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Abstract—In this paper, the problem of exponential stabiliza-
tion for a class of switched nonlinear uncertain systems with
time-varying delay is investigated based on a type of Lyapunov-
Krasovskii functional, the free-weighting matrix technique and
the average dwell time approach. Some exponential stability
criteria are established in terms of linear matrix inequalities
(LMIs) for switched nonlinear uncertain systems with delay.
In addition, the feedback controller design algorithm for the
system is given through the matrix deformation technique
and Schur complement. Finally, a numerical example and a
practical example of river pollution control are provided to
show the validity and potential of the developed results.

Index Terms—Switched system, Time-varying delays, Aver-
age dwell time, Exponential stabilization.

I. INTRODUCTION

IT is well known that switched system is one of the
most important dynamic hybrid systems, which comprises

a collection of subsystems equipped with a switching law
orchestrating. In recent decades, a large number of switched
systems have appeared in the research field, such as industrial
manufacturing, social management, aircraft control system-
s and artificial intelligence[1-3]. Moreover, many results
on behavior analysis, property characterization and control
synthesis for various types of switched systems have been
obtained [4-6]. Thus, it is significance of studying switched
systems, not only for their interesting theoretical properties
but also for their applicability in practice.

As far as the many properties of switched systems are
concerned, it is worth mentioning that stability analysis is
one of the fundamental problems. Compared with the theory
for linear switched system, nonlinear one in the presence
of time delays is less well-developed due to its inherent
complexities. In particular, it is fairly challenging to research
the stability and controller design of switched nonlinear
systems. In former literature[7-10], many stability results
related to switched nonlinear systems have been reported.
For instance, it can be obtained the sufficient conditions
to guarantee the exponential stability by a common Lya-
punov functional (CLF) [11-12]. However, to the best of
author’s knowledge, CLF might become too conservative
when stability is assessed. To address this issue, scholars
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investigate the systems by using multiple Lyapunov function-
al (MLF) [13], min/max-switching [14] and average dwell
time (ADT) [15-16] in recent developments. Especially, ADT
plays an important role in switched system analysis and
control synthesis. In this paper, our main goal is to provide
a novel multiple Lyapunov-Krasovskii functional to study
the exponential stabilization of a class of switched nonlinear
uncertain systems with time-varying delay by average dwell
time method.

On the other hand, in many practical applications, time de-
lays and uncertainties are regularly encountered in dynamic
systems, which lead to poor performance and even instability
in some control systems, even make the machine unable to
work properly. Therefore, the subject of stability analysis
of switched systems with time-varying delays has attracted
considerable attention due to strong engineering background
in the past few years. For instance, process control system-
s[17], networked control [18] and power systems [19]. Free
weighting matrix method and matrix deformation technique
are adopted to reduce the conservatism of delay-dependent
criteria of switched linear systems. Obviously, those methods
are more realistic and of great significance to study. To men-
tion a few, robustly exponential stability for uncertain neutral
systems with time-varying delays and nonlinear perturbations
are investigated by matrix deformation technique in [20].
[16] considered the mean-square exponential stability of
switched stochastic neutral systems with time-varying delay
under asynchronous switching by the free weight matrix
method. Moreover, the issues of robustly exponential stability
H∞ control for uncertain discrete switched systems with
interval time-varying delay and the new sufficient stability
condition with delay dependence are presented in [21].
However, based on the above discussion, the problem of
exponential stabilization for a class of switched nonlinear
uncertain systems with time-varying delay has not been well
reported, which motivates the present study. Specially, in
order to overcome some difficulties caused by the delay and
nonlinearity behavior, this paper focuses on the methods of
the bounded time delays and matrix deformation technique
such that the resulting system is exponentially stable.

The core of this paper is a powerful condition for estab-
lishing exponential stability of a class of switched nonlinear
uncertain systems with time-varying delay. The main contri-
butions of this paper include:
• An explicit expression of time delay is assumed to

be bounded. Meanwhile, we consider the uncertainties and
nonlinearity in the model, which make the systems get
extensive applications in practical field compared with other
papers.
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• A novel multiple Lyapunov-Krasovskii functional is
established to study the exponential stabilization of switched
nonlinear uncertain systems by average dwell time method.
• The sufficient condition for exponential stabilization of

switched nonlinear uncertain systems with delay is obtained.
• The stabilizing feedback controller of switched nonlinear

systems is designed through the matrix deformation tech-
nique and Schur complement.
• A practical example of river pollution control is provided

to show the validity and potential of the developed results.
The rest of the paper is organized as follows. The prob-

lem description and preliminary knowledge are presented in
Section 2. In Section 3, a novel multi-Lyapunov-Krasovskii
functional related to delay is constructed, and a sufficient
condition for exponential stabilization of a class of switched
nonlinear systems with time-varying delay is given by using
average dwell time and matrix inequality. Moreover, the
controllers of switched systems are designed through special
matrix deformation method, which are the important conclu-
sion of this paper. Section 4 gives a numerical example and
a practical example of river pollution control to show the
validity and potential of the developed results. Conclusions
are shown in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first show the switched system and
recall some facts, which will be used in this paper.

The switched nonlinear uncertain system is expressed as

ẋ(t) = Ā1σ(t)(t)x(t) + Ā2σ(t)(t)x(t− h(t))

+Bσ(t)u(t) + Ef(t, x(t), x(t− h(t))),

x(t) = φ(t), t ∈ [−hM , 0],

(1)

where u(t) ∈ Rm denotes control input, x(t) ∈ Rn is state
vector, φ(t) ∈ Rn represents the initial condition. Bi(i ∈ N)
and E are constant matrices.

For i ∈ N, Ā1i(t) and Ā2i(t) are uncertain real-valued
matrices with appropriate dimensions, which satisfy

Ā1i(t) = A1i +∆A1i(t), Ā2i(t) = A2i +∆A2i(t),

[∆A1i(t) ∆A2i(t)] = HiFi(t)[M1i M2i], ∀t ≥ 0,
(2)

where ∆A1i(t) and ∆A2i(t) are parameter uncertainty;
Hi,M1i and M2i are known real constant matrices with
appropriate dimensions; Fi(t) is an unknown time-varying
matrix, which satisfies the following restriction

Fi
T (t)Fi(t) ≤ I. (3)

The switching signal σ(t) : [0,∞] → N = {1, 2, . . . , n} is
a piecewise continuous function, where n denotes the number
of subsystems. {(t0, σ(t0)), (t1, σ(t1)), · · · , (tk, σ(tk)), · · · }
is the switching sequence, where t0 is the initial switching
instant and tk denotes the kth one. h(t) represents the interval
time-varying delay satisfying

hm ≤ h(t) ≤ hM , ḣ(t) ≤ d < 1. (4)

f(t, x(t), x(t− h(t))) denotes the nonlinear function and
satisfies the following restriction

fT (t, x(t), x(t− h(t)))f(t, x(t), x(t− h(t)))

≤ xT (t)ΓTΓx(t) + xT (t− h(t)ΛTΛx(t− h(t),
(5)

where Γ and Λ are known real constant matrices. For system
(1), we consider the state feedback given by

u(t) = Kσ(t)x(t), (6)

where Ki(i ∈ N) is a feedback gain matrix.
For the convenience of calculation, define Â1i = A1i +

BiKi. System (1) can be written as

ẋ(t) = (Â1i +HiFi(t)M1i)x(t) + Ef(t, x(t), x(t− h(t)))

+ (A2i +HiFi(t)M2i)x(t− h(t)).
(7)

Definition 1. For any t2 > t1 ≥ 0, let Nσ(t1, t2) denote
the switching number of σ(t) on an interval(t1, t2). If

Nσ(t1, t2) ≤ N0 + (t2 − t1)/τa (8)

holds for given N0 ≥ 0, τa ≥ 0, then the constant τa is
called the average dwell time.

Without loss of generality, we set N0 = 0 in this paper.
Definition 2.([7]) The equilibrium x∗ = 0 of the closed-

loop system (7) with switching signal σ(t) and Feedback
control u(t) = Kσ(t)x(t) is said to be exponentially stable
if the solution x(t) of the closed-loop system (7) satisfies

∥x(t)∥ ≤ ω sup
−h≤θ≤0

∥x(t0 + θ)∥ e−λ(t−t0), ∀t ≥ t0, (9)

where ω ≥ 1 and λ > 0

Lemma 1.([21]) Let S1, S2 and S3 be symmetric ma-
trices, S1 = ST

1 < 0 and S3 = ST
3 > 0, then for all

S1 + S2S
−1
3 ST

2 < 0 if and only if[
S1 S2

ST
2 −S3

]
< 0.

Lemma 2.([22]) Let U, V,W and X be real matrices of
appropriate dimensions with X satisfying XT = X , then
for all V TV ≤ I,X + UVW + WTV TUT < 0 if and
only if there exists a scalar ε > 0 such that X + εUUT +
ε−1WTW < 0.

III. MAIN RESULTS

In this section, the criterions of exponential stabilization
of the closed-loop system (7) are given.

Theorem 1. For given positive constants α and µ ≥ 1, if
there exist positive scalars εi, symmetric and positive definite
matrices Pi, Q1i, Q2i, Q3i, Ri, which satisfy the following
matrix inequality for all i, j ∈ N, i ̸= j

Pi ≤ µPj , Qsi ≤ µQsj , Ri ≤ µRj(s = 1, 2, 3), (10)

φ̃11
i PiA2i 0 0 PiE PiHi εiM

T
1i

∗ φ̃22
i 0 0 0 0 εiM

T
2i

∗ ∗ φ33
i 0 0 0 0

∗ ∗ ∗ φ44
i 0 0 0

∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ −εiI


< 0

(11)
where
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φ̃11i = ÂT
1iPi + PiÂ1i +Q1i +Q2i +Q3i + δ2Ri

+ αPi + ΓTΓ,

φ̃22i = −(1− d)e−αhMQ1i + ΛTΛ,

φ33i = −e−αhmQ2i, φ44i = −e−αhMQ3i.
Then system (7) is exponentially stabilizable under the feed-
back control (6) for any switching signal with the average
dwell time satisfying

τa > τ∗a =
lnµ

α
. (12)

Proof: Inspired by [13], we choose the Lyapunov-
Krasovskii functional as follows:

V (t) = Vσ(t)(t) =
5∑

j=1

Vjσ(t)(t), (13)

where
V1σ(t)(t) = xT (t)Pσ(t)x(t),

V2σ(t)(t) =
∫ t

t−h(t)
eα(s−t)xT (s)Q1σ(t)x(s)ds,

V3σ(t)(t) =
∫ t

t−hm
eα(s−t)xT (s)Q2σ(t)x(s)ds,

V4σ(t)(t) =
∫ t

t−hM
eα(s−t)xT (s)Q3σ(t)x(s)ds,

V5σ(t)(t) = δ
∫ −hm

−hM

∫ t

t+θ
eα(s−t)xT (s)Rσ(t)x(s)dsdθ

and δ = hM − hm.
Derive the trajectory of the system, we can get

V̇1i = 2xT (t)Piẋ(t)

V̇2i = −(1− ḣ(t))e−αh(t)xT (t− h(t))Q1ix(t− h(t))

+xT (t)Q1ix(t)− α
∫ t

t−h(t)
eα(s−t)xT (s)Q1ix(s)ds

≤ −(1− d)e−αhMxT (t− h(t))Q1ix(t− h(t))

+xT (t)Q1ix(t)− α
∫ t

t−h(t)
eα(s−t)xT (s)Q1ix(s)ds

V̇3i = −e−αhmxT (t− h(t))Q2ix(t− h(t))

+xT (t)Q2ix(t)− α
∫ t

t−hm
eα(s−t)xT (s)Q2ix(s)ds

V̇4i = −e−αhMxT (t− h(t))Q3ix(t− h(t))

+xT (t)Q3ix(t)− α
∫ t

t−hM
eα(s−t)xT (s)Q3ix(s)ds

V̇5i = (−α)δ
∫ −hm

−hM

∫ t

t+θ
eα(s−t)xT (s)Rix(s)dsdθ

+δ2xT (t)Rix(t)− δ
∫ t−hm

t−hM
e−αhMxT (s)Rix(s)ds

(14)
Using inequality (5), it is easy to get

xT (t)ΓTΓx(t) + xT (t− h(t))ΛTΛx(t− h(t))

− fi
T (t, x(t), x(t− h(t)))fi(t, x(t), x(t− h(t))) ≥ 0,

(15)

Combined (14) with (15), we obtain

V̇ (t) + αV (t)

≤ xT (t)[ÂT
1iPi + PiA1i +Q1i +Q2i

+Q3i + (HiFi(t)M1i)
TPi + PiHiFi(t)M1i + δ2Ri

+ αPi + ΓTΓ]x(t)− e−αhmxT (t− hm)Q2ix(t− hm)
+ xT (t− h(t))[ΛTΛ− (1− d)e−αhMQ1i]x(t− h(t))
+ xT (t)[PiA2i + PiHiFi(t)M2i]x(t− h(t))
+ xT (t− h(t))[AT

2iPi + (HiFi(t)M2i)
TPi]x(t)

− fT (t, x(t), x(t− h(t)))f(t, x(t), x(t− h(t)))
+ xT (t)PiEf(t, x(t), x(t− h(t)))
+ fT (t, x(t), x(t− h(t)))ETPix(t)
− e−αhMxT (t− hM )Q3ix(t− hM ).

where

Υi =


φ11
i φ12

i 0 0 PiE
∗ φ22

i 0 0 0
∗ ∗ φ33

i 0 0
∗ ∗ ∗ φ44

i 0
∗ ∗ ∗ ∗ −I

 ,

φ11
i = ÂT

1iPi + PiÂ1i + (HiFi(t)M1i)
TPi + ΓTΓ

+PiHiFi(t)M1i +Q1i +Q2i +Q3i + δ2Ri + αPi,
φ12
i = PiA2i + PiHiFi(t)M2i,

φ22
i = −(1− d)e−αhMQ1i + ΛTΛ.

Denote Υi = Υ1i +Υ2i, here

Υ1i =


φ̂11
i PiA2i 0 0 PiE
∗ φ22

i 0 0 0
∗ ∗ φ33

i 0 0
∗ ∗ ∗ φ44

i 0
∗ ∗ ∗ ∗ −I


Υ2i=ΩiFi(t)Σ1i +Σ1i

TFi(t)
TΩi

T ,
φ̂11
i = ÂT

1iPi+PiÂ1i+ΓTΓ+Q1i+Q2i+Q3i+δ2Ri+αP,

Ωi =
(

(PiHi)
T

0 0 0 0
)T

,

Σ1i =
(
M1i M2i 0 0 0

)
.

By the Lemma 1, we can get

Υ1i + εi
−1ΩiΩi

T + εiΣ1i
TΣ1i < 0. (16)

So Υi < 0, which is equivalent with (10) by using Lemma
1. Then the following inequality can be derived,

V̇i(t) + αVi(t) ≤ 0. (17)

Hence, it follows that

(eαtVi(t))
′ = αeαtVi(t) + eαtV̇i(t) ≤ 0. (18)

After calculation, we obtain

V̇ (t) ≤ −αV (t). (19)

When t ∈ [tk, tk+1), both sides of (19) integrate from tk
to tk+1 at the same time, we have

V (t) = Vσ(t)(t) ≤ e−α(t−tk)Vσ(tk)(tk), tk ≤ t < tk+1.
(20)

k = Nσ(t, t0) ≤ (t − t0)/τais recalled, it is easy to obtain
that

V (t) ≤ e−α(t−tk)µVσ(tk−)(tk
−) ≤ · · ·

≤ e−α(t−t0)µkVσ(t0−)(t0
−)

≤ e−(α−lnµ/τa)(t−t0)Vσ(t0)(t0).

(21)

From equation (13), it follows that

V (t) ≥ a∥x(t)∥2, V (t0) ≤ b sup
−hM≤θ≤0

∥x(t0 + θ)∥2, (22)

where
a = min

i∈N
λmin(Pi),

b = max
i∈N

λmax(Pi) + hM max
i∈N

λmax(Q1i)

+hm max
i∈N

λmax(Q2i) + hM max
i∈N

λmax(Q3i)

+ δ3

2 max
i∈N

λmax(Ri).

Therefore, we have

∥x(t)∥ ≤
√

b

a
sup

−hM≤θ≤0
∥x(t0 + θ)∥ e− 1

2 (α−lnµ/τa)(t−t0).

(23)
According to Definition 2, the closed-loop system (7) is
exponentially stabilizable. This completes the proof.

Remark 1. Refs [11] and [14] have investigated stability
and stabilization of switched linear systems with time delay,
and the stability criteria for switched linear systems are
presented. However, stability and stabilization for switched
nonlinear systems did not consider. In this paper, we consider
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switched nonlinear systems and some exponential stabiliza-
tion criteria are obtained. [11] and [14] are seen as a special
case of this paper.

Theorem 2. For given positive constants α and µ ≥ 1,
if there exist positive scalars εi, symmetric and positive
definite matrices Xi, T1i, T2i, T3i, Li and Yi, which satisfy
the following matrix inequality

Xj ≤ µXi, Tsj ≤ µTsi, Lj ≤ µLi, (s = 1, 2, 3) (24)(
Σi Πi

∗ Σ̃i

)
< 0, (25)

where

Σi =


θ11i θ12i 0 0 E 0
∗ θ22i 0 0 0 XiΛ

T

∗ ∗ θ33i 0 0 0
∗ ∗ ∗ θ44i 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

,

Πi =


XiΓ

T Hi θ19i δXi Xi Xi Xi

0 0 θ29i 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

,

Σ̃i = diag{−I − εiI − εiI − Li − T3i − T2i − T1i},
θ11i = A1iXi +BiYi + (A1iXi +BiYi)

T + αXi,
θ12i = A2iXi, θ

22
i = (1− d)e−αhM (T1i − 2Xi),

θ33i = e−αhm(T2i − 2Xi), θ
19
i = εiXiM

T
1i,

θ44i = e−αhM (T3i − 2Xi), θ
29
i = εiXiM

T
2i.

Then system (7) is exponentially stabilizable with the average
dwell time satisfying

τa > τ∗a =
lnµ

α
. (26)

And the controller can be designed by the following formula

Ki = YiXi
−1, i ∈ N. (27)

Proof: Because of Tsi > 0, Li > 0(s = 1, 2, 3), we have

(Tsi −Xi)
TTsi

−1(Tsi −Xi) ≥ 0,
(Li −Xi)

TLi
−1(Li −Xi) ≥ 0.

Therefore, it follows that

Tsi − 2Xi ≥ −XiTsi
−1Xi,

Li − 2Xi ≥ −XiLi
−1Xi.

(28)

The left and right ends of inequality (25) are multiplied
by the diagonal matrix {Xi

−1, Xi
−1, Xi

−1, Xi
−1, I, I, I, I,

I, I, I, I, I} at the same time. By using (28) we get(
Σ̂i Π̂i

∗ Σ̃i

)
< 0, (29)

where

Σi =



θ̂11i θ̂12i 0 0 X−1
i E 0

∗ θ̂22i 0 0 0 ΛT

∗ ∗ θ̂33i 0 0 0

∗ ∗ ∗ θ̂44i 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

,

Πi =



ΓT X−1
i Hi θ̂19i δI I I I

0 0 θ̂29i 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

θ̂11i = X−1
i A1i +X−1

i BiYiX
−1
i

+(X−1
i A1i +X−1

i BiYiX
−1
i )T + αX−1

i ,

θ̂12i = X−1
i A2i, θ̂

22
i = −(1− d)e−αhMT1i

−1,

θ̂33i = −e−αhmT2i
−1, θ̂19i = εiM

T
1i,

θ̂44i = −e−αhMT3i
−1, θ̂29i = εiM

T
2i.

Denote

Yi = KiXi, Xi
−1 = Pi, Tsi

−1 = Qsi, Li
−1 = Ri. (30)

Recalling Lemma 1 and (29), it is easy to obtain that system
(7) is exponentially stabilizable by using Theorem 1. The
proof is completed.

Remark 2. In [13], only the exponential stabilization of
the switched system is studied, and the feedback controller
design algorithm for the system is also given in this paper,
which greatly extend the scope of the application.

Remark 3. In [11], the switched system based on the
common Lyapunov-Krasovskii function for all subsystems.
However, we use multi-Lyapunov-Krasovskii functions. From
the view of switched system and Lyapunov-Krasovskii func-
tion selection, the conservativeness of our results is lower.
Compared with [21] and [22], we consider a large range of
time-delay and nonlinearity, which have a greater advantage
when dealing with complex systems.

IV. NUMERICAL EXAMPLES

In this section, a numerical example and a practical exam-
ple are given to illustrate the effectiveness and applicability
of the proposed approach.

Example 1. Consider system (1) composed of two sub-
systems with the following parameters:

A11 =

[
−0.8 0.1
0 −0.3

]
, B1 =

[
0.2
0.3

]
,

M22 =

[
−0.8 0.1
0.1 −0.6

]
, E =

[
0.2 0
0 0.1

]
,

A12 =

[
−0.7 0.1
0 −0.4

]
,Λ =

[
−0.8 0.1
0.2 −0.6

]
,

M11 =

[
−0.5 0.2
0.1 −0.4

]
,H1 =

[
0.3 0.6
0.3 0.5

]
,

M21 =

[
−0.6 0.1
0.1 −0.5

]
,Γ =

[
−0.6 0.2
0.1 −0.4

]
,

A22 =

[
−0.5 0
0.1 −0.3

]
, B2 =

[
0.1
0.2

]
,

M12 =

[
−0.4 0.2
0.1 −0.3

]
,H2 =

[
0.2 0.6
0.25 0.3

]
,

A21 =

[
−0.6 0
0.1 −0.4

]
,

α = 0.6, µ = 1.8, hM = 0.8, hm = 0.2, δ = 0.6, d =
0.4, h(t) = 0.2 + 0.4sin(t), ε1 = 0.2 and ε2 = 0.3.

We get that τa > 0.98 from (26). Let

f(t, x(t), x(t−h(t))) =

(
0.1sin(x1(t))− 0.2t

0.2sin(x2(t− h(t)))− 0.3t−0.1

)
.
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By solving (24) and (25) in Theorem 2, we can get

X1 =

[
0.5390 −0.2308
−0.2308 0.1659

]
, L1 =

[
3.5204 0.2255
0.2255 2.2966

]
X2 =

[
0.1717 −0.0372
−0.0372 0.0737

]
, L2 =

[
3.3439 0.7642
0.7642 2.4166

]
T11 =

[
1.2081 0.0148
0.0148 1.4106

]
, T12 =

[
2.0501 0.4639
0.4639 1.5501

]
T22 =

[
0.6056 0.0168
0.0168 0.4150

]
, T32 =

[
0.9027 0.1971
0.1971 0.7718

]
Y1 =

[
0.3046 0.1897

]
, Y2 =

[
0.1934 0.6822

]
T21 =

[
2.0885 −0.5189
−0.5189 0.6469

]
,

T31 =

[
2.5240 −0.5489
−0.5489 0.9485

]
,

then the controller gains constructed by (27) are

K1 =
[
2.6070 4.7691

]
,K2 =

[
3.5143 1.0254

]
.

According to Theorem 2, we can get that the system (1)
is exponentially stabilizable for any switching signal under
the feedback control. State response diagrams are shown in
Fig.1, where the initial state is x(0) = (−1, 1)T .
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Fig. 1: State response of the closed-loop system.

Example 2. We will illustrate the effectiveness of our ap-
proach through river pollution control issues.

For ease of description, the concentrations per unit volume
of biochemical oxygen demand and dissolved oxygen in
a reach of a polluted river are denoted as z(t) and q(t),
respectively. Let z∗ and q∗ denote the desired steady values
of z(t) and q(t) corresponding to some measure of water
quality standards, respectively. Define

x1(t) = z(t)−z∗, x2(t) = q(t)−q∗, x(t) =
[
xT
1 (t) x

T
2 (t)]

T

Then, the dynamic equation for x(t) can be written as
following:

ẋ(t) = (A11 +∆A11(t))x(t) +B1u(t) + ω(t)

+ (A21 +∆A21(t))x(t− h(t)),
(31)

where
A11 =

[
−k10 − η1 − η2 0

−k30 −k20 − η1 − η2

]
,

A21 =

[
η2 0
0 η2

]
, B1 =

[
η1
1

]
,

∆A11(t) = H1F1(t)M11, ∆A21(t) = H1F1(t)M21.

u(t) =
[
uT
1 (t) u

T
2 (t)]

T is the control variable of river pollu-
tion, ki0(i = 1, 2, 3), η1 and η2 are known constants, ∆A1(t)
and ∆A2(t) are uncertainty, and ω(t) is the disturbance input
of the system. The physical meaning of these parameters can
be found in [23-24].

In accordance with the actual situation, we assumed that
the system actuators are subject to good performance or
failure in this paper. Therefore, the model is divided into
two subsystems for discussion. Then, the system (31) can be
described as the following switched system:

ẋ(t) =


Ā11(t)x(t) + Ā21(t)x(t− h(t)) +B1u(t)

+ Ef(t, x(t), x(t− h(t))), no failures occur

Ā12(t)x(t) + Ā22(t)x(t− h(t)) +B2u(t)

+ Ef(t, x(t), x(t− h(t))), failures occur
(32)

For simulation of our purposes, we choose k10 = 1.6, k20
= 1, k30 = 1.6, η1 = 0.3, η2 = 0.7, and get that

A11 =

[
−2.6 0
−1.6 −2

]
, A21 =

[
0.7 0
0 0.7

]
, B1 =

[
0.3
1

]
.

Let h(t) = 0.3sin(t),

ω(t) = f(t, x(t), x(t−h(t))) =

(
0.1sin(x1(t))

0.2sin(x2(t− h(t)))

)
.

Then, we will use the parameters in Theorem 1 to design
a set of switching sequences to stabilize the above system
(32). At the same time, we choose α = 0.3, µ = 1.7,HM =
0.8, hm = 0.2, δ = 0.6, d = 0.2, ε1 = 0.2, ε2 = 0.3, h(t) =
0.3sin(t). By solving (24) and (25), we can get

X1 =

[
1.1804 −0.4882
−0.4882 0.4255

]
,

X2 =

[
2.4705 −0.1175
−0.1175 1.4638

]
,

T11 =

[
1.4890 −0.2052
−0.2052 1.2590

]
,

T12 =

[
2.4705 −0.1175
−0.1175 1.4638

]
,

T21 =

[
3.5615 −0.6581
−0.6581 1.2357

]
,

T22 =

[
0.8323 0.0402
0.0402 0.6673

]
,

T31 =

[
3.8260 −0.6562
−0.6562 1.4274

]
,

T32 =

[
1.0061 0.1464
0.1464 0.8410

]
,

L1 =

[
2.8345 0.3898
0.3898 1.6749

]
,

L2 =

[
2.5942 0.6388
0.6388 1.7737

]
,

Y1 =
[
0.8913 0.7621

]
,

Y2 =
[
0.4565 0.0185

]
.

Then the controller gains constructed by (27) are

K1 =
[
2.8465 5.0571

]
,K2 =

[
1.6449 0.0079

]
.

The state responses of the subsystem 1 and 2 of the system
(32) with the initial condition x(0) = (−1, 1)T are shown
in Figs. 2 and 3, respectively. According to Theorem 2, we
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can get that the system (32) is exponentially stabilizable for
any switched signal under the feedback control. At the same
time, the state response is shown in Fig.4, where the initial
state is x(0) = (−1, 1)T . Therefore, the effectiveness of our
approach is verified by its application in the control of river
pollution process.
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Fig. 2: State response of the subsystem 1
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Fig. 3: State response of the subsystem 2
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Fig. 4: State response of the system (32)

Remark 4. [23] have investigated the pollution problem
of a single reach river modelled by the dynamics of water
quality subject to uncertainty in system parameters, and an
adaptive controller can guarantee the closed loop system
to converge, globally and exponentially. However, the per-
formance of the actuator for river pollution model may be
deviated in practical applications. This paper has solved this

situation by changing the original system model to a switched
system for processing.

V. CONCLUSIONS

In this paper, the problem of exponential stabilization for
a class of switched nonlinear system with time-varying delay
has been studied. Based on a novel Lyapunov-Krasovskii
functional, some sufficient conditions for the exponential
stability of switched nonlinear system are obtained by the
average dwell time approach. Moreover, the controllers of
the switched system are designed through a special matrix
transformation method. Finally, a numerical example and a
practical example of river pollution control are provided to
show the validity and potential of the developed results.

Through the research of this paper, we learned that dif-
ferent Lyapunov functionals and delay may lead to different
conservatism. It deserves further study to choose an improved
piecewise Lyapunov functional so as to reduce the conserva-
tiveness. In order to better study switched nonlinear system
with time-varying delay in multiple aspects, we will further
optimize Lyapunov functionals and the delay for better
performance. In this paper, we did not consider stochastic
term. It is well known that stochastic term is inevitable in
some practical control systems, which is often the main cause
for instability or undesirable system performance of a control
system. Specifically, the stabilization of stochastic switched
nonlinear systems will be taken as a main direction of our
future research.
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