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Abstract—This paper is mainly to investigate the oscillation
condition for the solution of a class of delay partial difference
equations. Since the oscillation condition is equivalent to the
regions where the corresponding characteristic equation has no
positive root, by applying the envelope theory, some necessary
and sufficient conditions for the oscillatory property of the
solutions are obtained.

Index Terms—delay partial difference equation, oscillation,
envelope, characteristic equation.

I. INTRODUCTION

PARTIAL difference equations are types of difference
equations that involve functions of two or more inde-

pendent variables. Delay partial difference equations have
numerous applications as in molecular orbits, population
dynamic with spatial migrations, image processing, random
walk problems, material mechanics, etc[1-7]. In recent years,
the study of the qualitative analysis for the oscillatory
behavior of delay partial difference equation has attracted
considerable attention, see [8-11] and the references therein.

In [12], with the constraints p > 0, q ≥ 0, by means of
the the zero point theorem, B. G. Zhang and R. P. Agarwal
have investigated the oscillatory behavior of following first
order delay partial difference equation

um+1,n + um,n+1 − pum,n + qum−k,n−l = 0,

where m,n, k, l are nonnegative integers. In [13], also with
the constraints p > 0, q ≥ 0, using the proof of contradiction,
B. G. Zhang and Y. Zhou once more studied the above
equation and obtained the necessary and sufficient conditions
for the solutions to be oscillatory.

We will investigate in this paper the following second
order delay partial difference equation

um+2,n + um,n+2 − pum,n + qum−σ,n−τ = 0, (1)

where p, q are real numbers, m,n, σ, τ are nonnegative
integers. The purpose of this paper is to apply a new method,
based on the envelope theory of the family of lines, to derive
necessary and sufficient conditions for the delay partial
difference equation (1) to be oscillatory without the sign
constrains for parameters p and q. Before stating the main
results, we give some definitions used later in this paper.
Definition 1 {um,n}m≥−σ,n≥−τ is said to be a solution of
(1) if {um,n} satisfies (1) for m ≥ 0 and n ≥ 0.
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Definition 2 A solution {um,n} of (1) is said to be eventually
positive (or negative) if um,n > 0 (or um,n < 0 ) for large
integers m and n. The solution is said to be oscillatory
if it is neither eventually positive nor eventually negative.
(1) is called oscillatory if all of its nontrivial solutions are
oscillatory.

II. PRELIMINARIES

In this section, we give some lemmas that will be used in
the proof of the main results in section 3.
Lemma 1 [13] The following statements are equivalent:

(i) Every solution of (1) is oscillatory.
(ii) The characteristic equation of (1)

λ2 + µ2 − p+ qλ−σµ−τ = 0

has no positive root.
Lemma 2 [14] Suppose that f is differentiable on (0,+∞)
and f is not identically zero on (0,+∞) with lim

x→+∞
f(x) >

0 or lim
x→0+

f(x) > 0. Then

F (x, y) = y + f(x)

has no positive root on (0,+∞)× (0,+∞) if and only if f
has no positive root on (0,+∞).
Lemma 3 [15] Suppose that f, g and v are differentiable
on (−∞,+∞) × (−∞,+∞). Let Γ be the two-parameter
family of lines defined by the equation

f(λ, µ)x+ g(λ, µ)y = v(λ, µ),

where λ, µ are parameters. Let Σ be the envelope of the
family Γ. Then the equation (with respect to λ, µ)

f(λ, µ)a+ g(λ, µ)b = v(λ, µ)

has no real root if and only if there is no tangent line of Σ
passing through the point (a, b) in xy-plane.

III. MAIN RESULTS

In this section, some necessary and sufficient conditions
for oscillations of all solutions of equation (1) are established.
Since σ, τ are nonnegative integers, to facilitate discussions,
we divide the study into four mutually exclusive cases:
(i)σ ≥ 1 and τ ≥ 1; (ii)σ ≥ 1 and τ = 0;
(iii)σ = 0 and τ ≥ 1; (iv)σ = 0 and τ = 0.
Theorem 1 Let σ ≥ 1 and τ ≥ 1. Then every solution
of (1) oscillates if and only if p ≤ 0, q ≥ 0 or p > 0,
q > 2σ

σ
2 τ

τ
2

(σ+τ+2)
σ+τ+2

2

p
σ+τ+2

2 .

Proof Since σ ≥ 1 and τ ≥ 1, the characteristic equation
of (1) is

φ(p, q, λ, µ) = λ2 + µ2 − p+ qλ−σµ−τ = 0. (2)
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Set
F (p, q, λ, µ) = λσµτφ(p, q, λ, µ)

= λσ+2µτ + λσµτ+2 − pλσµτ + q = 0. (3)

It can be seen that (2) has no positive root if and only if
(3) has no positive root. According to Lemma 1, we only
need to consider the positive solutions of (3), that is, λ > 0
and µ > 0. Now consider (p, q) as a point in pq-plane, and
try to search for the exact regions including points (p, q)
in pq-plane such that (3) has no positive root. Actually,
F (x, y, λ, µ) = 0 can be regarded as an equation describing
a two-parameter family of lines in pq−plane, where λ, µ
are parameters. According to the envelop theory, the point
(x, y) on the envelope for (3) must satisfy all the following
equations

F (x, y, λ, µ) = 0,
Fλ(x, y, λ, µ) = −σλσ−1µτx+ (σ + 2)λσ+1µτ

+ σλσ−1µτ+2 = 0,
Fµ(x, y, λ, µ) = −τλσµτ−1x+ τλσ+2µτ−1

+ (τ + 2)λσµτ+1 = 0,

(4)

where λ > 0 and µ > 0. Eliminating λ and µ from (4), we
get the equation of the envelope

y(x) =
2σ

σ
2 τ

τ
2

(σ + τ + 2)
σ+τ+2

2

x
σ+τ+2

2 , (5)

where x > 0. Consequently,

y′(x) =
σ

σ
2 τ

τ
2

(σ + τ + 2)
σ+τ
2

x
σ+τ
2 ,

y′′(x) =
(σ + τ)σ

σ
2 τ

τ
2

2(σ + τ + 2)
σ+τ
2

x
σ+τ−2

2 ,

where x > 0. Then y(x) > 0, y′(x) > 0 and y′′(x) > 0
imply that y is a positive and strictly convex function on
(0,+∞). Moreover, lim

x→+∞
y(x) = +∞, lim

x→0+
y(x) = 0.

The envelope defined by (5) is a strictly convex curve C in
the first quadrant as described in Fig.1. It is clearly seen that
when either the point (p, q) is in the second closed quadrant,
namely, p ≤ 0, q ≥ 0 or (p, q) is vertically above C, namely,
p > 0, q > 2σ

σ
2 τ

τ
2 p

σ+τ+2
2 /(σ+τ+2)

σ+τ+2
2 , there cannot be

any tangent line of C which passes through (p, q). Since (2)
is equivalent to (3) for the existence of positive solutions, by
Lemma 3, (2) has no positive root if and only if p ≤ 0, q ≥ 0
or p > 0, q > 2σ

σ
2 τ

τ
2 p

σ+τ+2
2 /(σ + τ + 2)

σ+τ+2
2 . Associated

with Lemma 1, the proof completes.
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Fig. 1. A Sample Envelope Curve of (3) for σ = 1 and τ = 1

Theorem 2 Let σ ≥ 1 and τ = 0. Then every solution
of (1) oscillates if and only if p ≤ 0, q ≥ 0 or p > 0,
q > 2σ

σ
2

(σ+2)
σ+2
2

p
σ+2
2 .

Proof For σ ≥ 1 and τ = 0, the characteristic equation of
(1) is

φ(p, q, λ, µ) = λ2 + µ2 − p+ qλ−σ = 0. (6)

Set
f(p, q, λ) = λ2 − p+ qλ−σ = 0. (7)

Then lim
λ→+∞

f(p, q, λ) > 0 and f(p, q, λ) is differentiable

with regard to λ > 0. Lemma 2 implies that (6) has no
positive root if and only if (7) has no positive root. Set

F (p, q, λ) = λσf(p, q, λ) = λσ+2 − pλσ + q = 0. (8)

Then we see that (8) is equivalent to (7) for the existence
of positive root. To investigate oscillatory solutions of (1),
by Lemma 1, attention will be restricted to the case where
λ > 0. Consider (p, q) as a point in pq-plane and search
for the exact regions including (p, q) in pq-plane such that
(8) has no positive root. Actually, F (x, y, λ) = 0 can be
considered as an equation describing a one-parameter family
of lines in pq−plane, where λ is the parameter. According
to the theory of envelopes, the point (x, y) on the envelope
for (8) must satisfy all the following equations{

F (x, y, λ) = λσ+2 − λσx+ y = 0,

Fλ(x, y, λ) = (σ + 2)λσ+1 − σλσ−1x = 0,
(9)

where λ > 0. Eliminating λ from (9), we obtain the equation
of the envelope

y(x) =
2σ

σ
2

(σ + 2)
σ+2
2

x
σ+2
2 , (10)

where x > 0. Then

y′(x) =
σ

σ
2

(σ + 2)
σ
2
x

σ
2 ,

y′′(x) =
σ

σ+2
2

2(σ + 2)
σ
2
x

σ−2
2 ,

where x > 0. Consequently, y(x) > 0, y′(x) > 0 and
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Fig. 2. A Sample Envelope Curve of (8) for σ = 1 and τ = 0

y′′(x) > 0 for x ∈ (0,+∞). Hence, y is a positive and strict-
ly convex function on (0,+∞). Moreover, lim

x−→+∞
y(x) =

+∞, lim
x−→0+

y(x) = 0, the envelope defined by (10) is a
strictly convex curve C in the first quadrant as described in
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Fig.2. It can be easily seen that there are two cases for the
point (p, q) through which there cannot be any tangent line
of C passes. The first case is when (p, q) is in the second
closed quadrant, namely, p ≤ 0, q ≥ 0. The second case
is when (p, q) is vertically above C in the first quadrant,
namely, p > 0, q > 2σ

σ
2 p

σ+2
2 /(σ + 2)

σ+2
2 . Meanwhile, if

the point (p, q) is lied in somewhere else except the above
two domains, such a tangent line of C exists. Lemma 1 and
Lemma 3 imply the statement of this theorem. The proof is
accomplished.

Theorem 3 Let σ = 0 and τ ≥ 1. Then every solution
of (1) oscillates if and only if p ≤ 0, q ≥ 0 or p > 0,
q > 2τ

τ
2

(τ+2)
τ+2
2

p
τ+2
2 .

Proof Since (1) has the symmetric property, in this case,
when replacing λ with µ and replacing σ with τ , the
discussion is almost the same as in the proof of Theorem
2, here we omit it.
Theorem 4 Let σ = 0 and τ = 0. Then every solution of
(1) oscillates if and only if p ≤ q.

Proof Because σ = 0 and τ = 0, (1) can be rewritten as

um+2,n + um,n+2 + (q − p)um,n = 0. (11)

The characteristic equation of (11) is

λ2 + µ2 + (q − p) = 0. (12)

It is obvious that (12) does not have any positive root if
and only if q − p ≥ 0. By Lemma 1, every solution of (1)
oscillates if and only if p ≤ q. This completes the proof of
the theorem.

IV. ILLUSTRATIVE EXAMPLES

In this section, we give some examples to illustrate the
results obtained in Section 3.

Example 1 Consider the delay partial difference equation

um+2,n + um,n+2 − 0.1um,n + 0.8um−1,n−1 = 0. (13)

Here σ = 1, τ = 1, p = −0.1, q = 0.8. Since p = −0.1 <
0, q = 0.8 > 0, by Theorem 1, every solution of (13) is
oscillatory. The oscillatory behavior of (13) is demonstrated
by Fig.3.
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Fig. 3. The Oscillatory Behavior of Solutions for Equation (13)

Example 2 Consider the delay partial difference equation

um+2,n + um,n+2 + 0.2um,n + 0.9um−1,n−1 = 0. (14)

Here σ = 1, τ = 1, p = 0.2, q = 0.9. Since p = 0.2 > 0,

q = 0.9 > 1
8 (0.2)2 = 2σ

σ
2 τ

τ
2

(σ+τ+2)
σ+τ+2

2

p
σ+τ+2

2 , by Theorem 1,

every solution of (14) is oscillatory. The oscillatory character
of (14) is demonstrated by Fig.4.
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Fig. 4. The Oscillatory Behavior of Solutions for Equation (14)

Example 3 Consider the delay partial difference equation

um+2,n + um,n+2 − 0.2um,n + 0.6um−1,n = 0. (15)

Here σ = 1, τ = 0, p = −0.2, q = 0.6. Since p = −0.2 <
0, q = 0.6 > 0, by Theorem 2, every solution of (15) is
oscillatory. The oscillatory behavior of (15) is demonstrated
by Fig.5.
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Fig. 5. The Oscillatory Behavior of Solutions for Equation (15)

Example 4 Consider the delay partial difference equation

um+2,n + um,n+2 + 0.04um,n + 0.08um−1,n = 0. (16)

Here σ = 1, τ = 0, p = 0.04, q = 0.08. Since p = 0.04 > 0,

q = 0.08 > 2

3
3
2

0.04
3
2 = 2σ

σ
2

(σ+2)
σ+2
2

p
σ+2
2 , by Theorem 2,

every solution of (16) is oscillatory. The oscillatory behavior
of (16) is demonstrated by Fig.6.
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Fig. 6. The Oscillatory Behavior of Solutions for Equation (16)
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Example 5 Consider the delay partial difference equation

um+2,n + um,n+2 − 0.5um,n + 0.5um,n = 0. (17)

Here σ = 0, τ = 0, p = 0.5, q = 0.5. Since p = 0.5 ≤ q =
0.5, by Theorem 4, every solution of (17) is oscillatory. The
oscillatory behavior of (17) is demonstrated by Fig.7.
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Fig. 7. The Oscillatory Behavior of Solutions for Equation (17)
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