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Abstract—An adjacent vertex distinguishing proper
edge coloring of a graph G is a proper edge coloring
of G such that no pair of adjacent vertices meets the
same set of colors. Let χ ′

a(G) be the minimum num-
ber of colors required to give G an adjacent vertex
distinguishing proper edge coloring. In this paper,
we show that χ ′

a(G) ≤ ∆(G) + 1 for bicyclic graphs G,
where ∆(G) is the maximum degree of G.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set
V (G) and edge set E(G). A proper edge coloring of G
is a mapping φ : E(G) → {1, 2, . . . , k} such that no two
adjacent edges meet the same color. Denote by Cφ(v)
= {φ(uv)|uv ∈ E(G)} the color set of the vertex v. We
say that a proper edge coloring φ of G is adjacent vertex
distinguishing, or an avd-coloring, if Cφ(u) ̸= Cφ(v) for
any pair of adjacent vertices u and v. It is obvious that an
avd-coloring exists provided that G contains no isolated
edge. A k-avd-coloring of G is an avd-coloring of G using
at most k colors. Let χ ′

a(G) be the minimum number of
colors in an avd-coloring of G. We use dG(u) to denote
the degree of the vertex u of G, and ∆(G) denotes the
maximum degree of G. Clearly, χ ′

a(G) ≥ ∆(G), and
χ ′
a(G) ≥ ∆(G) + 1 if there exist two adjacent vertices u

and v with dG(u) = dG(v) = ∆(G).

The adjacent vertex distinguishing proper edge coloring
was first introduced by Zhang et al., and the following
conjecture was proposed [17].

Conjecture 1. (AVDPEC Conjecture) If G is a simple
connected graph on at least 3 vertices and G ̸= C5 (a
5-cycle), then ∆(G) ≤ χ ′

a(G) ≤ ∆(G) + 2.
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In [2], Balister et al. proved that Conjecture 1 holds for
bipartite graphs and for graphs with ∆(G) ≤ 3. Ed-
wards et al. [6] showed that χ ′

a(G) ≤ ∆(G) + 1 if G is
a planar bipartite graph with ∆(G) ≥ 12. Horňák et
al. [12] showed that χ ′

a(G) ≤ ∆(G) + 2 for all planar
graphs G with ∆(G) ≥ 12. Akbari et al. [1] obtained
χ ′
a(G) ≤ 3∆(G) for all graphs G without isolated edges.

This bound was recently improved to 3∆(G)−1 by Zhu et
al. [19]. The best general result is due to Hatami [10] who
bounded (by a probabilistic method) χ ′

a(G) from above
by ∆(G) + 300 provided that ∆(G) > 1020. For more on
the avd-colorings of graphs, see [3–5, 7–9, 11, 13–16, 18].

A bicyclic graph is a connected graph in which the num-
ber of edges equals the number of vertices plus one. In
this paper, we investigate the avd-coloring of bicyclic
graphs and show that χ ′

a(G) ≤ ∆(G) + 1 for bicyclic
graphs G. This implies that Conjecture 1 holds for all
bicyclic graphs.

The rest of the paper is organized as follows. In Section 2,
we obtain χ ′

a(G) for bicyclic graphs G without pendant
vertex. This plays an important role in Section 3 where
we obtain the exact value of χ ′

a(G) for bicyclic graphs G
with at least one pendant vertex. In Section 4, we give
the conclusion of this paper.

2 Bicyclic graphs without pendant ver-
tex

In this section, we obtain the exact value of χ ′
a(G) for

bicyclic graphs G without pendant vertex.

It is easy to see that if G is a bicyclic graph without
pendant vertex, then G must be some Hi for 1 ≤ i ≤ 5
(see Figure 1).

The following lemma is obvious.

Lemma 1. Let P be a path of G whose internal vertices
are all of degree 2 in G. If φ is a 3-avd-coloring of G,
then the colors of any three consecutive edges of P are
pairwise distinct.

In what follows, we say that two vertices u and v are
distinguished from each other in a given coloring if the
set of colors incident to u is not equal to the set of colors

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_06

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



1
H

x

y

1
u

2
u

3
u

1r
u

-2r
u

-

3r
u

-

1
v 2

v

3
v

1s
v

- 2s
v

-

3s
v

-

1
w

1t
w

-

2
H

x

y

1
u

2
u

3
u

1r
u

-
2r

u
-

3r
u

-

1
v 2

v

3
v

1s
v

- 2s
v

-

3s
v

-

3
H

x

1
u

2
u

1r
u

-
2r

u
-

1
v

2
v

1s
v

- 2s
v

-

x y

4
H

1
u

2
u

3
u

1r
u

-2r
u

-

3r
u

-

1
v

2
v

3
v

1s
v

- 2s
v

-

3s
v

-

5
H

x y

1
u

2
u

3
u

1r
u

-2r
u

-

3r
u

-

1
v

2
v

3
v

1s
v

- 2s
v

-

3s
v

-

1
w

1t
w

-

Figure 1: Bicyclic graphs without pendant vertex.

incident to v. We also say that the coloring distinguishes
u and v in this case, or that u and v are distinguishable.

From Lemma 1 we can immediately obtain the following
result.

Lemma 2. If a graph G has a cycle C of length r so that
there exists exactly one vertex of C whose degree is greater
than 2 in G, where r ≡ 1 (mod 3), then χ ′

a(G) ≥ 4.

Let P = u1u2 · · ·ur be a path of G. We say that “P
is cyclically colored by colors 1, 2 and 3” if the colors
assigned to u1u2, u2u3 and u3u4 are 1, 2 and 3 respec-
tively, and u4u5, u5u6 and u6u7 are colored by 1, 2 and
3 respectively, and the remaining edges are colored in a
similar manner until the last one ur−1ur is colored. We
may similarly give a definition of “s distinct edges e1, e2,
· · · , es are cyclically colored by colors 1, 2 and 3”. We
use l(P ) to denote the length of P .

Lemma 3. Let C be a cycle of G of length r, where r ≡ 1
(mod 3). If C has exactly two vertices of degree 3 in G
such that these two 3-vertices are not adjacent in G and
their respective adjacent vertices not belonging to C are
also not adjacent in G, and the rest of r − 2 vertices of
C are all of degree 2 in G, then the edges incident to the
vertices of C can be properly colored using 3 colors such
that any two consecutive vertices of C are distinguished
from each other.

Proof. Suppose that C = x1x2 · · ·xrx1, where dG(x1) =
dG(xj) = 3, 3 ≤ j ≤ r − 1; and dG(xi) = 2, i ̸= 1, j. Let
e1 and ej be the edges incident to x1 and xj , respectively,
where e1 and ej are not the edges of C. Let P1 and P2 be
the two paths connecting x1 and xj in C, respectively. We
cyclically color e1, x1x2, x2x3, · · · , xj−1xj , ej , xjxj+1,

xj+1xj+2, · · · , xr−1xr, xrx1 by colors 1, 2 and 3. It
is easy to verify that the resulting coloring satisfies the
conditions of the lemma.

We call the coloring method used in the proof of Lemma
3 the ξ-coloring of C ∪ {e1, ej}. Let φ be a ξ-coloring of
C ∪{e1, ej}. It is obvious that φ is a partial avd-coloring
of G. Clearly, we can obtain a ξ-coloring such that the
color of e1 is 2 or 3 by permuting the order of colors.

Proposition 1.

χ ′
a(H1) =

 4, if there are exactly two numbers of r, s
and t both congruent to 1 modulo 3;

3, otherwise.

Proof. Set P1 = xu1u2 · · ·ur−1y, P2 = xv1v2 · · · vs−1y,
and P3 = xw1w2 · · ·wt−1y. Clearly χ ′

a(H1) ≥ 3. By the
symmetry of P1, P2 and P3, we only describe 10 cases in
which we can find a suitable corresponding edge coloring
(see Table 1).

Table 1. Avd-coloring of H1

Conditions P1 P2 P3

r ≡ s ≡ t ≡ 0 (mod 3) (123)
r
3 (231)

s
3 (312)

t
3

r ≡ 1, s ≡ t ≡ 0 (mod 3) (123)
r−1
3 1 (213)

s
3 (312)

t
3

r ≡ 2, s ≡ t ≡ 0 (mod 3) (123)
r−2
3 12 (213)

s
3 (321)

t
3

r ≡ s ≡ 1, t ≡ 0 (mod 3) (123)
r−1
3 1 (231)

s−1
3 2 (312)

t−3
3 314

r ≡ s ≡ 2, t ≡ 0 (mod 3) (123)
r−2
3 12 (231)

s−2
3 23 (321)

t
3

r ≡ 2, s ≡ 1, t ≡ 0 (mod 3) (312)
r−2
3 31 (231)

s−1
3 2 (123)

t
3

r ≡ s ≡ t ≡ 2 (mod 3) (231)
r−2
3 23 (312)

s−2
3 31 (123)

t−2
3 12

r ≡ s ≡ 2, t ≡ 1 (mod 3) (231)
r−2
3 23 (321)

s−2
3 32 (123)

t−1
3 1

r ≡ 2, s ≡ t ≡ 1 (mod 3) (123)
r−2
3 14 (231)

s−1
3 2 (312)

t−1
3 3

r ≡ s ≡ t ≡ 1 (mod 3) (231)
r−1
3 2 (312)

s−1
3 3 (123)

t−1
3 1

It remains to show that there exists no 3-avd-coloring
when r ≡ s ≡ 1, t ≡ 0 (mod 3) or r ≡ 2, s ≡ t ≡ 1
(mod 3). We consider the latter case only. Suppose
that φ is a 3-avd-coloring of H1 when r ≡ 2 (mod 3),
s ≡ t ≡ 1 (mod 3). Clearly the colors of xu1, xv1 and
xw1 are pairwise distinct. Without loss of generality, we
assume that φ(xu1) = 1, φ(xv1) = 2 and φ(xw1) = 3.
It follows from Lemma 1 and s ≡ t ≡ 1 (mod 3) that
φ(vs−1y) = 2 and φ(wt−1y) = 3. Clearly, the coloring

of P1 must be (123)
r−2
3 12 or (132)

r−2
3 13, which result-

s in that φ(ur−1y)=φ(vs−1y) or φ(ur−1y)=φ(wt−1y), a
contradiction.

Proposition 2. χ ′
a(Hi) = 4, i = 2, 3, 4.

Proof. Since Hi has a 4-vertex or two adjacent 3-vertices,
we have χ ′

a(Hi) ≥ 4, i = 2, 3, 4. It remains to prove that
Hi has a 4-avd-coloring, i = 2, 3, 4. For H2, we assign col-
ors 4, 2 and 3 to xy, ur−1y and vs−1y, respectively. Then
we cyclically color xu1, u1u2, · · · , ur−2ur−1 by colors 1,

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_06

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



3 and 4; and we cyclically color xv1, v1v2, · · · , vs−2vs−1

by colors 2, 4 and 1.

For H3, we assign colors 1, 2, 3 and 4 to xu1, xur−1,
xv1 and xvs−1, respectively. The path u1u2 · · ·ur−1 is
cyclically colored by colors 3, 4 and 1; and the path
v1v2 · · · vs−1 is cyclically colored by colors 1, 2 and 3.

For H4, we assign colors 2, 4 and 4 to xy, ur−1y and
vs−1y, respectively. Then the path xu1u2 · · ·ur−1 is cycli-
cally colored by colors 1, 2 and 3; and path yv1v2 · · · vs−1

is cyclically colored by colors 3, 2 and 1.

It is easy to see that the resulting coloring is a 4-avd-
coloring in each case.

Proposition 3.

χ ′
a(H5) =

{
4, if r ≡ 1 (mod 3) or s ≡ 1 (mod 3);
3, otherwise.

Proof. When r ≡ 1 (mod 3) or s ≡ 1 (mod 3), it follows
from Lemma 2 that χ ′

a(H5) ≥ 4. So it is sufficient to give
H5 a 4-avd-coloring. We cyclically color xw1, w1w2, · · · ,
wt−2wt−1 by colors 1, 2 and 3; and we cyclically color
wt−1y, yv1, v1v2, · · · , vs−2vs−1 by colors 4, 3 and 2. We
assign colors 1 and 4 to vs−1y and ur−1x, respectively.
Finally xu1, u1u2, · · · , ur−2ur−1 are cyclically colored
by colors 3, 2 and 1. Clearly, the resulting coloring is a
4-avd-coloring of H5.

When r ̸≡ 1 (mod 3) and s ̸≡ 1 (mod 3), it is sufficient
to give H5 a 3-avd-coloring. We cyclically color xw1,
w1w2, · · · , wt−1y by colors 1, 2 and 3. Assume that
the color of wt−1y is a. Set {1, 2, 3}\{a}={b, c}. We
cyclically color yv1, v1v2, · · · , vs−1y by colors “c, a and
b” or “b, c and a” with respect to s ≡ 0 or 2 (mod 3).
The edges of xu1, u1u2, · · · , ur−1x can be colored in a
similar manner.

3 Bicyclic graphs with pendant vertices

In this section, we investigate the avd-coloring of bicyclic
graphs with at least one pendant vertex.

Let G be a bicyclic graph, and let G1 be the graph ob-
tained from G by deleting all the pendant vertices of G
(if G contains no pendant vertex, then G1 = G). Similar-
ly, G2 is the graph obtained from G1 by deleting all the
pendant vertices of G1 (if G1 contains no pendant vertex,
then G2 = G1). This process continues, and we finally
obtain a graph H such that H has no pendant vertex.
Denote H by H(G).

Fact. If G is a bicyclic graph, then H(G) ∈ {H1,H2,
H3, H4, H5} (see Figure 1).

We will classify all bicyclic graphs with at least one pen-
dant vertex into three classes: α-type, β-type and γ-type.

Let G be a bicyclic graph containing a pendant vertex.
We use G∆ to denote the subgraph of G induced by all
the vertices of maximum degree of G.

We call G an α-type graph, if all the following conditions
hold:

(1) ∆(G) = 3 and G∆ is an empty graph (i.e. a graph
without edges).

(2) G has a cycle C of length r (r ≡ 1 (mod 3)) such that
there exists exactly one vertex of C whose degree is 3 in
G.

We call G a β-type graph, if all the following conditions
hold:

(1) ∆(G) = 3 and G∆ is an empty graph.

(2) H(G) is H1, and there exist exactly two numbers of
r, s and t which are both congruent to 1 modulo 3, and
the other is congruent to 2 modulo 3.

(3) There exists an internal vertex z0 of one (x, y)-path
P in H1 whose length is congruent to 2 modulo 3, and
dP (z0, x) and dP (z0, y) are both congruent to 1 modulo
3, where dP (z0, x) denotes the distance between z0 and
x in P .

(4) dG(v)=dH1(v) for v ∈ V (H1)\z0.

If G is neither α-type nor β-type, then we call G a γ-type
graph.

Theorem 1. Let G be a bicyclic graph on n vertice. If
G is α-type or β-type, then χ ′

a(G) = 4; if G is γ-type,
then

χ ′
a(G) =

{
∆(G), if G∆ is an empty graph;

∆(G) + 1, otherwise.

Proof. We divide the proof into three cases.

Case 1. G is an α-type graph.

It follows from Lemma 2 that χ ′
a(G) ≥ 4. We prove by

induction on the number of vertices of G that there is a
4-avd-coloring of G.

When n = 10, G must be the graph illustrated in Fig-
ure 2, and a 4-avd-coloring of G is also presented.

1

2

3

4

2 3 1

2

3

4

1

Figure 2: Basis step in Case 1.

Suppose that the theorem is true for α-type graphs with
fewer than n vertices, and let G be an α-type graph with
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n ≥ 11 vertices. In fact, H := H(G) = H5. Let C be the
cycle of H5 of length r such that there exists exactly one
vertex of C whose degree is 3 in G and r ≡ 1 (mod 3).

When G has a pendant vertex v such that the neighbor of
v is not in H. Let v0 be a pendant vertex of G such that
d(v0,H) is maximum, where d(v,H) = min{dG(v, u)|u ∈
V (H)}. Clearly, d(v0,H) ≥ 2. Let w be the neighbor
of v0, and u the exactly one neighbor of w in G which
is not a pendant vertex. Set G′ = G − v0. It is easy to
see that G′ is an α-type graph with n − 1 vertices. By
induction hypothesis, G′ has a 4-avd-coloring φ. There
are at least 2 colors missing from the edges incident to w
(since ∆(G) = 3 and wv0 has not been colored). Hence
we can assign one missing color to wv0 such that w and
u are distinguishable.

When the neighbor of each pendant vertex of G is in H.
Let v be any pendant vertex of G, and w the neighbor
of v. Set G′ = G − v. It is obvious that G′ is an α-type
graph with n − 1 vertices. By induction hypothesis, G′

has a 4-avd-coloring. We assign a color missing from the
edges incident to w to wv such that the coloring is proper.
Note that G∆ is an empty graph, it is easy to verify that
the resulting coloring is a 4-avd-coloring of G.

Case 2. G is a β-type graph.

Without loss of generality, we assume that r ≡ 2 (mod 3)
and s ≡ t ≡ 1 (mod 3), and z0 = uj for some 2 ≤ j ≤
r − 2. Clearly, χ ′

a(G) ≥ 3. We first show that χ ′
a(G) ≥ 4

by contradiction. Suppose that φ is a 3-avd-coloring of G.
Then the colors of xu1, xv1 and xw1 are pairwise distinct.
Without loss of generality, we assume that φ(xu1) = 3,
φ(xv1) = 2 and φ(xw1) = 1. From Lemma 1 it follows
that φ(yvs−1) = 2 and φ(ywt−1) = 1. Thus φ(yur−1) =
3. Since the lengths of xu1u2 · · ·uj and ujuj+1 · · ·ur−1y
are both congruent to 1 modulo 3, it follows from Lemma
1 that φ(uj−1uj)=φ(ujuj+1)=3, a contradiction.

It remains to show that G has a 4-avd-coloring. By in-
duction on the number of vertices of G.

When n = 16, G must be the graph illustrated in Fig-
ure 3, and a 4-avd-coloring of G is also presented.

1

2

3

4

2

3

1

23

2

1

1

1

1

3

2 3

Figure 3: Basis step in Case 2.

Suppose that the theorem is true for β-type graph with
fewer than n vertices, and let G be a β-type graph with
n ≥ 17 vertices. We have H(G) = H1.

When G has a pendant vertex v such that the neighbor of
v is not in H(G). Let v0 be a pendant vertex of G such
that d(v0,H(G)) is maximum. Clearly d(v0,H(G)) ≥
2. Let w be the neighbor of v0, and u the exactly one
neighbor of w in G which is not a pendant vertex. Set
G′ = G − v0. It is easy to see that G′ is a β-type graph
with n − 1 vertices. By induction hypothesis, G′ has a
4-avd-coloring. If dG(w) = 3, then dG(u) = 2 (since
∆(G) = 3 and G∆ is an empty graph). We assign a color
missing from the edges incident to w to wv0. If dG(w) =
2, then there are at least 3 colors missing from the edges
incident to w. Therefore we can always assign one missing
color to wv0 such that w and u are distinguishable.

When the neighbor of each pendant vertex of G is in
H(G). In this case G has exactly one pendant vertex,
denoted by v, and the neighbor of v is uj . The color-
ings of xw1w2 · · ·wt−1y, xv1v2 · · · vs−1y, xu1u2 · · ·uj and

ujuj+1 · · ·ur−1y are (123)
t−1
3 1, (231)

s−1
3 2, (321)

j−1
3 3 and

4(123)
r−j−1

3 , respectively. Finally we assign color 1 to
vuj . Clearly, the resulting coloring is a 4-avd-coloring of
G.

Case 3. G is a γ-type graph.

Set

k(G) =

{
∆(G), if G∆ is an empty graph;

∆(G) + 1, otherwise.

Clearly χ ′
a(G) ≥ k(G). So there remains to show that G

has a k(G)-avd-coloring. By induction on the number of
vertices of G.

When n = 5, G must be one of the two graphs illustrated
in Figure 4, and 4-avd-colorings are also presented.

1

2

4

4

3

3

2

1

1

1

2

3

Figure 4: Basis step in Case 3.

Suppose that the theorem is true for γ-type graph with
fewer than n vertices, and let G be a γ-type graph with
n ≥ 6 vertices. Let H := H(G).

Now we divide the rest of the proof into four subcases.

Subcase 3.1.G has a pendant vertex v such that the
neighbor of v is not in H.

Let v0 be the pendant vertex of G such that d(v0, H) is
maximum. Clearly, d(v0,H) ≥ 2. Let w be the neighbor
of v, and u the only neighbor of w which is not a pendant
vertex. Set G′ = G − v0. Note that G′ has at least one
pendant vertex.

(a) G∆ is an empty graph.
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If G′ is α-type or β-type, then ∆(G) = 4 and ∆(G′) = 3.
From Case 1, Case 2 or induction hypothesis, it follows
that G′ has a ∆(G)-avd-coloring.

If w is the vertex of maximum degree in G, then u is
not the vertex of maximum degree. We assign a color
missing from the edges incident to w to wv0 such that
the resulting coloring is proper.

If w is not the vertex of maximum degree in G, then w
meets at most ∆(G) − 2 colors, i.e., there are at least 2
colors missing from the edges incident to w. Hence there
is at least one remaining color with which to color wv0
such that w and u are distinguished from each other.

(b) G∆ is not an empty graph.

If G′ is α-type or β-type, then ∆(G′)=∆(G)=3. From
Case 1, Case 2 or induction hypothesis, it follows that G′

has a (∆(G) + 1)-avd-coloring. Clearly, w meets at most
∆(G) − 1 colors (since wv0 has not been colored), thus
there are at least 2 colors missing from the edges incident
to w. Therefore there is at least one remaining color with
which to color wv0 such that w and u are distinguished
from each other.

Subcase 3.2. The neighbor of each pendant vertex of
G is in H, and H has a vertex z of degree two in H
and degree at least three in G such that dG(z) ̸= dG(z

′),
where z′ is one neighbor of z in H.

Let z′′ be the other neighbor of z in H, i.e. NH(z) =
{z′, z′′}, where NH(z) denotes the neighborhood of z in
H. Set v ∈ NG(z)\{z′, z′′} and G′ = G− v.

(a) G∆ is not an empty graph.

Note that ∆(G′)=∆(G). If G′ has no pendant vertex,
then G′ has a (∆(G) + 1)-avd-coloring from Proposi-
tions 1-3. If G′ has a pendant vertex, then G′ has a
(∆(G) + 1)-avd-coloring from Case 1, Case 2 or induc-
tion hypothesis. Since there are at least two colors miss-
ing from the edges incident to z, there is at least one
remaining color with which to color vz such that the re-
sulting coloring distinguishes z and z′′. Clearly, z and z′

are distinguishable (z and z′ have distinct degree in G).
Therefore G has a (∆(G) + 1)-avd-coloring.

(b) G∆ is an empty graph.

Type 1: G′ has no pendant vertex. It is easy to see that
G′ = Hi, where i = 1, 3, 5.

When G′ = H3, let φ be a 4-avd-coloring of H3 obtained
from the proof of Proposition 2, and we assign one color
missing from the edges incident to z to zv. Clearly, the
resulting coloring is a 4-avd-coloring of G.

When G′ = H1, let φ be a 3-avd-coloring of H1 obtained
from the proof of Proposition 1 except the cases r ≡ s ≡ 1

(mod 3), t ≡ 0 (mod 3) and r ≡ 2 (mod 3), s ≡ t ≡ 1
(mod 3). We assign one color missing from the edges
incident to z to zv such that the coloring obtained is
proper. Clearly the resulting coloring is a 3-avd-coloring
of G (since dG(z

′)=dG(z
′′)=2 and dG(z) = 3). So there

remains to consider the cases r ≡ s ≡ 1 (mod 3), t ≡ 0
(mod 3) and r ≡ 2 (mod 3), s ≡ t ≡ 1 (mod 3).

(i) r ≡ s ≡ 1 (mod 3), t ≡ 0 (mod 3).

If z = uj (2 ≤ j ≤ r − 2), then the colorings of P2 and

P3 are (231)
s−1
3 2 and (123)

t
3 , respectively. The coloring

of P1 is (312)
j
3 1(321)

r−j−1
3 (if j ≡ 0 (mod 3)), (312)

j−1
3 3

(231)
r−j
3 (if j ≡ 1 (mod 3)) or (312)

j−2
3 3 1(312)

r−j−2
3 31

(if j ≡ 2 (mod 3)), where P1, P2 and P3 are defined as
Proposition 1. Then we properly color ujv, and we obtain
a 3-avd-coloring of G.

The case that z = vj (2 ≤ j ≤ s− 2) can be disposed by
a similar manner.

If z = wj (2 ≤ j ≤ t − 2), then the colorings of P1

and P2 are (123)
r−1
3 1 and (321)

s−1
3 3, respectively. The

coloring of P3 is (231)
j
3 (312)

t−j
3 (if j ≡ 0 (mod 3)),

(231)
j−1
3 2(123)

t−j−2
3 12 (if j ≡ 1 (mod 3)) or (231)

j−2
3 23

(231)
t−j−1

3 2 (if j ≡ 2 (mod 3)). Then we properly color
wjv, and we obtain a 3-avd-coloring of G.

(ii) r ≡ 2 (mod 3), s ≡ t ≡ 1 (mod 3).

If z = uj (2 ≤ j ≤ r − 2), then the colorings of P2

and P3 are (231)
s−1
3 2 and (123)

t−1
3 1, respectively. The

coloring of P1 is (312)
j
3 (132)

r−j−2
3 13 (if j ≡ 0 (mod 3))

or (312)
j−2
3 31(213)

r−j
3 (if j ≡ 2 (mod 3)). Note that

G is not a β-type graph, thus j ̸≡ 1 (mod 3). Then we
properly color ujv.

If z = vj (2 ≤ j ≤ s− 2), then the colorings of P1 and P3

are (231)
r−2
3 23 and (123)

t−1
3 1, respectively. The coloring

of P2 is (321)
j
3 (231)

s−j−1
3 2 (if j ≡ 0 (mod 3)), (321)

j−1
3 3

(132)
s−j
3 (if j ≡ 1 (mod 3)) or (321)

j−2
3 32(123)

s−j−2
3 12

(if j ≡ 2 (mod 3)). Then we properly color vjv.

The case that z = wj (2 ≤ j ≤ t− 2) can be disposed by
a similar manner.

When G′ = H5, then r ≡ 1 (mod 3) and s ≡ 1 (mod 3)
cannot both hold.

(i) r ≡ 1 (mod 3) and s ̸≡ 1 (mod 3).

Clearly that z = uj (2 ≤ j ≤ r − 2). We cyclically color
xw1, w1w2, · · · , wt−1y by colors 1, 2 and 3. Suppose that
the color of wt−1y is a, where a ∈ {1, 2, 3}.

If s ≡ 0 (mod 3), then the coloring of yv1, v1v2, · · · ,
vs−1y is [(a + 2)a(a + 1)]

s
3 ; if s ≡ 2 (mod 3), then the

coloring of yv1, v1v2, · · · , vs−1y is [(a+1)(a+2)a]
s−2
3 (a+

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_06

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



1)(a+ 2), where addition is taken modulo 3.

The coloring of xu1, u1u2, · · · , ur−1ur, urx is

(231)
j
3 (321)

r−j−1
3 3, (312)

j−1
3 3(132)

r−j
3 or (231)

j−2
3 23

(231)
r−j−2

3 23 depending on j ≡ 0, 1, or 2 (mod 3). Then
we properly color vuj , and we obtain a 3-avd-coloring of
G.

(ii) r ̸≡ 1 (mod 3) and s ̸≡ 1 (mod 3).

Let φ be a 3-avd-coloring of H5 obtained from the proof
of Proposition 3. Then we properly color vz, and we
obtain a 3-avd-coloring of G.

Type 2: G′ has a pendant vertex and G′ is an α-type
graph.

In this case it is obvious that 3 ≤ ∆(G) ≤ 4 and H(G) =
H5. Without loss of generality, we assume that r ≡ 1
(mod 3). Set C = xu1u2 · · ·ur−1x.

When ∆(G) = 3, we have z = uj (2 ≤ j ≤ r − 2). Note
that C ∪ {vuj , xw1} satisfies the conditions of Lemma
3. It follows from Lemma 3 that C ∪ {vuj , xw1} has a
ξ-coloring φ such that the color of xw1 is 1. We cycli-
cally color w1w2, w2w3, · · · , wt−1y by colors 2, 3 and 1.
Assume that the color of wt−1y is a, where a ∈ {1, 2, 3}.

If s ≡ 0 (mod 3), then the coloring of C ′ =
yv1v2 · · · vs−1y is [(a + 2)a(a + 1)]

s
3 (starting from yv1

in clockwise), where addition is taken modulo 3.

If s ≡ 1 (mod 3), then there exists some vertex vl of C
′

such that dG(vl) = 3. Let e be the pendant edge incident
to vl. By Lemma 3, C ′∪{e, wt−1y} has a ξ-coloring such
that the color of wt−1y is a.

If s ≡ 2 (mod 3), then the coloring of C ′ is [(a + 1)(a +

2)a]
s−2
3 (a + 1)(a + 2) (starting from yv1 in clockwise),

where addition is taken modulo 3.

Finally we properly color all the uncolored pendant edges
and obtain a 3-avd-coloring of G.

When ∆(G) = 4, then G has exactly one vertex of max-
imum degree. Clearly z is just the vertex of maximum
degree in G, and any two 3-vertices are not adjacent in G.
We cyclically color the edges of xu1u2 · · ·ur−1 by colors
1, 2 and 3, and assign color 4 to ur−1x. Starting from
xw1, we cyclically color the edges of xw1w2 · · ·wt−1y by
colors 2, 3 and 1. Assume that the color of wt−1y is a,
then we cyclically color the edges of yv1v2 · · · vs−1 by col-
ors a + 1, a, a + 2, and assign color 4 to vs−1y, where
addition is taken modulo 3. Finally we properly color all
the pendant edges. It is not difficult to verify, whether
z = wj (1 ≤ j ≤ t − 1) or z = vj (1 ≤ j ≤ s − 1), that
the resulting coloring is a 4-avd-coloring of G.

Type 3: G′ has a pendant vertex andG′ is a β-type graph.

Without loss of generality, we assume that r ≡ 2 (mod 3)
and s ≡ t ≡ 1 (mod 3), and z0 = uj for some 1 ≤ j ≤
r − 1. Clearly 3 ≤ ∆(G) ≤ 4. Set P1 = xu1u2 · · ·ur−1y,
P2 = xv1v2 · · · vs−1y and P3 = xw1w2 · · ·wt−1y.

When ∆(G) = 4, then z = uj is the only vertex of
maximum degree. The colorings of P2, P3 and P1 are

(123)
s−1
2 1, (231)

t−1
2 2 and (312)

j−1
3 3(412)

r−j−1
3 4, respec-

tively. Two pendant edges incident to uj are assigned
colors 1 and 2. It is obvious that the resulting coloring is
a 4-avd-coloring of G.

When ∆(G) = 3, let e be the pendant edge incident to
uj . There are four cases to consider.

If z = ui (2 ≤ i ≤ j − 2), then the colorings of P2 and P3

are (123)
s−1
2 1 and (231)

t−1
2 2, respectively. Set P ′

1= xu1

u2 · · ·ui, P ′′
1 =uiui+1 · · ·uj and P ′′′

1 =ujuj+1 · · ·ur−1y.
The colorings of P ′

1, P
′′
1 and P ′′′

1 are given as follows (see
Table 2):

Table 2. The colorings of P ′
1, P

′′
1 and P ′′′

1 .
Conditions P ′

1 P ′′
1 P ′′′

1

i ≡ 0 (mod 3) (312)
i
3 (123)

j−i−1
3 1 (312)

r−j−1
3 3

i ≡ 1 (mod 3) (312)
i−1
3 3 (231)

j−i
3 (312)

r−j−1
3 3

i ≡ 2 (mod 3) (312)
i−2
3 12 (321)

j−i−2
3 32 (312)

r−j−1
3 3

Finally we properly color e and uiv, and we obtain a
3-avd-coloring of G.

The case that z = ui (j + 2 ≤ i ≤ r − 2) can be dealt
with in a similar manner as the above case.

If z = vi (2 ≤ i ≤ s − 2), then the colorings of P1

and P3 are (123)
r−2
3 12 and (312)

t−1
3 3, respectively. Set

P ′
2=xv1v2 · · · vi and P ′′

2 =vivi+1 · · · vs−1y. Then the col-
orings of P ′

2 and P ′′
2 are given as follows (see Table 3):

Table 3. The colorings of P ′
2, P

′′
2 .

Conditions The coloring of P ′
1 The coloring of P ′′

2

i ≡ 0 (mod 3) (213)
i
3 (123)

s−i−1
3 1

i ≡ 1 (mod 3) (231)
i−1
3 2 (321)

s−i
3

i ≡ 2 (mod 3) (231)
i−2
3 23 (213)

s−i−2
3 21

Finally we properly color e and viv, and we obtain a 3-
avd-coloring of G.

The case that z = wj (2 ≤ j ≤ t − 2) can be dealt with
in a similar manner as the above case.

Type 4: G′ has a pendant vertex andG′ is a γ-type graph.

By induction hypothesis, G′ has a ∆(G)-avd-coloring. If
z is the vertex of maximum degree, then we properly color
zv. If z is not the vertex of maximum degree, then there
are at least two colors missing from the edges incident
to z. Hence we can assign one missing color to zv such
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that z and z′′ are distinguishable. Clearly the resulting
coloring is a ∆(G)-avd-coloring of G.

Subcase 3.3. The neighbor of each pendant vertex of
G is in H, and H has a vertex z of degree two in H and
degree at least 3 in G. For any such z, dG(z

′) = dG(z
′′) =

dG(z), where NH(z) = {z′, z′′}.

(i) H = H1.

In view of the symmetry of three paths from x to y in
H, G must be one of the following three graphs, where
∆(G) = k + 2 and k ≥ 1 (see Figure 5).

11
( )a G

x

y

12
( )b G

13
( )c G

Figure 5: Illustrations in Subcase 3.3(i).

We just show that G11 (see Figure 5(a)) has a (∆(G)+1)-
avd-coloring. The other cases can be dealt with in a
similar manner. Note that in G11 the number of pendant
edges incident to x or y is k − 1, and the number of
pendant edges incident to each of the other vertices of
H1 is k. Suppose that k ≥ 2.

If r + s is even, then we alternately color the edges of
cycle xu1u2· · · ur−1yvs−1· · · v2v1x starting from xu1 by
colors k+2 and k+3. The uncolored edges incident to x,
u1, u2, · · · , ur−1, y, vs−1, · · · , v1 are alternately colored
by {1,2,· · · , k} and {2, 3, · · · , k+ 1} such that the colors
of xw1 and ywt−1 are 1 and 2 respectively.

If r+s is odd, the coloring of cycle xu1u2 · · · ur−1y vs−1

· · · v2v1x starting from xu1 is [(k + 2)(k + 3)]
r+s−1

2 2.
The uncolored edges incident to u1, u2, · · · , ur−1, y,
vs−1, · · · , v1 are alternately colored by {1,2,· · · , k} and
{2, 3, · · · , k + 1} such that the color of wt−1y is 2.
The uncolored edges incident to x or v1 are colored by
{1, 3, 4, · · · , k + 1} such that the color of xw1 is 1.

Then we cyclically color w1w2, w2w3, · · · , wt−2wt−1 s-
tarting from w1w2 by colors 3, 4 and 1. The pendant
edges incident to wt−1, wt−2, · · · , w2 are colored such
that the missing color of these vertices are alternately

k + 3 and 2. We color the pendant edges incident to w1

such that the missing color of w1 is k+2. It is not difficult
to verify that the resulting coloring is a (∆(G) + 1)-avd-
coloring of G11.

When ∆(G) = 3 (i.e. k = 1), we assign colors 1, 3
and 4 to xu1, xw1 and xv1, respectively. The edges of
u1u2 · · ·ur−1yvs−1 · · · v2v1 are cyclically colored starting
from u1u2 by 2, 3 and 1. The pendant edge incident to
each ui (2 ≤ i ≤ r− 1) or vj (3 ≤ j ≤ s− 1) is colored by
4, and the pendant edge incident to u1 is colored by 3. If
the colors of v3v2 and v2v1 are 1 and 2 respectively, then
we assign colors 4 and 3 to the pendant edges incident to
v2 and v1, respectively. If the colors of v3v2 and v2v1 are
2 and 3 respectively, then we assign colors 1 and 2 to the
pendant edges incident to v2 and v1, respectively. If the
colors of v3v2 and v2v1 are 3 and 1 respectively, then we
assign colors 4 and 2 to the pendant edges incident to v2
and v1, respectively. Denote by c(e) the color that has
been assigned to e.

If t = 2, then there are three cases to consider. When
c(yur−1) = 2 and c(yvs−1) = 3, we exchange the colors
of ur−1y and the pendant edge incident to ur−1 (i.e. we
recolor ur−1y by color 4, and the pendant edge incident
to ur−1 by 2). Then we assign colors 2 and 1 to w1y
and the pendant edge incident to w1, respectively. When
c(yur−1) = 3 and c(yvs−1) = 1, we assign colors 2 and 4
to w1y and the pendant edge incident to w1, respectively.
When c(yur−1) = 1 and c(yvs−1) = 2, we assign colors
4 and 2 to w1y and the pendant edge incident to w1,
respectively.

If t ≥ 3, then there are three cases to consider. When
c(yur−1) = 2 and c(yvs−1) = 3, we assign color 1 to
wt−1y and cyclically color w1w2, w2w3, · · · , wt−2wt−1 by
2, 4 and 3. If the colors of wt−3wt−2 and wt−2wt−1 are
2 and 4 respectively, then the pendant edge incident to
each wi (1 ≤ i ≤ t− 2) is colored by 1, and the pendant
edge incident to wt−1 is colored by 3. If the colors of
wt−3wt−2 and wt−2wt−1 are 4 and 3 respectively, then
the pendant edge incident to each wi (1 ≤ i ≤ t − 3) is
colored by 1, and the pendant edge incident to wt−2 or
wt−1 is colored by 2 or 4, respectively. If the colors of
wt−3wt−2 and wt−2wt−1 are 3 and 2 respectively, then
the pendant edge incident to each wi (1 ≤ i ≤ t − 2) is
colored by 1, and the pendant edge incident to wt−1 is
colored by 4.

When c(yur−1) = 3 and c(yvs−1) = 1, we assign color 2
to wt−1y and cyclically color w1w2, w2w3, · · · , wt−2wt−1

by 1, 4 and 3. If the colors of wt−3wt−2 and wt−2wt−1 are
1 and 4 respectively, then the pendant edge incident to
each wi (1 ≤ i ≤ t− 2) is colored by 2, and the pendant
edge incident to wt−1 is colored by 3. If the colors of
wt−3wt−2 and wt−2wt−1 are 4 and 3 respectively, then
the pendant edge incident to each wi (1 ≤ i ≤ t − 3) is
colored by 2, and the pendant edge incident to wt−2 or

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_06

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



wt−1 is colored by 1 or 4, respectively. If the colors of
wt−3wt−2 and wt−2wt−1 are 3 and 1 respectively, then
the pendant edge incident to each wi (1 ≤ i ≤ t − 2) is
colored by 2, and the pendant edge incident to wt−1 is
colored by 4.

When c(yur−1) = 1 and c(yvs−1) = 2, we assign color 3
to wt−1y and cyclically color w1w2, w2w3, · · · , wt−2wt−1

by 2, 1 and 4. Suppose that t ≥ 4. If the colors of
wt−3wt−2 and wt−2wt−1 are 2 and 1 respectively, then
the pendant edge incident to each wi (2 ≤ i ≤ t − 2) is
colored by 3, and the pendant edge incident to w1 or wt−1

is colored by 4. If the colors of wt−3wt−2 and wt−2wt−1

are 1 and 4 respectively, then the pendant edge incident
to each wi (2 ≤ i ≤ t − 2) is colored by 3, and the
pendant edge incident to w1 or wt−1 is colored by 4 or 2,
respectively. If the colors of wt−3wt−2 and wt−2wt−1 are
4 and 2 respectively, then the pendant edge incident to
each wi (2 ≤ i ≤ t− 3) is colored by 3, and the pendant
edge incident to w1 or wt−1 is colored by 4. The pendant
edge incident to wt−2 is colored by 1. If t = 3, then the
pendant edge incident to w1 or w2 is colored by 1 or 4,
respectively.

It is not difficult to see that the resulting coloring is a
4-avd-coloring of G11.

(ii) H = H2.

In view of the symmetry of graph, G must be one of the
following two cases, where ∆(G) = k + 2 and k ≥ 1 (see
Figure 6).

21
( )a G

x

y

22
( )b G

Figure 6: Illustrations in Subcase 3.3(ii).

We just show that G21 (see Figure 6(a)) has a (∆(G)+1)-
avd-coloring, and the case G22 (see Figure 6(b)) can be
dealt with in a similar manner. Note that in G21 the
number of pendant edges incident to x or y is k− 1, and
the number of pendant edges incident to each of the other
vertices of H is k.

When ∆(G) ≥ 4 (i.e. k ≥ 2), then we alternately col-
or xu1, u1u2, · · · , ur−2y, yvs−2, vs−2vs−1, · · · , v2v1 by
colors k + 3 and k + 2 starting from xu1. Assign color
1 to xv1. We alternately assign colors {1, 2, · · · , k} and
{2, 3, · · · , k+1} to the pendant edges incident to u1, u2,
· · · , ur−2, y, vs−2, · · · , v2. Note that the number of pen-
dant edges incident to y is k − 1, so we consider here
that xy is a “pendant edge” incident to y and color it
by 2. The pendant edges incident to x are colored by

{3,4,· · · ,k + 1}. If r + s is even, then the pendant edges
incident to v1 are colored by {2,3,· · · ,k,k + 2}. If r + s
is odd, then the pendant edges incident to v1 are colored
by {2,3,· · · ,k + 1}. It is not difficult to verify that the
resulting coloring is a (∆(G) + 1)-coloring of G21.

When ∆(G) = 3 (i.e. k = 1), we assign colors 1, 2, 3,
2 and 4 to xu1, xv1, xy, yur−2 and yvs−2, respectively.
The edges of u1u2 · · ·ur−2 are cyclically colored by colors
4, 3 and 1 starting from u1u2. We assign color 3 to the
pendant edge incident to u1. If the color of ur−4ur−3 is
3 and the color of ur−3ur−2 is 1, then the pendant edge
incident to ur−3 is colored by 2 and the pendant edge
incident to ur−2 is colored by 4. If the colors of ur−4ur−3

and ur−3ur−2 are 1 and 4 respectively, then the pendant
edges incident to ur−3 and ur−2 are colored by 3 and 1,
respectively. If the colors of ur−4ur−3 and ur−3ur−2 are
4 and 3 respectively, then the pendant edges incident to
ur−3 and ur−2 are colored by 2 and 1, respectively. Then
each pendant edge incident to u2, u3, · · · , ur−4 is colored
by 2, respectively. The edges incident to v1, v2, · · · , vs−2

are colored in a similar manner. It is not difficult to see
that the resulting coloring is a 4-avd-coloring of G.

(iii) H = H3.

By the symmetry of graph, Gmust be one of the following
two cases, where ∆(G) = k+2 and k ≥ 2 (see Figure 7).

31
( )a G

x

32
( )b G

Figure 7: Illustrations in Subcase 3.3(iii).

We just show that G31 (see Figure 7(a)) has a (∆(G)+1)-
avd-coloring. The case G = G32 (see Figure 7(b)) can be
dealt with in a similar manner. Note that in G31 the
number of pendant edges incident to x is k − 2, and the
number of pendant edges incident to each of the other
vertices of H3 is k.

We assign colors 1, 2, 3 and 4 to the edges xu1, xv1, xur−1

and xvs−1, respectively. We alternately color the edges
of u1u2 · · ·ur−1 starting from u1u2 by colors k + 3 and
k+2. If the color of ur−2ur−1 is k+3, then the pendant
edges incident to ur−1 are clored by {1,2,4,5,· · · ,k + 1};
if the color of ur−2ur−1 is k + 2, then the pendant edges
incident to ur−1 are clored by {1,4,5,· · · ,k + 1,k + 3}.
We alternately color the pendant edges incident to u2,
u3, · · · , ur−2 starting from u2 by colors {1,2,· · · ,k} and
{2,3,· · · ,k + 1}. The pendant edges incident to u1 are
colored by {2,3,· · · ,k + 1}. Assign colors {5,6,· · · ,k + 2}
to the pendant edges incident to x (if k = 2, then G has
no pendant edge incident to x).
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We alternately color the edges of v1v2 · · · vs−1 starting
from v1v2 by colors 1 and 2. The pendant edges inci-
dent to v1 and vs−1 are colored by {4,5,· · · ,k + 3} and
{3,5,6,· · · ,k + 3} respectively. We alternately color the
pendant edges incident to v2, v3, · · · , vs−2 starting from
v2 by colors {3,4,· · · ,k+2} and {4,5,· · · ,k+3}. It is not d-
ifficult to verify that the resulting coloring is a (∆(G)+1)-
avd-coloring of G31.

(iv) H = H4.

By the symmetry of graph, Gmust be one of the following
two cases, where ∆(G) = k+2 and k ≥ 1 (see Figure 8).

x y

41
( )a G

42
( )b G

Figure 8: Illustrations in Subcase 3.3(iv).

We just show that G41 (see Figure 8(a)) has a (∆(G)+1)-
avd-coloring. The case that G = G42 (see Figure 8(b))
can be dealt with in a similar manner. Note that in G41

the number of pendant edges incident to x and y are
k−1 and l−1, respectively. The number of pendant edges
incident to each of ui (1 ≤ i ≤ r−1) is k, and the number
of pendant edges incident to each vj (1 ≤ j ≤ s− 1) is l.
We assume that k ≥ l.

If r and s are both even, then we alternately color the
edges of cycle xu1u2 · · ·ur−1x by colors k + 3 and k + 2.
The pendant edges incident to u1, u2, · · · , ur−1 are alter-
nately colored by {1,2,· · · ,k} and {2,3,· · · ,k+1}. Assign
color 2 to xy and color the pendant edges incident to x
by {3,4,· · · ,k + 1}. Then we alternately color yv1, v1v2,
· · · , vs−2vs−1 by colors l+ 2 and l+ 3. Assign color 1 to
yvs−1. The pendant edges incident to v1, v2, · · · , vs−2

are alternately colored by {1,2,· · · ,l} and {2,3,· · · ,l+ 1}.
The pendant edges incident to vs−1 and y are colored by
{2,3,· · · ,l,l + 3} and {3,4,· · · ,l + 1}, respectively.

If r is even and s is odd, then the edges incident to x, u1,
· · · , ur−1 are colored as the same as the above case. The
edges of yv1v2 · · · vs−1 are alternately colored by l + 2
and l + 3, and assign color 1 to yvs−1. The pendant
edges incident to v1, v2, · · · , vs−2 are alternately colored
by {2,3,· · · ,l + 1} and {1,2,· · · ,l}. The pendant edges
incident to vs−1 and y are colored by {2,3,· · · ,l,l+2} and
{3,4,· · · ,l + 1}, respectively.

If r is odd and s is even, then the edges of xu1u2 · · ·ur−1

are alternately colored by k+3 and k+2. Assign color 1
to xur−1. The pendant edges incident to u1, u2, · · · , ur−2

are alternately colored by {1,2,· · · ,k} and {2,3,· · · ,k+1}.
The pendant edges incident to ur−1 and x are colored
by {2,3,· · · ,k + 1} and {3,4,· · · ,k + 1}, respectively. We

assign color 2 to xy. The edges of cycle yv1v2 · · · vs−1y are
alternately colored starting from yv1 by colors l + 2 and
l+3. The pendant edges incident to v1, v2, · · · , vs−1 are
alternately colored by {1,2,· · · ,l} and {2,3,· · · ,l+1}, and
the pendant edges incident to y are colored by 3,4,· · · ,l+
1.

If r and s are both odd, then the edges incident to x,
u1, · · · , ur−1 are colored as the same as the above case
(i.e. the case that r is odd and s is even). The edges of
yv1v2 · · · vs−1 are alternately colored by l + 2 and l + 3.
Assign color 1 to yvs−1. The pendant edges incident to
v1, v2, · · · , vs−2 are alternately colored by {2,3,· · · ,l +
1} and {1,2,· · · ,l}. The pendant edges incident to vs−1

and y are colored by {3,4,· · · ,l + 2} and {3,4,· · · ,l + 1},
respectively.

It is not difficult to verify that the resulting coloring is a
(∆(G) + 1)-avd-coloring of G41.

(v) H = H5.

By the symmetry of graph, Gmust be one of the following
six cases, where ∆(G) = k + 2 and k ≥ 1 (see Figure 9).

51
( )a G

x y

52
( )b G

53
( )c G

54
( )d G

55
( )e G

56
( )f G

Figure 9: Illustrations in Subcase 3.3(v).
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We just show that G51 has a (∆(G)+1)-avd-coloring, the
other cases can be dealt with in a similar manner. Note
that in G51 the number of pendant edges incident to x or
y is k − 1, and the number of pendant edges incident to
each of the other vertices of H5 is k. Suppose that k ≥ 2.

We alternately color the edges of u1u2 · · ·ur−1x w1w2

· · · wt−1y v1v2 · · · vs−1 starting from u1u2 by colors k+2
and k + 3. The pendant edges incident to u2, u3, · · · ,
ur−1, x, w1, · · · , wt−1, y, v1, · · · , vs−2 are alternately
colored by {1,2,· · · ,k} and {2,3,· · · ,k + 1}. Note here
that the number of pendant incident to x or y is k − 1,
we consider xu1 or yvs−1 the “pendant edges” incident
to x or y, respectively. The colors of xu1 and yvs−1 are
both equal to 2. The pendant edges incident to u1 or
vs−1 are colored by {1,3,4,· · · ,k + 1}.

When ∆(G) = 3 (i.e. k = 1), we assign colors 3, 2
and 1 to xu1, xur−1 and xw1, respectively. The edges
of u1u2 · · ·ur−1 are cyclically colored by 4, 1 and 3, and
the pendant edge incident to each ui (1 ≤ i ≤ r − 3) is
colored by 2. If the colors of ur−3ur−2 and ur−2ur−1 are
4 and 1 respectively, then we assign colors 3 and 4 to the
pendant edges incident to ur−2 and ur−1, respectively. If
the colors of ur−3ur−2 and ur−2ur−1 are 1 and 3 respec-
tively, then we assign colors 2 and 4 to the pendant edges
incident to ur−2 and ur−1, respectively. If the colors of
ur−3ur−2 and ur−2ur−1 are 3 and 4 respectively, then we
assign colors 1 and 3 to the pendant edges incident to
ur−2 and ur−1, respectively. We assign colors 2, 3 and 1
to w1w2, w2w3, · · · , wt−1y cyclically, and color 4 to the
pendant edge incident to each wi (1 ≤ i ≤ t − 1). We
assign two colors in {1,2,3}\{c(wt−1y)} to yv1 and yvs−1.
Then we color the edges incident to v1, v2, · · · , vs−1 by
a similar manner and obtain a 4-avd-coloring of G51.

Subcase 3.4. The neighbor of each pendant vertex of G
is in H, and the degree of every vertex of degree 2 in H
is 2 in G. Clearly, G must be one of the following graphs
illustrated in Figure 10.

Here we assume that the pendant vertices adjacent to x
are x1, x2, · · · , xk and the pendant vertices adjacent to
y are y1, y2, · · · , yl, where k ≥ l ≥ 1.

(i) G = G1.

Clearly ∆(G) = k + 3. From Proposition 1, H1 has
a 4-avd-coloring φ using colors 1, 2, 3 and 4. Then
we assign colors 5, 6, · · · , k + 3 to xx2, xx3, · · · ,
xxk, respectively. Similarly, we assign clors 5, 6, · · · ,
l + 3 to yy2, yy3, · · · , yyl, respectively. Then we as-
sign colors in {1,2,3,4}\{φ(xu1), φ(xv1), φ(xw1)} and
{1,2,3,4}\{φ(yur−1), φ(yvs−1), φ(ywt−1)} to xx1 and
yy1, respectively. Clearly the resulting coloring is a
∆(G)-avd-coloring of G.

(ii) G = G2.

1
G

x

y

1
x k

x

1
y l

y

2
G

x

y

1
x

k
x

1
y

l
y

3
G

x

1
x k

x

x y

4
G

1
x k

x
1

y
l

y

5
G

x y

1
x

k
x

1
y l

y

Figure 10: Illustrations in Subcase 3.4.

If k ̸= l, then without loss of generality we assume that
k > l. We color G in a similar manner as (i) and obtain a
∆(G)-avd-coloring of G. If k = l, then from Proposition
2 that H2 has a 4-avd-coloring using colors 1, 2, 3 and
4. Note here that x and y are distinguishable in H2.
We assign colors 5, 6, · · · , k + 4 to xx1, xx2, · · · , xxk,
respectively. Similarly, we assign clors 5, 6, · · · , k + 4 to
yy1, yy2, · · · , yyl, respectively. It is obvious that x and
y are distinguished from each other, and the resulting
coloring is a (∆(G) + 1)-avd-coloring of G.

(iii) G = G3.

By Proposition 2, H3 has a 4-avd-coloring using colors 1,
2, 3 and 4. We assign colors 5, 6, · · · , k + 4 to the edges
xx1, xx2, · · · , xxk, respectively. It is obvious that the
resulting coloring is a ∆(G)-avd-coloring of G.

(iv) G = G4. This case can be dealt with in a similar
manner as (ii), and we may obtain a ∆(G)-avd-coloring
(k ̸= l) or (∆(G) + 1)-avd-coloring of G (k = l).

(v) G = G5. This case can be dealt with in a similar
manner as (i), and we may obtain a ∆(G)-avd-coloring
of G.

Since we have dealt with all cases, the theorem is proved.

4 Conclusion and Future Work

From Propositions 1-3 and Theorem 1, we prove that
χ ′
a(G) ≤ ∆(G) + 1 for bicyclic graphs G. This implies

that Conjecture 1 holds for all bicyclic graphs. We will in-
vestigate the AVDPEC Conjecture for other graphs (such
as tricyclic graphs) in the future.
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