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Abstract—The disease has a vital effect on the dynamical
behaviors of predator-prey system in ecology. When disease
spreads in the prey population, the infected preys are more
likely to be captured by predators. On the other hand, spatial
diffusion and gestation delay are ubiquitous in the nature
and can generate rich spatiotemporal dynamical behaviors. In
this study, a delayed and diffusive predator-prey system with
disease in the prey is proposed. First, the existence, uniqueness,
positivity and boundedness of solutions are established. Second,
the stability condition of constant predator-free equilibrium
solution is derived. Third, the stability of constant coexistence
equilibrium solution and the existence of Hopf bifurcation
are investigated by regarding time delay as the bifurcation
parameter. Finally, some numerical simulations and conclusions
are given to illustrate the theoretical results.

Index Terms—eco-epidemiological system, time delay, Hopf
bifurcation, periodic solution.

I. I NTRODUCTION

T HE predator-prey system is the basic model in pop-
ulation dynamics, so the interactions between predator

and prey in natural ecosystem have drawn extensive attention
from scholars in different kinds of fields. As most species
are prone to various diseases, abundant improved predator-
prey models with disease in the prey or predator have been
proposed in the recent past, see [1], [2], [3], [4], [5], [6],
[7], [8], [9]. These studies show that the disease in prey
or predator species may greatly influence the permanence
and stability of the ecosystem, such as the stabilization of
predator-prey oscillations, the occurrences of periodic and
chaotic oscillations, and so on.

Based on the assumption that the plankton species is only a
portion of the food for the fish population in lake ecosystem,
the overall fish density depends on the productivity of the
lake and does not relate directly with plankton density, Bhat-
tacharyya and Mukhopadhyay [10] established the following
epidemiological model with SIS disease in the population:

{

dS
dt

= rS
(

1− S+I
K

)

− βIpSq − dS + γI,
dI
dt

= βIpSq − dI − γI − PI2

I2+h2 ,
(1)

where S(t) and I(t) are the densities of susceptible prey
and infected prey, respectively. It is assumed that only the
susceptible prey is capable of reproducing and its birth rate
is r. Infected prey is removed by death or by predation. The
disease transmission follows simple mass action law with
infected incidence rateβ; p andq are the fractions of infected
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and susceptible prey population, respectively (0 < p, q < 1).
The prey population has the same natural death rated and the
infected ones suffer additional loss due to recovery at a rateγ
and subsequently join the susceptible class. The infected pop-
ulation also suffers loss of biomass due to predator pressure
at a rateP . The nonnegative initial conditions are imposed
and all the coefficients are positive constants. For system (1),
the local and global stabilities of various steady states and
existence of Hopf bifurcation behavior were investigated by
theoretical analyses and numerical simulations.

However, it is more legitimate to consider the impact of
predator if the abundance of large piscivorous fish is increas-
ing in a lake [11]. Through taking account of the density of
fish population as a dynamic variable which will significantly
influence the dynamics of the system, Chakraborty et al. in
[12] considered the extended model as follows:











dS
dt

= rS
(

1− S+I
K

)

− βIpSq − dS + γI,
dI
dt

= βIpSq − dI − γI − mPI2

I2+h2 ,
dP
dt

= αPI2

I2+h2 − µP − σP 2,

(2)

whereP (t) denotes the density of predator population,µ and
σP 2 are the natural death rate and the density-dependent
mortality rate of predator, respectively. It is a well known
fact that the infected prey is more vulnerable and it is
assumed that the predator only consumes the infected one.
The coefficientm is the maximal per capita consumption
rate of infected prey,h represents the amount of infected
prey at which predation rate is maximal andα represents the
conversion efficiency of consumed prey into new predator.
By regarding the infected incidence rateβ as the bifurcation
parameter, Chakraborty et al. [12] examined the existence
of Hopf bifurcation around the coexisting equilibrium and
discussed the uniform strong persistence of the system.

In fact, spatial diffusion process is ubiquitous. The major-
ity of populations do not stay in a fixed place and will move
from one place to another driven by the outside influences.
Spatial diffusion factor can also generate rich dynamics.
For instance, stationary pattern, Hopf bifurcation, Turing
instability and pattern formation have been recently studied
in [13], [14], [15], [16]. On the other hand, time-delay
factor cannot be ignored, because the density of predator
is closely related to the state at some time before due to
the food supply, competition, sexual maturity, and so on. By
introducing time delay, ecologists are able to successfully
explain regular population cycles.

Nevertheless, there have been comparatively rare results
on such eco-epidemic models taking account of both spatial
diffusion and time delay. For instance, Mukhopadhyay and
Bhattacharyya [17] considered a delay-diffusion predator-
prey model with disease in the prey and Holling type-II
functional response. They only discussed the linear stabil-
ity of boundary equilibrium and the dissipativeness of the
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system. Crauste et al. [18] introduced a delay reaction-
diffusion model of the interaction between susceptible fish
and bacterium without predator, and analyzed the stability
of uniform steady states and existence of Hopf bifurcation.
Zhang et al. [19] established a reaction-diffusion model with
disease in the prey and ratio-dependent Michaelis-Menten
functional response. They considered the temporal-spatial
delay and investigated the dynamic properties. Therefore, it
is necessary to further study the joint effects of diffusion and
delay on the eco-epidemiological systems.

Motivated by the work of [10], [12], [17], [19], in the
present paper, we mainly consider the reaction-diffusion
predator-prey with disease in the prey and gestation time
delay as follows:










































































∂S(x,t)
∂t

= ∆S(x, t) + rS(x, t)
(

1− S(x,t)+I(x,t)
K

)

−(βI(x, t) + d)S(x, t) + γI(x, t), x ∈ Ω, t > 0,
∂I(x,t)

∂t
= ∆I(x, t) + I(x, t)(βS(x, t) − d− γ)

−mP (x,t)I2(x,t)
I2(x,t)+h2 , x ∈ Ω, t > 0,

∂P (x,t)
∂t

= ∆P (x, t) + αP (x,t−τ)I2(x,t−τ)
I2(x,t−τ)+h2

−µP (x, t− τ)− σP 2(x, t− τ), x ∈ Ω, t > 0,
∂S(x,t)

∂n
= ∂I(x,t)

∂n
= ∂P (x,t)

∂n
= 0, x ∈ ∂Ω, t > 0,

S(x, t) = S1(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0],
I(x, t) = I1(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0],
P (x, t) = P1(x, t) ≥ 0, x ∈ Ω, t ∈ [−τ, 0],

(3)
whereS(x, t), I(x, t) andP (x, t), respectively, represent the
densities of susceptible prey, infected prey and predator at
the locationx ∈ Ω and timet; τ > 0 is the time required for
the gestation of the predator. The regionΩ ⊂ R

N (N ≤ 3)
denotes a bounded domain with smooth boundary∂Ω; ∆
is the Laplace operator;∂/∂n indicates the outward normal
derivative on∂Ω. The system is subject to homogeneous
Neumann boundary conditions, which means that the eco-
epidemiological system is self contained and the populations
cannot cross the boundary. Unlike the infection incidence
function in systems (1) and (2), here, we adopt the classic
bilinear functionβSI for simplicity.

The main purpose of this paper is to provide a new
perspective for both ecologists and mathematicians. More
concretely, we shall focus on the asymptotic stability of the
predator-free and coexisting steady states, and the existence
of Hopf bifurcation around the coexisting steady state in-
duced by time delay. The rest of the paper is organized
as follows. In Section 2, we investigate the fundamental
properties of solutions for system (3). In Section 3, we carry
out the linear stability of two uniform steady states and the
existence of Hopf bifurcation by analyzing the corresponding
characteristic equations. In Section 4, we conduct some
numerical simulations in support of the analytical findings.
Finally, we draw some conclusions in the Section 5.

II. FUNDAMENTAL PROPERTIES OF SOLUTIONS

In this section, we shall establish the well-posedness of
solutions for system (3), including the existence, uniqueness,
positivity and boundedness of the solutions.

First, we denote the Banach space of continuous functions
from [−τ, 0] into X with the usual supremum norm byC =
C([τ, 0], X). In our case,X is the Banach spaceC(Ω,R3)
and C(E,F ) represents the space of continuous functions

from topological spaceE into spaceF . For convenience, we
identify an elementϕ ∈ C as a function fromΩ × [−τ, 0]
into R

3 defined byϕ(x, s) = ϕ(s)(x).
For any continuous functionw(.) : [−τ, b) → X for b > 0,

we definewt ∈ C by wt(s) = w(t + s), s ∈ [−τ, 0]. It is
easy to find thatt → wt is a continuous function from[0, b)
to C.

Proposition 1 For any nonnegative initial conditions of
system (3), there exists a unique solution and this solution
remains nonnegative and bounded for anyt ≥ 0.

Proof of Proposition 1: For anyϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C

andx ∈ Ω, we defineF = (F1, F2, F3) : C → X by

F1(ϕ)(x) = rS(x, 0)

(

1− S(x, 0) + I(x, 0)

K

)

−(βI(x, 0) + d)S(x, 0) + γI(x, 0),

F2(ϕ)(x) = I(x, 0)(βS(x, 0)−d−γ)−mP (x, 0)I2(x, 0)

I2(x, 0) + h2
,

F3(ϕ)(x) =
αP (x,−τ)I2(x,−τ)

I2(x,−τ) + h2
− µP (x,−τ)

−σP 2(x,−τ).

Then, system (3) can be rewritten as the abstract functional
differential equation:

{

w′(t) = Aw + F (wt), t > 0,
w(0) = φ ∈ X,

(4)

where

w = (S, I, P )T ,

φ = (S1, I1, P1)
T ,

Aw = (∆S,∆I,∆P )T .
It is clear thatF is locally Lipschitz inX . According to

the results in [20], [21], [22], [23], [24], we can conclude
that system (4) admits a unique local solution on[0, Tmax),
whereTmax is the maximal existence time for solution of
system (4).

Besides, we can also obtain thatS(x, t) ≥ 0, I(x, t) ≥ 0
andP (x, t) ≥ 0 becauseO = (0, 0, 0) is a lower solution of
system (3).

Next, we verify the boundedness of solutions. In fact, we
only need to prove that any solution is uniformly bounded.
It is easy to see thatM = (M1,M2,M3) is a upper solution
of system (3), where

M1 = max

{

K, sup
−τ≤t≤0

‖ S1(·, s) ‖C(Ω,R)

}

,

M2 = max

{

K, sup
−τ≤t≤0

‖ I1(·, s) ‖C(Ω,R)

}

,

M3 = max

{

α

σh2
, sup
−τ≤t≤0

‖ P1(·, s) ‖C(Ω,R)

}

.

Based on the comparison principle, we have

0 ≤ S(x, t) ≤ M1, 0 ≤ I(x, t) ≤ M2, 0 ≤ P (x, t) ≤ M3

for x ∈ Ω and t ∈ [0, Tmax). Then the solutions of (3)
are bounded onΩ × [0, Tmax). From the stand theory for
semilinear parabolic systems in [25], we deduce thatTmax =
+∞. The proof is complete.
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III. STABILITY OF UNIFORM STEADY STATES

As we know, spatial diffusion and time delay do not
change the number and location of the uniform steady
states. With the similar method in [12], we can obtain the
predator-free equilibriumE0 = (S0, I0, 0) and the coexisting
equilibriumE∗ = (S∗, I∗, P ∗), where

S0 =
d+ γ

β
,

I0 =
(d+ γ)(Kβr −Kβd− rd− rγ)

β(Kβd+ rd+ rγ)
,

S∗ =

√
b2 − 4ac− b

2a
,

P ∗ =
1

σ

(

αI∗2

I∗2 + h2
− µ

)

,

a = r,

b = rI∗ + βKI∗ + dK −Kr,

c = −γKI∗,

andI∗ is the positive root of the following equation

r

{

1− I∗

K
−
[

d+ γ +
mαI∗3

σ(I∗2 + h2)2
− mµI

σ(I∗2 + h2)

]}

−d+ γI∗
[

d+ γ +
mαI∗3

σ(I∗2 + h2)2
− mµI

σ(I∗2 + h2)

]−1

= 0.

Next, we will investigate the asymptotic stability of the two
uniform steady states.

We first introduce some useful concepts from [24]. Let0 =
µ0 < µ1 < µ2 < · · · denote the eigenvalues of the operator
−∆ in Ω under homogeneous Neumann boundary conditions
and s(µk) be the eigenfunction space corresponding toµk

with dimension numbernk = dim[s(µk)] in C1(Ω).
(i) Xk := {∑nk

j=1 cjϕkj : cj ∈ R}, where{ϕkj}nk

j=1 are an
orthogonal basis ofs(µk).
(ii) X := {(S, I, P ) ∈ C1(Ω) × C1(Ω) × C1(Ω) : ∂S

∂n
=

∂I
∂n

= ∂P
∂n

= 0 on ∂Ω}, so thatX =
⊕∞

k=0 Xk.

A. Stability of predator-free equilibrium

Theorem 1 If Kβr > Kβd+ rd + rγ, then for anyτ ≥
0, the predator-free equilibriumE0 is asymptotically stable
whenαI20 < µ(I20 +h2) or unstable whenαI20 > µ(I20 +h2).

Proof of Theorem 1: The linearization of system (3)
at the predator-free equilibriumE0 = (S0, I0, 0) can be
expressed by

Yt = (E∆+ FY (E0))Y,

whereE is the unit matrix,Y = (S(x, t), I(x, t), P (x, t))T ,
and

FY (E0)

=









− γI0
S0

− rS0

K
− r(d+γ)

Kβ
− d 0

βI0 0 − mI0
I2

0
+h2

0 0
αI2

0

I2

0
+h2 e

−λτ − µ









.

For k ≥ 0, it is observed thatXk is invariant under the
operatorE∆ + FY (E0) and λ is an eigenvalue ofE∆ +
FY (E0) on Xk if and only if λ is an eigenvalue of the
matrix −µkE + FY (E0). That is
(

λ+ µk −
αI20

I20 + h2
e−λτ + µ

)

[

λ2 +
(

2µk +
γI0
S0

+ rS0

K

)

λ

+µ2
k + µk

(

γI0
S0

+
rS0

K

)

+
r(d + γ)I0

K
+ dβI0

]

= 0.

It is apparent that all roots of the quadratic equation

λ2 +

(

2µk +
γI0
S0

+
rS0

K

)

λ+ µ2
k

+µk

(

γI0
S0

+
rS0

K

)

+
r(d+ γ)I0

K
+ dβI0 = 0

must have strictly negative real parts. Then we only need to
consider the following transcendental equation:

λ+ µk − αI20
I20 + h2

e−λτ + µ = 0. (5)

Whenτ = 0, the root of (5) isλ = −µk +
αI2

0

I2

0
+h2 −µ. We

can find thatλ < 0 for any k ≥ 0 whenαI20 < µ(I20 + h2),
andλ > 0 for somek ≥ 0 whenαI20 > µ(I20 + h2).

When τ > 0, assume thatλ = iω (ω > 0) is a root of
(5), and we have

αI20
I20 + h2

(cosωτ − i sinωτ) = µk + µ+ iω.

Separating the real and imaginary parts leads to






αI2

0

I2

0
+h2 cosωτ = µk + µ,
αI2

0

I2

0
+h2

sinωτ = −ω,

and

ω2 =

(

αI20
I20 + h2

+ µk + µ

)(

αI20
I20 + h2

− µk − µ

)

. (6)

If αI20 < µ(I20 + h2), then equation (6) has no positive root
and equation (5) has no purely imaginary root. According to
the Corollary 2.4 in [26], as parameterτ varies, the sum
of the orders of the roots of (5) in the open right half
plane can change only if a root appears on or crosses the
imaginary axis. As a consequence, equation (5) has roots
only with negative real part if the conditionαI20 < µ(I20+h2)
holds. It is known that the constant equilibrium solution is
asymptotically stable only if all the characteristic values have
strictly negative parts. Thus, the proof is complete.

The asymptotic stability of predator-free equilibrium im-
plies the extinction of predator. Therefore, from Theorem 1,
it can be observed that the predator population may extinct
when its death rateµ is large or the conversion efficiency
coefficientα is sufficiently small.

B. Existence of Hopf bifurcation around the positive equi-
librium

The asymptotic stability of positive equilibrium implies
the coexistence of both predator and prey species, which
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would be helpful for the population conservation and the
sustainable development of ecosystem. Consequently, we are
more interested in the effect of time delay on the stability
of the coexisting equilibriumE∗. Here, we concentrate on
the stability of positive equilibrium and the existence of
Hopf bifurcation by regarding time delayτ as the bifurcation
parameter.

Linearizing system (3) at the positive equilibriumE∗, we
can obtain the characteristic equation

∣

∣

∣

∣

∣

∣

λ+ µk + a11 a12 0
a21 λ+ µk + a22 a23
0 a32e

−λτ λ+ µk + a33e
−λτ + b33

∣

∣

∣

∣

∣

∣

= 0,
(7)

where

a11 =
γI∗

S∗
+

rS∗

K
,

a12 =
r

K
S∗ + βS∗ − γ,

a21 = −βI∗,

a22 =
mP ∗I∗

I∗2 + h2
− 2mp∗I∗3

(I∗2 + h2)2
,

a23 =
m(µ+ σ)

α
,

a32 =
2αh2P ∗I∗2

(I∗2 + h2)2
,

a33 = − αI∗2

I∗2 + h2
,

b33 = µ− 2σP ∗.
Then the characteristic equation (7) can be reduced to

λ3+Akλ
2+Bkλ+Ck+e−λτ (Dkλ

2+Fkλ+Gk) = 0, (8)

where

Ak = 3µk + a11 + a22 + b33,

Bk = 3µ2
k + 2(a11 + a22 + b33)µk + a11a22

+a22b33 + a11b33 − a12a21,

Ck = µ3
k + (a11 + a22 + b33)µ

2
k + (a11a22 + a11b33

+a22b33 − a12a21)µk + a11a22b33 − a12a21b33,

Dk = a33,

Fk = 2a33µk + a11a33 + a22a33 − a23a32,

Gk = a33µ
2
k + (a11a33 + a22a33 − a23a32)µk

+a11a22a33 − a11a23a32 − a12a21.
The expressions of the coefficients in equation (8) are too
complex, so we can only derive the general conditions for
stability of the positive equilibriumE∗. The detailed numer-
ical calculations will be left in the next section. Then, we
discuss the distribution of characteristic values in equation
(8).

For τ = 0, the characteristic equation (8) can be rewritten
as

λ3 + (Ak +Dk)λ
2 + (Bk + Fk)λ+ (Ck +Gk) = 0. (9)

By Routh-Hurwitz criterion, all roots of the cubic equation
(9) have strictly negative real parts if and only if the
following conditions hold:

(H1) Ak +Dk > 0;

(H2) Bk + Fk > 0;

(H3) Ck +Gk > 0;

(H4) (Ak +Dk)(Bk + Fk)− (Ck +Gk) > 0.
Given this, the positive coexisting equilibriumE∗ is locally
asymptotically stable without time delay.

On the other hand, we discuss the effect of time delayτ on
the stability of the positive equilibrium. Assume thatλ = iω
(ω > 0) is a root of (8). Substituting it into the equation can
yield

−iω3 −Akω
2 + iBkω + Ck

+(−Dkω
2 + iFkω +Gk)(cosωτ − i sinωτ) = 0.

(10)

Segregating the real and imaginary parts of equation (10),
we have

{

(Dkω
2 −Gk) sinωτ + Fkω cosωτ = ω3 −Bkω,

Fkω sinωτ − (Dkω
2 −Gk) cosωτ = Akω

2 − Ck.
(11)

Taking square on both sides of the equations of (11) and
summing them up, we can obtain

ω6 + (A2
k − 2Bk −D2

k)ω
4 +Qkω

2 + C2
k −G2

k = 0, (12)

whereQk = B2
k − 2AkCk + 2DkGk − F 2

k .
Let z = ω2, then equation (12) can be transformed into a

cubic equation ofz in the form of

Λ(z) = z3+(A2
k−2Bk−D2

k)z
2+Qkz+C2

k−G2
k = 0. (13)

We make the following hypothesis:

(H5) Ck −Gk < 0.
Assume that(H3) and (H5) hold. It is easy to show that

C2
k −G2

k < 0. Hence, equation (13) has at least one positive
root due to the Descartes’ rule of singes [27]. Without loss of
generality, we assume that equation (13) has three positive
roots and denote any one byz∗. Then equation (12) has
positive rootω∗ = z∗2, from which we can deduce that
the characteristic equation (8) may have a pair of purely
imaginary rootsλ = ±iω∗ under certain condition.

Solving the equations of (11), we get







cosωτ = (Fk−AkDk)ω
4+(AkGk+CkDk−BkFk)ω

2−CkGk

F 2

k
ω2+(Dkω2−Gk)2

,

sinωτ = Dkω
5+(AkFk−BkDk−Gk)ω

3+(BkGk−CkFk)ω
F 2

k
ω2+(Dkω2−Gk)2

.

Therefore, if we denote

τ∗j =
1

ω∗

{

arccos
(Fk −AkDk)ω

4 + Skω
2 − CkGk

F 2
kω

2 + (Dkω2 −Gk)2

}

,

whereSk = AkGk+CkDk−BkFk andj = 0, 1, 2, · · · , then
±iω∗ is a pair of purely imaginary roots of (8) atτ = τ∗j .
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To guarantee the occurrence of Hopf bifurcation, we
still need to verify the transversal condition. Taking the
derivatives of (8) with respect toτ results in

(

dλ

dτ

)−1

=
3λ2 + 2Akλ+Bk + e−λτ (2Dkλ+ Fk)

λe−λτ (Dkλ2 + Fkλ+Gk)
− τ

λ
.

(14)

Substitutingλ = iω∗ andτ = τ∗j into (14), we have

[

d(Reλ(τ))
dτ

]−1

λ=iω∗,τ=τ∗

j

=
HK − LT

ω∗2(J2 +K2)
,

where

H = −3ω∗2 +Bk,

J = 2Akω
∗,

K = Gk −Dkω
∗2,

L = Fkω
∗,

M = H sinω∗τ∗j + J cosω∗τ∗j + 2Dkω
∗,

T = H cosω∗τ∗j − J sinω∗τ∗j + Fk.

Then we can obtain the transversal condition

[

d(Reλ(τ))
dτ

]−1

λ=iω∗,τ=τ∗

j

> 0

when the following inequality

(H6) HK − LT > 0

is satisfied.
Again based on the significant results in [26], we can find

that if the assumptions(H1) − (H6) are satisfied, then all
roots of characteristic equation (8) have negative real parts
for τ ∈ [0, τ∗0 ). Moreover, a pair of purely imaginary roots
exist for τ = τ∗0 and a pair of roots with positive real parts
will appear forτ > τ∗0 . By applying the Hopf bifurcation
theorem in [24], the conclusions about the stability of pos-
itive equilibrium and existence of the Hopf bifurcation can
be drawn as follows.

Theorem 2 If the assumptions(H1) − (H6) are all
satisfied, then the following statements are true.

(i) The positive equilibriumE∗ is locally asymptotically
stable whenτ ∈ [0, τ∗0 ).

(ii) The positive equilibriumE∗ is unstable whenτ >
τ∗0 . The Hopf bifurcation occurs atτ = τ∗0 . That is, system
(3) has a series of periodic solutions aroundE∗ when τ is
slightly larger thanτ∗0 .

IV. N UMERICAL SIMULATIONS

In this section, we shall give some numerical examples
to describe the previous theoretical results with the help of
Mathematica and MATLAB. Here, we consider the system
in one dimensional spaceΩ = (0, π) for simplicity.

First, we choose

r = 1.5, K = 100, d = 0.003, γ = 0.05, α = 0.09,

µ = 0.5, σ = 0.1, h = 15, β = 0.45,m = 1.5, τ = 2.5.

Then the predator-free equilibrium isE0 =
(0.1178, 36.9452, 0), and the conditions in Theorem 1

Fig. 1. The predator-free equilibrium is stable whenτ = 2.5.

are satisfied. It is to be noted that the boundary equilibrium
E0 is asymptotically stable (see Figure 1).

Second, we rechoose

r = 1.5, K = 100, d = 0.03, γ = 0.05, α = 0.9,

µ = 0.001, σ = 0.1, h = 15, β = 0.45,m = 1.5.

Then the coexisting equilibrium is E∗ =
(9.8745, 24.7625, 6.2011). We can also derive the first
Hopf bifurcation critical valueτ∗0 = 1.61 for k = 0.
When time delay is smaller than the critical value, the
positive equilibrium is asymptotically stable (see Figure
2). Otherwise, when time delay is slightly larger than the
critical value, the positive equilibrium becomes unstable and
periodic solution will bifurcate fromE∗ (see Figure 3).

V. CONCLUSIONS

In this paper, we have considered a delay-diffusion
predator-prey system with disease in the prey. The model,
which incorporates the spatial diffusion and time delay
effects, is much more generalized than those in [10], [12].
As pointed in [12], the consideration of a disease in the prey
or predator population makes the system extremely complex.
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Fig. 2. The positive equilibrium is stable whenτ = 0.3 < τ
∗

0
.

Despite all this, the dynamical behaviors in such systems still
have a guidance function to the ecological diversity.

It is observed from our results that the uniform predator-
free steady state is asymptotically stable under certain con-
dition, but the stability has nothing to do with the gestation
delay. However, this stability is harmful, as the predator
population will be ultimately extinct over time. To avoid this
phenomenon, some measures may be taken to reduce the
mortality of predator population or increase the food sources.

It can also be observed that the gestation delay has crucial
impact on the asymptotic stability of the uniform coexisting
steady state. The stability of positive equilibrium is not
affected by time delay when it is sufficiently small. However,
the stability changes when the gestation delay is larger than
some critical value and spatially periodic solution will arise.
According to these facts, we can know that both time delay
and spatial diffusion can generate periodic pattern and play
an important role in spatiotemporal dynamics. Therefore, in
order to maintain the stability of the ecosystem, it is better
to shorten the gestation delay of predator population.

Of course, the methods and results in this paper can be
applied to other reaction-diffusion systems. We hope that
our work could be instructive to both theoretical and applied

Fig. 3. The positive equilibrium is unstable and periodic solution appears
whenτ = 2.5 > τ

∗

0
.

ecologists.
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