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Abstract—In this paper, He’s energy balance method is used
to determine frequency formulation relations of nonlinear oscil-
lators with discontinuous term, and He’s amplitude frequency
formulation is used to obtain a periodic solution for a nonlinear
oscillator with fractional potential. By direct calculation and
numerical simulations, compared with the exact solutions show
that the results obtained are of high accuracy.

Index Terms—He’s energy balance method; He’s amplitude
frequency formulation; periodic solution; nonlinear oscillator;
fractional potential.

I. INTRODUCTION

IN this paper, we shall study the existence of periodic so-
lutions for the following generalized nonlinear oscillators

u′′ + f(u)u = 0, u(0) = A, u′(0) = 0, (1)

where f(u) > 0 is a known function of u.
In recent years, with the ever-increasing development of

nonlinear science, various kinds of analytical methods and
numerical methods have been used to handle the problem
and other nonlinear problems, such as Exp-function method
[1-3], variational iteration method [4,5], parameter-expansion
method [6], and homotopy perturbation method [7-9], etc.

However, in case that there exists no small parameter in
equation (1), the traditional perturbation methods cannot be
applied directly to (1). Hereby, we shall apply He’s energy
balance method and He’s frequency amplitude formulation
[10,11] to solve the problem.

II. HE’S ENERGY BALANCE METHOD

Firstly, we consider the following nonlinear oscillator with
discontinuous term

u′′ + au3 + bu+ cu|u| = 0, u(0) = A, u′(0) = 0. (2)

Using the semi-inverse method [12], the variational prin-
ciple of equation (2) can be easily obtained:
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The Hamiltonian of equation (2), therefore, can be written
in the form

H =
1
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4
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bu2 + sgn(u)

1

3
cu3

=
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4
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that is
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3
cA3 = 0. (4)

We use the following trial function to determine the angular
frequency ω:

u = A cosωt. (5)

Substituting (5) into (4), we obtain the following residual

R(t) =
1

2
A2ω2 sin2 ωt+

1

4
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We set ∫ T
4

0

R(t) cosωtdt = 0, T =
2π

ω

to determine the ω −A relationship, which reads

ω2 =
13

10
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(16− 3π

8

)
cA+ b,

then
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[
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] 1
2

. (6)

We, therefore, obtain the following periodic solution

u(t) = A cos

[(
13

10
aA2 +

(16− 3π

8

)
cA+ b

) 1
2

t

]
.

To illustrate the accuracy of the obtained results, we give
an example as follows:

In case a = 0, b = 0, equation (1) becomes

u′′ + cu|u| = 0, u(0) = A, u′(0) = 0,

its frequency reads ω =
(
16−3π

8

) 1
2 c

1
2A

1
2 , its exact frequency

is ωex = 0.921318c
1
2A

1
2 . Therefore, its accuracy reaches

0.0088. The above result is of high accuracy.
Next, we consider another nonlinear oscillator of the

following form

u′′ + au
1
m + bu2n+1 = 0, u(0) = A, u′(0) = 0. (7)
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Using the semi-inverse method [12], the variational prin-
ciple of equation (7) can be easily obtained:
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We use the following trial function to determine the angular
frequency ω:
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Substituting (9) into (8), we obtain the following residual
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where

α =
2am

m+ 1
A

m+1
m

(
1− π

1
2

2

Γ( 32 + 1
2m )

Γ(2 + 1
2m )

)
+
bA2n+2

n+ 1

(
1− (2n+ 2)!!

(2n+ 3)!!

)
.

We, therefore, obtain the following periodic solution

u(t) = A cos

[√
3α

1
2

A
t

]
.

To illustrate the accuracy of the obtained results, we give
two examples as follows:

In case m = 3, b = 0, equation (7) becomes

u′′ + au
1
3 = 0,

its frequency reads ω = 1.0834b
1
2A− 1

3 , its exact frequency
[13] is ωex = 1.0705a

1
2A− 1

3 . Therefore its accuracy reaches
0.0121.

In case n = 1, a = 0, equation (7) becomes

u′′ + bu3 = 0,

its frequency reads ω = 0.8367Ab
1
2 , its exact frequency

[13] is ωex = 0.8472Ab
1
2 . Therefore its accuracy reaches

0.0124. Compared with the results in [14], our result is higher
accuracy.

III. HE’S FREQUENCY AMPLITUDE FORMULATION

In this section, we shall consider the following nonlinear
oscillator with fractional potential

u′′ + au+ bu2n+1 + cu
1

2n+1 = 0,

u(0) = A, u′(0) = 0, (11)

where a, b, c are constants, and n ∈ N+.
If we take n = 1 in equation (11), then equation (11)

reduced to a class of nonlinear oscillator [14]

u′′ + au+ bu3 + cu
1
3 = 0.

If we take a = 1, c = 0, n = 1 in equation (11), then
equation (11) reduced to the well-known Duffing equation

u′′ + u+ bu3 = 0. (12)

In order to use He’s amplitude frequency formulation, we
choose two trial functions u1(t) = A cos t and u2(t) =
A cosωt, which are, respectively, the solutions of the fol-
lowing linear equations:

u′′ + ω2
1u = 0, ω2

1 = 1,

u′′ + ω2
2u = 0, ω2

2 = ω2,

where ω is assumed to be the frequency of the nonlinear
oscillator equation (11). Substituting u1(t) and u2(t) into
equation (11), we obtain, respectively, the following residuals

R1(t) = −A cos t+ aA cos t+ bA2n+1 cos2n+1 t

+cA
1
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1

2n+1 t, (13)
R2(t) = −Aω2 cosωt+ aA cosωt

+bA2n+1 cos2n+1 ωt

+cA
1

2n+1 cos
1

2n+1 ωt. (14)

He’s amplitude frequency formulation reads [10,11]

ω2 =
ω2
1R2(t2)− ω2

2R1(t1)

R2(t2)−R1(t1)
, (15)

where t1 and t2 are location points. Generally, setting

t1 =
T1

12
, t2 =

T2

12
,

where T1 and T2 are periods of the trial functions u1(t) =
A cos t and u2(t) = A cosωt, respectively, i.e. T1 = 2π and
T2 = 2π/ω.
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From (13),(14),(15), by direct calculates, yields
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We, therefore, obtain the following periodic solution
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)n
+ cA− 2n

2n+1
(3
4

)− n
2n+1

) 1
2 t
]
.

To illustrate the accuracy of the obtained results, we give
two examples as follows:

In case n = 1, a = b = 0, equation (11) becomes

u′′ + cu
1
3 = 0,

its frequency reads ω = c
1
2A− 1

3

(
3
4

)− 1
6 = 1.0491c

1
2A− 1

3 , its
exact frequency [14] is ωex = 1.0705c

1
2A− 1

3 . Therefore its
accuracy reaches 0.0204.

In case n = 1, a = c = 0, equation (11) becomes

u′′ + bu3 = 0,

its frequency reads ω = ( 34 )
1
2Ab

1
2 = 0.866Ab

1
2 , its exact

frequency is ωex = 0.8472Ab
1
2 . Therefore its accuracy

reaches 0.0222.

IV. NUMERICAL SIMULATIONS

In this section, we present some numerical results at
different values. Figures 1, 2, 3 and 4 illustrate excellent
agreement of the obtained result with the exact one.

V. CONCLUSION

In this work, the nonlinear oscillators are efficiently han-
dled by He’s energy balance method or He’s frequency for-
mulation. It has been proved to be a powerful mathematical
tool for searching exact solutions for nonlinear oscillators.
The analytical approximation obtained by this new methods
are valid for the whole solution domain with high accuracy.
Moreover, the methods used in this paper can be extended
to solve many other types of nonlinear oscillators, see, for
example, [15-17].
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Figures:
dashed line (- - -): exact solution;
continuous line (—): approximate solution.
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Figures 1. Comparison of exact solution of equation(2) with
approximate solution u = A cosωt at different values of a,
b, c and A, where ω is defined by equation (6).
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Figures 2. Comparison of exact solution of equation (7) with
approximate solution u = A cosωt at different values of a,
b, m, n and A, where ω is defined by equation (10).

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_01

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

u

a=1, b=1, c=1, A=10.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−100

−80

−60

−40

−20

0

20

40

60

80

100

t

u

a=1, b=1, c=1, A=100.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

u

a=1, b=100, c=1000, A=10.

0 1 2 3 4 5 6 7 8

x 10
−3

−100

−80

−60

−40

−20

0

20

40

60

80

100

t

u

a=1, b=100, c=1000, A=100.

0 0.005 0.01 0.015 0.02 0.025
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

u

a=100, b=1000, c=1000, A=10.

0 0.5 1 1.5 2 2.5

x 10
−3

−100

−80

−60

−40

−20

0

20

40

60

80

100

t

u

a=100, b=1000, c=1000, A=100.

Figures 3. In case n=1, comparison of exact solution of
equation(11) with approximate solution u = A cosωt under
different values of a, b, c and A, where ω is defined by
equation (16).
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Figures 4. In case n=3, comparison of exact solution of
equation(11) with approximate solution u = A cosωt under
different values of a, b, c and A,where ω is defined by
equation (16).
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