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The Effect of Time Delay on the Stablility of a
Diffusive Eco—epidemiological System

Kejun Zhuang

Abstract—The disease has a vital effect on the dynamical and susceptible prey population, respectivély(p, ¢ < 1).
behaviors of predator-prey system in ecology. When disease The prey population has the same natural deathdrated the
spreads in the prey population, the infected preys are more jfacted ones suffer additional loss due to recovery at ayate
likely to be captured by predators. On the other hand, spatial ., . .
diffusion and gestation delay are ubiquitous in the nature and_subsequentlyjom the Susceptlble class. The infected pop-
and can generate rich spatiotemporal dynamical behaviors. In Ulation also suffers loss of biomass due to predator pressure
this study, a delayed and diffusive predator-prey system with at a rateP. The nonnegative initial conditions are imposed
disease in the prey is proposed. First, the existence, uniquenessand all the coefficients are positive constants. For system (1),
positivity and boundedness of solutions are established. Second,the local and global stabilities of various steady states and

the stability condition of constant predator-free equilibrium ist f Hobf bif tion behavi . tinated b
solution is derived. Third, the stability of constant coexistence EXISIENCE OT HOpT biturcation behavior were investigated by

equilibrium solution and the existence of Hopf bifurcation theoretical analyses and numerical simulations.

are investigated by regarding time delay as the bifurcation However, it is more legitimate to consider the impact of
parameter. Finally, some numerical simulations and conclusions predator if the abundance of large piscivorous fish is increas-
are given to illustrate the theoretical results. ing in a lake [11]. Through taking account of the density of

Index Terms—eco-epidemiological system, time delay, Hopf fish population as a dynamic variable which will significantly

bifurcation, periodic solution. influence the dynamics of the system, Chakraborty et al. in
[12] considered the extended model as follows:
|. INTRODUCTION 48 — 8§ (1 — SH) — gIrSa - ds + I,
HE predator-prey system is the basic model in pop- a - ﬁfpszq —dI — I — B, 2)
ulation dynamics, so the interactions between predator %_1; = 1%]312 — uP — oP?,

and prey in natural ecosystem have drawn extensive attem\'/?ﬁereP(t) denotes the density of predator populatiornd

from scholars |n_d|ffer<_ant kinds of fields. _As most SPECIES > e the natural death rate and the density-dependent
are prone to various diseases, abundant improved predafor- . . . )

o . mortality rate of predator, respectively. It is a well known
prey models with disease in the prey or predator have bef%n

. ct that the infected prey is more vulnerable and it is
proposed in the recent -past, see [1], [2], [3.]’ [4], [E.)]’ [6]assumed that the predator only consumes the infected one.
[7], [8], [9]. These studies show that the disease in pr

or predator species may greatly influence the ermanenche coefficientm is the maximal per capita consumption
b P Yy 9 y b ralfe of infected preyh represents the amount of infected

and stability of the ecosystem, such as the stabilization 0 y at which predation rate is maximal andepresents the

o o I
predator-prey oscillations, the occurrences of periodic a ' . - :

} Y conversion efficiency of consumed prey into new predator.
chaotic oscillations, and so on.

Based on the assumption that the plankton species is onIBy regarding the infected incidence rateas the bifurcation

: : o arameter, Chakraborty et al. [12] examined the existence
portion of the food for the fish population in lake ecosysteng,f Hopf bifurcation around the coexisting equilibrium and

the overall fish density depends on the productivity of th@scussed the uniform strong persistence of the system
lake and does not relate directly with plankton density, Bhat- In fact, spatial diffusion process is ubiquitous. The major-

taqharyya ar_1d Mukhopad.hyay [10.] establlished the f°”°.W"1R/ of populations do not stay in a fixed place and will move
epidemiological model with SIS disease in the populatlon'from one place to another driven by the outside influences.

% =rS (1 — %) — BIPSY —dS + I, Spatial diffusion factor can also generate rich dynamics.
% — BIPSY — dI —~I — 15527 (1)  For instance, stationary pattern, Hopf bifurcation, Turing

instability and pattern formation have been recently studied
where S(t) and I(t) are the densities of susceptible preyn [13], [14], [15], [16]. On the other hand, time-delay
and infected prey, respectively. It is assumed that only tif@ctor cannot be ignored, because the density of predator
susceptible prey is capable of reproducing and its birth rdgeclosely related to the state at some time before due to
is . Infected prey is removed by death or by predation. THbe food supply, competition, sexual maturity, and so on. By
disease transmission follows simple mass action law withtroducing time delay, ecologists are able to successfully
infected incidence raté; p andg are the fractions of infected explain regular population cycles.

Nevertheless, there have been comparatively rare results
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system. Crauste et al. [18] introduced a delay reactioffom topological spacé into spaceF'. For convenience, we
diffusion model of the interaction between susceptible fisdentify an elementp € C as a function fronQ2 x [—, 0]

and bacterium without predator, and analyzed the stabilityto R? defined byp(z, s) = o(s)(z).

of uniform steady states and existence of Hopf bifurcation. For any continuous functiom(.) : [-7,b) — X forb > 0,
Zhang et al. [19] established a reaction-diffusion model withe definew; € C by w:(s) = w(t + s), s € [-7,0]. It is
disease in the prey and ratio-dependent Michaelis-Menteasy to find that — w; is a continuous function frorfo, b)
functional response. They considered the temporal-spat@lC'.

delay and investigated the dynamic properties. Therefore, itProposition 1 For any nonnegative initial conditions of
is necessary to further study the joint effects of diffusion angystem (3), there exists a unique solution and this solution
delay on the eco-epidemiological systems. remains nonnegative and bounded for arny 0.

Motivated by the work of [10], [12], [17], [19], in the Proof of Proposition 1: For anyy = (¢4, @2, 3)” € C
present paper, we mainly consider the reaction-diffusigthd 2 c Q, we defineF = (F\,Fy,F3):C — X by
predator-prey with disease in the prey and gestation time
delay as follows: Fi(p)(z) =7rS(z,0) (1 — W)

S (z,t) S(z,t)+1(z,t)
2t = AS(a,t) + 7S (1) (1 - Sntiplled ~(BI(x,0) + d)S(2,0) +7I(x,0),
—(BI(z,t) + d)S(x,t) + vI(z,t), xz€Q,t>0, 9
P(z,0)I2(z,0
YD) _ AL(a,) + 1(a,0)(BS(w,t) — d—7) Fa(e)a) = 1(0,0)(35 z0) ~d-)~ "),
_mPEOlP@) o0 s Z
op(e) I2(z,t)+h2 > (xP(J;,t—,T)IQ(JJ,;—T) P 7 aP(z, 77)12 (z,—7) »
ot - AP(I‘,t) + I2(z,t—7)+h? 3(90)($) - [2(16, _7_) + K2 K ($, 77—)
—uP(x,t —7) —oP%(x,t —7), x€N,t>0,
asa(i,t) _ Bléfl,t) _ anﬁ,t) —0, wEIt>0, —oP?%(x, —T).
S(z,t) = Si(z,t) 20, z€Qte[-T0], Then, system (3) can be rewritten as the abstract functional
I(z,t) = Li(z,t) 20, z€Q,te[-T,0] differential equation:
P(x,t) = Pi(x,t) >0, z€Q,te[-71,0],
3) w'(t) = Aw + F(wy), t>0, 4
whereS(x,t), I(z,t) and P(x, t), respectively, represent the w(0) = ¢ € X, (4)

densities of susceptible prey, infected prey and predator at

the locationz € Q and timet; 7 > 0 is the time required for Where

the gestation of the predator. The regianc R (N < 3) w=(S,1,P)T
denotes a bounded domain with smooth boundziy A T

is the Laplace operatof)/dn indicates the outward normal ¢ = (S1, 11, P1)",
derivative on9df2. The system is subject to homogeneous Aw = (AS, AL, AP)T.

Neumann boundary conditions, which means that the €CO+t is clear thatF is locally Lipschitz in X. According to

epidemiological system is self contained and the populatiO{I]]s.e results in [20], [21], [22], [23], [24], we can conclude
cannot cross the boundary. Unlike the infection incidengg . system (4) ad’mits :’,i unidue I(;cal S(')Iution[()nr )
function in systems (1) and (2), here, we adopt the Clas%/lﬁﬁereT is the maximal existence time for solﬁgi:gr; of
bilinear functions.ST for simplicity. \%}/stem 7(’2‘)1

The main_purpose of th|_s paper is to pr0\_/|qle & NeW gesides, we can also obtain thétz, t) > 0, I(x,t) >0

perspective for both ecologists and mathematicians. More . .

) o and P(x,t) > 0 becausé = (0,0,0) is a lower solution of

concretely, we shall focus on the asymptotic stability of thse stem (3)
redator-free and coexisting steady states, and the existe o :

P 9 y ﬁext, we verify the boundedness of solutions. In fact, we

of Hopf bifurcation around the coexisting steady state in- T .
P 9 y ly need to prove that any solution is uniformly bounded.

duced by time delf_iy. The res_t of t_he paper is organiz s easy to see thavl = (My, Ma, Ms) is a upper solution
as follows. In Section 2, we investigate the fundamentgd
system (3), where

properties of solutions for system (3). In Section 3, we car
out the linear stability of two uniform steady states and the o

. . : i .~ M; =max<q K, sup | Si(+,s) HC(Q.R) ,
existence of Hopf bifurcation by analyzing the corresponding —7<t<0 )
characteristic equations. In Section 4, we conduct some

numerical simulations in support of the analytical findings. A, = max {K, sup || I1i(-,s) HC@ R)} ,
Finally, we draw some conclusions in the Section 5. —T<t<0 ’

o
II. FUNDAMENTAL PROPERTIES OF SOLUTIONS M = max {—th ) _SE&O | Pi(-ss) |C(5,R)} :

In this section, we shall establish the well-posedness ofBased on the comparison principle, we have
solutions for system (3), including the existence, uniqueness
positivity and boundedness of the solutions. 0 < 8(@1) < M,0<I(@t) < M,0< Pla,t) < My
First, we denote the Banach space of continuous functidies 2 € Q and ¢t € [0, Tinaz). Then the solutions of (3)
from [—7, 0] into X with the usual supremum norm iy = are bounded oM x [0, T)nq.). From the stand theory for
C([r,0], X). In our caseX is the Banach spac€(Q2,R?) semilinear parabolic systems in [25], we deduce that, =
and C(E, F) represents the space of continuous functionsco. The proof is complete. ]
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I11. STABILITY OF UNIFORM STEADY STATES For k > 0, it is observed thaXy is invariant under the
pperator EA + Fy(Ep) and X is an eigenvalue oFFA +

(Ep) on Xy if and only if A is an eigenvalue of the
atrix —uiE + Fy (Eyp). That is

As we know, spatial diffusion and time delay do no
change the number and location of the uniform steady
states. With the similar method in [12], we can obtain th

dator-free equilibriunky, = (S, Ip, 0) and the coexistin I
preaator-iree eq 0 = (50, 10,0) g <)\+Mk a0h2€ AT+M>

equilibrium E* = (S*, I'*, P*), where 2+
d r
50:_;7, X2+ (20 + 2 + =52) &
7 _ (d+y)(Kpr—Kpd—rd—ry) 1+ V_I()+@ +M+dﬂ]o =0.
o BKBd+rd+ry) : % K K : -
It is apparent that all roots of the quadratic équation
2 _ _
g Vb —dac—b 32 (o o 20 L TS0\ e
2a 2 TS UK g
1 al*
pr_ L ( LA M) o rSo)  rd+ Dl |
. ) N S Al Iy =
o \I*2 4 12 + Lk SO + K + K + ﬂ 0 0
a=r, . .
must have strictly negative real parts. Then we only need to
b=rl"+pBKI"+dK — K, consider the following transcendental equation:
= —KI*, h
= At piy — 0o 4y = 0, 5)

. 2
and I* is the positive root of the following equation I§ +h?

WhenT = 0, the root of (5) is\ = —puy, + Igo;ihz — . We
7,{1 A [d+7+ mal*®  mpul ]} can find that\ < 0 for any k > 0 whenal? < u(I3 + h?),
K o(I*2+h2)?2  o(I*2+ h?) and X\ > 0 for somek > 0 whenalg > u(Ig + h?).
Whent > 0, assume thah = iw (w > 0) is a root of
(5), and we have

maod*3 mul !
—d+~I" |d — =0
T { YR T s+ hQ)} al? . ,
o _ _ N 5,2 (coswt —isinwt) = pg + p + iw.
Next, we will investigate the asymptotic stability of the two Iy +
uniform steady states. Separating the real and imaginary parts leads to
We first introduce some useful concepts from [24]. Let )
o < p1 < pe < --- denote the eigenvalues of the operator % COSWT = ) + K,
—A in Q under homogeneous Neumann boundary conditions W2 Shwr = —w
and s(u) be the eigenfunction space corresponding:to 13+h? ’
with dimension numben;, = dim[s(u)] in C1(Q). and
() Xi:= {275 cjpns : ¢; € R}, where{ypy;}7, are an
orthogonal basis of(u). al? al?
i ._ 10 10 10) . 88 _ 2 _ (=20 0 _ _ 6)
T y 4o . - 2 2 2 2 '
(i) X :={(S,I,P) € C'(Q) x C*(Q) x C'(Q) : L& (10+h +ﬂk+ﬂ) (10+h 1k u) (

9L =98 —0 on 09}, so thatX = - Xk.
If aI? < pu(Ig + h?), then equation (6) has no positive root
. A and equation (5) has no purely imaginary root. According to
A. Siability of predator-free equilibrium the C?)rollary (2.)4 in [26], as parameter varies, the sum
Theorem 1If Kfgr > Kfd+ rd+ rv, then for anyr > of the orders of the roots of (5) in the open right half
0, the predator-free equilibriunf, is asymptotically stable plane can change only if a root appears on or crosses the
whenalg < u(I3+h?) or unstable whenI? > u(I3+h?). imaginary axis. As a consequence, equation (5) has roots
Proof of Theorem 1: The linearization of system (3) only with negative real part if the conditien/? < u(12+h?)
at the predator-free equilibriunky = (So,1p,0) can be holds. It is known that the constant equilibrium solution is
expressed by asymptotically stable only if all the characteristic values have
strictly negative parts. Thus, the proof is complete. =
Y: = (EA + Fy (Ep))Y, The asymptotic stability of predator-free equilibrium im-
plies the extinction of predator. Therefore, from Theorem 1,
where £ is the unit matrix,Y" = (S(z,t), I(z,t), P(z,1))", it can be observed that the predator population may extinct
and when its death ratg is large or the conversion efficiency
coefficienta is sufficiently small.

Fy(Eyp) _ _ _ - _
ol _ Sy _rldty) g4 0 B. Existence of Hopf bifurcation around the positive equi-
So K Kp i librium
= ﬂIO 0 - IQ-Q—ZQ . . .. CeL e . .
o2 The asymptotic stability of positive equilibrium implies
0 0 13&26— T—p the coexistence of both predator and prey species, which

(Advance online publication: 7 November 2018)
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would be helpful for the population conservation and thBy Routh-Hurwitz criterion, all roots of the cubic equation
sustainable development of ecosystem. Consequently, we ¢ have strictly negative real parts if and only if the
more interested in the effect of time delay on the stabilitfpllowing conditions hold:

of the coexisting equilibriumz*. Here, we concentrate on )

the stability of positive equilibrium and the existence of (Hi) A+ Di > 0;

Hopf bifurcation by regarding time delayas the bifurcation  (Hz) By + Fi > 0;
parameter. _
Linearizing system (3) at the positive equilibriuft, we (Hs) Cr+Gr>0;
can obtain the characteristic equation (Hs) (Ar+ Dp)(Bi + F) — (Cr + Gi) > 0.
Given this, the positive coexisting equilibriufi* is locally
A+ pp + ann a1o 0 asymptotically stable without time delay.
as A+ g + ago as3 On the other hand, we discuss the effect of time delap
0 asge T A+ up + asze™" 4 b3z |the stability of the positive equilibrium. Assume that= iw
=0, (w > 0) is a root of (8). Substituting it into the equation can
(7) vyield
where
~I[*  rS* .3 5, .
a1 = o — —iw® — Apw® + iBrw + Cj, (10)
f K +(=Dpw? + iFw + Gy ) (cos wr — isinwr) = 0.
2 = ES +B5" -, Segregating the real and imaginary parts of equation (10),
as = —BI%, we have
_ omPIr 2mpt TP
a2 = IR (I*2 + h2)2’ (Drw? — Gy) sinwt + Frwcoswt = w? — Byw,
Frwsinwr — (Dyw? — G,) coswt = Apw? — Cy.
s = m(p+ o) (11)
o ’ Taking square on both sides of the equations of (11) and
2ah? P**? summing them up, we can obtain
a3s = —5———,
32 (I*2 + h2)2
agg = 2" WO+ (A7 = 2By — DRw' + Quw? + CF = G =0, (12)
I** + h?’
whereQy = B2 — 24 2D Gy — F2.
b3z = n— 20P*. Qr k kCr + Gr k

— 2 i i
Then the characteristic equation (7) can be reduced to L?t F=wn then_equatlon (12) can be transformed into a
cubic equation ot in the form of

N+ AN+ BN+ Cr+e M (D N2+ FpA+Gi) =0, (8)
" ( ) A(z) = 22+ (A7 2B, — D) 2* +Qrz+C;—G% = 0. (13)
where

We make the following hypothesis:

(Hs) Cr — G, <0.

Assume tha{Hs3) and (Hs) hold. It is easy to show that
+a22b33 + a11b33 — aiza91, C? — G2 < 0. Hence, equation (13) has at least one positive
root due to the Descartes’ rule of singes [27]. Without loss of
generality, we assume that equation (13) has three positive
+a22b33 — a12a21) ik + a11a22b33 — a12a21b33, roots and denote any one by. Then equation (12) has

A = 3pr + a1 + a2 + bas,
By, = 3ui + 2(a11 + ass + baz)pux + arrass

Cr = py + (a11 + aga + bsz)pi + (a11a22 + ar1ba3

Dy = ass positive rootw* = z**, from which we can deduce that
the characteristic equation (8) may have a pair of purely

Py = 2az3pu; + ar1a33 + az2a33 — a3a32, imaginary roots\ = +iw* under certain condition.

Gy = azzps + (a11a33 + a2oa33 — azzazs) i Solving the equations of (11), we get

+a11a22033 — a11023032 — A12021.- . ,

The expressions of the coefficients in equation (8) are to¢ coswr = Fr=ArDrw ;Z(f;f(lgigfz'&—iﬂk)w —CGe
com_p_lex, SO we can only _d_eri_ve the general _conditions fo T — DwsHAka,§ka,Gkk)ws+(’}3ka,Cka)w
stability of the positive equilibriuntz*. The detailed numer- FPw2+(Drw?—Gy)? :
|c_al calculatlons wlll_be left in the n-ex.t section. .Then, V‘{erherefore, if we denote
discuss the distribution of characteristic values in equation
(8).

For r = 0, the characteristic equation (8) can be rewritten o

as J E

1 (Fx — ApDy)w* + Spw? — CrG
arccos F2 3 3 3 ,

whereS, = AyGp+Cy D — By F, andj = 0,1,2,-- -, then
A%+ (Ag 4+ D)X + (B + Fi)A + (Cr + Gx) = 0. (9) +iw* is a pair of purely imaginary roots of (8) at= ;.

(Advance online publication: 7 November 2018)
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To guarantee the occurrence of Hopf bifurcation, we
still need to verify the transversal condition. Taking the
derivatives of (8) with respect to results in ¢

-1
(%) ”

B3N 240+ B+ e M 2DpA+ ) T

Susceptible prey S(x,t)

Ae=AT (Dk)\2+Fk>\+Gk) Y o \
Substituting\ = iw* andT = 7 into (14), we have ¢ \2\»\\ 7 S
d(Re)‘(T)) - _ HK — LT Distance x 0 500 Time t
dT A=tw* , 7=7F B w*2(‘]2 + K2)7
TG
where )
H = —3w*2 + Bk, 230
J = 2Akw*, gzo‘
2 % 10
K - Gk - Dkw* y 2
L = Frw*, G

M = Hsinw*7} + Jcosw™r} + 2Djw",

T = Hcosw*T;‘ — Jsinw*T;‘ + Fy.
Then we can obtain the transversal condition
d(Rex(r))] ™" -
when the following inequality
(Hg) HK — LT >0

Predator P(x.t)
o

is satisfied. s\\%\ 1500
Again based on the significant results in [26], we can find 5 e
that if the assumptionéH;) — (Hg) are satisfied, then all Ditencei 05w Time t

roots of characteristic equation (8) have negative real parts
for 7 € [0, 7). Moreover, a pair of purely imaginary rootsFig. 1. The predator-free equilibrium is stable wher= 2.5.
exist for 7 = 7 and a pair of roots with positive real parts
will appear forr > 7. By applying the Hopf bifurcation
theorem in [24], the conclusions about the stability of pogre satisfied. It is to be noted that the boundary equilibrium
itive equilibrium and existence of the Hopf bifurcation carfo is asymptotically stable (see Figure 1).
be drawn as follows. Second, we rechoose

Theorem 2 If the assumptions(H;) — (Hg) are all
satisfied, then the following statements are true.

(i) The positive equilibriumE™ is locally asymptotically
stable whenr € [0, 7).

(i) The positive equilibriumE* is unstable whenr > Then the coexisting equilibrium is E* =
7. The Hopf bifurcation occurs at = 7. That is, system (9.8745,24.7625,6.2011). We can also derive the first

r=15K =100,d = 0.03,v = 0.05,a = 0.9,

p=0.001,0=0.1,h=1575=045m = 15.

(3) has a series of periodic solutions aroufitl when 7 is Hopf bifurcation critical valuer; = 1.61 for £k = 0.
slightly larger thanrg. When time delay is smaller than the critical value, the
positive equilibrium is asymptotically stable (see Figure
IV. NUMERICAL SIMULATIONS 2). Otherwise, when time delay is slightly larger than the

In this section, we shall give some numerical examplééitical value, the positive equilibrium becomes unstable and
to describe the previous theoretical results with the help Beriodic solution will bifurcate from£™ (see Figure 3).
Mathematica and MATLAB. Here, we consider the system

in one dimensional spade = (0, ) for simplicity. V. CONCLUSIONS

First, we ch : . T
St, we choose In this paper, we have considered a delay-diffusion

r=1.5, K =100,d = 0.003,vy = 0.05,« = 0.09, predator-prey system with disease in the prey. The model,

- - _ _ _ _ which incorporates the spatial diffusion and time delay
#=05,0=01,h=15,5=045m=15,7 =2.5. effects, is much more generalized than those in [10], [12].
Then the predator-free equilibrium is E, = As pointed in [12], the consideration of a disease in the prey

(0.1178,36.9452,0), and the conditions in Theorem 1or predator population makes the system extremely complex.

(Advance online publication: 7 November 2018)



TAENG International Journal of Applied Mathematics, 48:4, [IJAM 48 4 05

N W A o O
S & 5 S o

o

Susceptible prey S(x,t)

> o

3 \% — 300
2 \ 200
L \/’/XO
Distance x 0 -100

80

60 -

40 |

Infected prey I(x,t)

20

o

Predator P(x,t)

S0

100

4|\

2

: ~J

3 300

T . ™
T

Distance x 0 -100 Time t

Fig. 2. The positive equilibrium is stable when= 0.3 < 7.
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Fig. 3. The positive equilibrium is unstable and periodic Botuappears

whent = 2.5 > 7§.

Despite all this, the dynamical behaviors in such systems still
have a guidance function to the ecological diversity.
It is observed from our results that the uniform predator-
free steady state is asymptotically stable under certain con-

dition, but the stability has nothing to do with the gestation
delay. However, this stability is harmful, as the predatofl]
population will be ultimately extinct over time. To avoid this 2

ecologists.
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