCJ model in contrast with other two
methods. This reflects the jumps will affect conditional
Monte Carlo method.

TABLE 1.
INFLUENCES OF DIFFERENT SIMULATION PATH NUMBER M ON
DOWN-AND- OUT CALL OPTION PRICE UNDER SV MODEL

Simulatio Monte Carlo Antithetic variable Conditional Monte
n method Carlo
Path . |Standard . Standard . Standard
Price . Price L Price .
number deviation deviation deviation
5000 7%62 0.1345 71139 0.0691 7.2235 0.0483
7.171
10000 a 0.0939 7.0729 0.0480 7.2160 0.0340
7.144
20000 9 0.0670 7.1358 0.0344 7.2204 0.0241
7.080
30000 5 0.0543 7.1018 0.0282 7.2092 0.0196
7.134
40000 4 0.0476 71217 0.0246 7.2032 0.0170
7.129
50000 9 0.0425 7.0903 0.0217 7.1883 0.0152

8,=100,X =107 =1;r=0.05,7, =0.015, 5= 0.15,0=0.0% x = 4 p=—0.252 =50

TABLE 2.
INFLUENCES OF DIFFERENT SIMULATION PATH NUMBER M ON
DOWN-AND-OUT CALL OPTION PRICE UNDER SV CJ model

Simulatio Monte Carlo Antithetic variable Conditional Monte
nmethod Carlo
Path Price Standard Price Standard Price pandard
number deviation deviation deviation
5000 8'282 0.1510 8.1990 0.0980 8.1376 0.1494
10000 8'2107 0.1079 8.1713 0.0700 8.1104 0.1053
8.142
20000 9 0.0757 8.1193 0.0493 8.1233 0.0745
30000 8'?597 0.0617 8.0781 0.0403 8.1198 0.0608
8118
40000 4 0.0534 8.1086 0.0349 8.1342 0.0527
50000 8'%64 0.0476 8.0882 0.0313 8.1401 0.0471

V. SENSITIVITY ANALYSIS OF BARRIER OPTION GREEKS
SOLUTION

Option sensitivity refers to sensitive degree that option
price shows to the variation of pricing parameters. Sensitivity
analysis can help investors to select appropriate option
portfolios and reduce risks. Approaches for solving Greeks
with Monte Carlo method can be summed up as three types:
finite-difference  approximation, Pathwise differential
estimation (PW: Pathwise Method) and likelihood ratio
estimation (LR: Likelihood Ration Method), among which
finite-difference approximation is easy to operate, but it may
bring errors to estimated values [1]. Therefore, this paper will
apply PW method and LR method to examine influences that
the variation of parameters makes on down-and-out call
option price. In detail, PW is based on the differential for
revenue function; LR is based on the differential for density
function of underlying asset price; both of them are able to
solve unbiased estimators of Greeks,; LR has a wider
applicability, while PW can produce more precise results.
Next, it will discuss formulas for Delta, Gamma and Rho
under LR and PW methods.
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A. LR Method

Consider a down-and-out call option, whose exercise price
18 K, execution time 1s T, and barrier price 1s /7 , its price
should be e (S, — K} 1{min(S, )>H}, wherein S,
indicates the underlying asset price at time 7.

Influenced by 1{min($, ) H}, revenue function of barrier
option 1s discontinuous. Thus, PW method is inapplicable to
solving the sensitivity index of barrier option, whilst LR
method 1s still applicable.

Barrier option is path-dependent option, which implies that
it needs to examine the density function of underlving asset

prices at multiple moments, namely g(xl,. s X, ) which can

be decomposed to:

g, )= & (]S, Jo (sl ) g, G ).
wherein:
_ 1
= xﬁ;ﬁ ¢(d:(x: x:—l))
s 6 )3 i)
dl(xl x_ )= 2

EL ti - tkl

Delta is the derivative of option price as to underlying
asset’s initial price SO , Indicating the varying relation
between option price and underlying asset’s initial price;
Gamma 1s the second derivative of option price as to
underlying asset’s initial price So , indicating the varying
relation between Delta and underlying asset’s initial price;
Rho is the derivative of option price as to risk-free interest
rate 7, indicating the varying relation between option price

and risk-free interest rate; under diverse parameters,
differential of density function can be simplified as:

(%) 6[@5 (315, £ (% [3) & (%[5, )} g (uls) d (x],)

as, as, Toas, =4l |S°)Sc,ﬂ
Felx) & [81 (5118 sl ot [ H B Failx %) B p di-d 511

ETC TR BN TERN (i) Wil t)

ag(x) _ 6[31 (xl |So)gz (xz |x1)"'gn (xn xn—l)}

o or

) a[elog[gl(xllSu)gz(Xﬂxl) gn(xn|xnf1ﬂ:| . x)zn: Blog |:g1 (xi |JCH)}
- or -% = ar '
Wherein:

agI xi xi* di xI xI* tI 7fi*
( | l)zigx(xi x:—l) ( IX 1)

or

5—1 v t: _fx—l

Consequently, LR estimated value of barrier option’s
sensitive coefficient is:
Delta:

T s d,
e (ST —K) l{mln(Si.)> H}x[_—m}

Gamma:

e (S, — K l{min(S, ) > H}{

d? —d, G WfAE -1
S5

Rho:

i=1 i

e (S, —K ) 1{min(s )> H}x{—T+ 4 r]

B. Conditional Monte Carlo Greeks

Above estimated values can be directly used in Monte
Carlo and antithetic variable methods to solve Greeks values,
and 1t can obtain the analytical solution of down-and-out call
option in conditional Monte Carlo under SV model as:

c- E{BS(Sgc) [Sé‘] 2 BS[S—; cr} cr}

So&-Nd - K™ - Nld, )- [ijj [— N, )- Ke"T-N(d4)];c_r]

=F
S
Wherein:
lnﬁﬁt(ril;zJT
. __K 2 ;
12 CFJYT
H* —»—(ril;ZjT
S§,&-K 2 ;
d3,4:

oNT

= s - 2
e e

Its sensitive parameter can be gained straightly by solving
differential.
Delta:

a5, 5
(Gamma

2 2 BN 2
S

& 0 HIVH 5ot

Pl 2 .

as;’ 635{?—,5} 2, 6235{— —}
e

T a5, H X

y
H
e g (o)
e ) S
(JUU
(7 S 3

Rho:
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B o Ed

B -
— 2, 2, 085|— .0
x_, @@Lg(]i}[ﬁ] BS[H_Z J][s_f] M,

a a

-2
£re™t -N[dz)Jr_izlog{]—_—zzr}(SLgJ i {ﬁN(dg)f RV (d, )}
= E

rir _
—[SL;] T kTN e

In the same way, it can gain the analytical solution of
down-and-out call option Greeks in conditional Monte Carlo
under SVCJ model.

V1. NUMERICAL SIMULATION RESULTS OF GREEKS

In this part, we will respectively make numerical results
comparisons on option price estimations and Greeks analysis
of down-and-out call option n Monte Carlo method,
antithetic variable method and conditional Monte Carlo
method, based on exact simulation algorithm.

TABLE 5. OPTION PRICE ESTIMATIONS AND GREEKS ANALYSIS
IN THREE METHODS

Simulation method | Monte Carlo Antth ctie Conditional

variable Monte Carlo

Model Cateeo SV | sSvCT SV sSvar SV SvCT
B9V | model | model | model | model | model | model

Price 7.1710]7.3447]17.07297.2204 [ 7.2160| 7.1851
Standard deviation |0.0939]0.0966|0.0480 [ 0.0506]0.0340| 0.0481
LR Delta 0.9270]0.9360]0.9027 | 0.8900 (09130 | 0.5046
std(LR Delta) 0.0742]0.075310.0730 | 0.0740 (0.0016 | 0.0016
LR Gamma -0.0815]-0.1334]-0.0979]-0.1415]-0.0945( -0.1523
std(LR Gamma) |[0.0680|0.0675]0.0657 [0.0657|0.0000 | 0.0000
LR Rho 59';142 58.3757|57.4007|56.1198]57.9380( 58.6432
std(LR Rho) 27027127636 |2.7064 | 2.7740 1 0.0205 | 0.0037
In accordance with observation, among estimated

variances and Greeks variances of down-and-out call option
in Monte Carlo method, antithetic variable method and
conditional Monte Carlo method under SV and SVCJ
models, conditional Monte Carlo always generates smaller
variances, which manifests that conditional Monte Carlo
owns an effect of decreasing variance compared to the other
two methods.

VII. CONCLUSION

Under the two stochastic volatility models of SV and
SVCJ, and based on exact simulation algorithm for
underlying asset process, this paper studied computational
problems concerning acceleration simulation theories of
down-and-out call option price and Greeks, and discussed
acceleration effects of the two variance reduction techniques,
namely conditional Monte Carlo and antithetic variable,
under different circumstances.

It can be concluded from the simulated results that
different initial parameters have certain influence on variance
reduction effects of conditional Monte Carlo. Errors of
option price estimation of SV model by conditional Monte

Carlo are always less than errors generated from the other
two methods, While jump part will influence the variance
reduction effects under SVCJ model. Then conditicnal
Monte Carlo behave best when estimating Greeks of option.
In contrast to commonly used Euler discrete method and
Monte Carlo method, we can obtain unbiased estimated
values with less error.

The algorithm proposed in this paper can expediently
solve computational problems of other more complicated
products, such as problems involved in computing basket
option under stochastic volatility models, etc.

APPENDIX

Next we give the proof of Theorem 1, the analytical
solution of down-and-out call option price under Jump

process with constant volatility.
Assume under risk neutral measure (J the asset price

satisfies the following model:
ds, = (r—Au)S,di+aSW, +8,(J° 1),
Wherein N, is a Poisson process of parameter A, , and it is

independent from the Brownian Motion ¥, | J* represents
underlying asset price’s relative jump range. In particular, if
it has a jump at the moment of ¢ then S, =S, J°. J°

accords with lognormal distribution, namely

logJ® ~ N (/JS +p,J ",aj); therein parameters /£, and
1t are correlated, and satisfy the expression,
-t 7 Lo
The price of down-and-out call option is:
C = Bl (S(T)- K ) 1{min(s, )> 7}
r=inf{0<r<T;S£ SH}

Calculating the underlying asset price:
— 1—2 _
gr rAp——a |T+adT%
ST:S{I |Js}e[ : j

Since log.J* ~ N S,O';):> J'=u +o 7, wherei

n Z, and Z, are independent.
4r
When g, =n |, Z]n,)” = ng, ju\/zo-SZ2 ., the
n=1

underlying asset price 1s:
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[r—/l;—%oz jT+n,u.5 +crﬁZl +‘\/EUSZE

5. =8¢ = 5S.e

1 5 s R
L= F Ap+—| . +—a’ ol =c'+—a
£ {/Lls 5 J n 7%

v, =Tz, V,

Denote 7 15 the standard Brownian motion
2
. o’ =2
under risk neutral measure (J , denote f =-—2——" ,
20,
1,2
7i=e 2M.

=V, —ht isthe

According to Girsanov theorem, W}R”

standard Brownian motion under measure Rn ,wherein

ar, =7

dQ)

Under measure K, , when ¢, =# |

at time 7, the

underlying asset price is S, = S;e™ v . for IW,* denote

=inf W

T 0T T>T<:>m > H and the joint

WR)’!

. R, .
density of W, .m,  is:

0 x<y,or,y>0

h(x’y)= Jz 2y e_(x—ZZTy)z
m T/

Then the underlying asset price process accords with:

20, y<x

ds, = (r - ag)s,dt + aS W+ S, —1)dN,, under  this

process, the price of down-and-out call option 1s:

o5 )_Kgnr.N(desn.;i?m |

n=ll

wherein
m[fé]+[n+;ggjf
d — s
mnl (Tn T
1
In " +(rnil(72JT
8K 2 :
gy JHJTT
1 2 2
=r—Au+ (/.zs+20'] VoL =0"+—0,
Proof:

P
Under measure R, , when ¢, =#,S, =S,-€™" then:

1
(2et Jrean s,

K
lns K
o a

Sp > K= 8,-e™ = =W = b s a=In""
= n 0

H

In—
5y wh b H

mi = H=min{S} > H ﬁmin[f:'D -e’"M"J>H ﬁmin{Wf} = =m r—b=ln=
s péair! sy

n T ]

Thus under risk neutral measure (J , we first calculate the
expectation of down-and-out call option, then transform the

expectation under measure [, :

C= e”TEQ[(ST - 4> H}}: e*ng EQ[(ST &} A > B)g ZH}P(QT 1)

SV [ o B _
[ }ﬂ

1
sl

S 1{0{/%* mgf"‘" b}

o e (,w)

il

& HT) ERH (S K)

:—rT

B

_FR|Fe hir I{WR" } { H
-AT i
—+T Sl (ET) ! _
¢ ; . [A B)
wherein:

A= FR {S e e -1{WRﬂ >—} 1{7115,"& >iH
GVZ
w 0 _ 2 x—2 —
— S .9 e F | | & y_e
PRIR N %

2
_J‘ s, egnx—hx{]‘ F xX— 2)’_ E;T&@de
o [E
! e I —g 2o

NEY 7

(=2t
b2

@

— T C—

7ja Sp - -
Tn

2]
Gnit—Ffini—

=2 o
:% j%ean—%x—ﬂmi-[giﬂe T g :Alfflz
- S w (o, —h )x =2 -2(o,-h )Tx)
A= ot [ - -[
[
=Se 2 J-Gi—(an—h”)Te T dy
M—-JF—
(crmfh,,l)zT 77(0-}1 7hn )T
=S, ? N|-—=
NT
o
{on—h)’T 7o_7+(o-n —h, )T
=Se > N(d,), d,=—2

ny Jj__,
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N 2] Sl ap After simphfying, C has the following expression.
S J-w e(cr — 1y, T J'w eﬁ[[X—O_—J 2o, -4 )Tdex
-\IQJTT =
_AT H 1
o (287 g, 28 s 122 e (A7)
- e“?"”j;e”{[ et g, e R @)
" i 25 : e eiﬂ’(ﬂ)n 7
g AT (-2t ="y e (A4 -A4,-B +B,)
= 9 2 " " o—n ® _ﬁd n=0 -
J2nT jgie * o ( o (
(o',i—h,,)ﬂ7"+(g W . i Se 2 {N dnl)—e SN dnﬁ)
=Se * - J.i_ﬁ_(g L ,e‘ﬂ"ie ") .e'%h’ir
= NEd n=0 f’l' h’l_]T *M
N, —K-e 7 | N(d, )+e > -N(d,]
[gn—A )“T+(J n22 cr_i *( n hn)r'
=S¢ - 8 T AT-Mal- T (o)
o |se  ? N(d,)-e N(d, |
26 e, (A7) 1
GRS ) fga p +{z, — AT :Z[; oy N
:SOQ JRN(dn )dn = i nf " -K BV"T'|:N(Q1 )+€ % N(d )
2 2 T e "
B=E%|K-¢™ 1{WR" >_} 1{’"?" >—H ~ Lo k)T ——+—+(o,-h)T
i Gf’l = 0’"— . d — i3 13 y
. b Ty
0 e |2 X—2y (x-29" 4 I
= K SO S T i
-‘-jjj s T/ & —i—hnT —i+2—b—hnT
0 b d _ O-)’.' d _ O-)’.' O-)’:l
[x_z_bf s N NG
K @ —h“x—i o~/ x- ;:‘ Pl .
= ja a.’x—ja e dv ugging
N2nT o = _9 |
U r r
= =—0,——,a= ln— b—ln—.
=B -B, 20, 2 s Sy S,
K x? _1(2 ) chZh,‘aTErT B )&
B = Jﬁ%e—hﬂx—ﬁdx: éegx 2h) o eiﬁ AT N(d,@l)fe "N(d@)
e BT (kT L% , 7;;‘ b
N 2 J-a e M dx=K-e? J-"mnr ey )+e 7 -N(dmd)
, Mﬁ
S hT s N d,) erN(a’ )
2 — - —8 "
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S, )ty — e
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i3 3 ﬁ
3 i e_Z‘T()LIT)M S 1‘%& V&
{_2_1;} L =y — BS(SO,O'”)[—OJ " BS|—.0,
K ® k- % ® ZT[{X G_J +2h,\7x} #=0 n! " 0
BZ = 'l' J.a e . dx;:J.a e ' d)C
2=T ap A hl[&]Jr[f’nilJz]T
g K 2 ;
ARy Jn'\jf_-'
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BT 2hb — AT H? 1,
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