
 

 
Abstract—The traditional numerical methods in the study of 

large deformation of thin elastic beam usually show limited 
accuracy or are complicated to implement. In this paper, we 
propose a highly accurate and easily coded algorithm based on 
the polynomial collocation spectral method, for the study of 
beam bending, twisting and stretching. Ten nonlinear governing 
differential equations corresponding to Kirchhoff’s rod theory 
are discretized on the Chebyshev or Legendre Guass-Lobatto 
points. The solutions are obtained through the modified 
Newton-Raphson method and verified by the existing solutions. 
This polynomial collocation spectral method is demonstrated for 
various types of loading conditions, boundary conditions and 
intrinsic configurations. The analysis of the solutions reveals 
that the method could dramatically increase the accuracy of the 
simulation. 
 

Index Terms—thin elastic beam, large deformation, spectral 
method, high accuracy 
 

I. INTRODUCTION 
HE study of long thin beams (or rods) has attracted great 
interest in both science and new technology development 

in recent decades, in fields such as biology and medical 
science[1]–[3], computer science[4], [5] and 
engineering[6]–[8]. Especially in mechanical engineering, the 
large deflection problem of a beam under follower loads has 
always been a focus of research [9]–[11] with applications in 
rocket engines, space structures or automotive brake 
systems[12]. Due to the strong nonlinearity from large 
deformation, the analytical solution could be provided only in 
very few special cases. However, numerical solutions can be 
adapted for almost all types of boundary and load conditions. 
Traditionally, various discretized schemes such as the finite 
difference method (FDM) and the finite element method 
(FEM)[13], [14] have also been proposed for the study of 
beams. Westcott et al.[1] used the finite difference method by 
employing Euler parameters as unknowns based on the 
modified Kirchhoff equations to simulate the quasi-static 
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problem in the application of studying DNA supercoiling. 
Recently, a finite difference formulation for the design of 
actively bent structures has been obtained by using of the 
dynamic relaxation method[15]. Yang et al.[16] established 
the finite element scheme of the long thin elastic rod by using 
Euler angles as unknowns. Additionally, spline-based 
techniques or isogeometric analysis have been implemented 
in the frame work of an energy or virtual power principle[5], 
[17]. Bergou et al.[4] proposed a robust discrete elastic rods 
method for the simulation of a thin elastic beam based on the 
Bishop coordinate and parallel transformation. However, the 
algorithms described above either have limited accuracy or 
are complicated to implement. The higher accuracy and 
relatively simpler programming work in the numerical studies 
are more meaningful for scientists and engineers in the fields 
of biology, medical science and engineering. 

In this paper, we propose an easy-coding and highly 
accurate algorithm based on the spectral collocation 
method[18] and Kirchhoff theory in calculating the large 
deflection of elastic beam. For the spectral method, the 
precision increases exponentially with the increasing number 
of nodes [18]. This approach has lower computational cost 
because usually one-element (one single domain) or several 
elements (spectral element method) are sufficient for 
representing any regular structure. One-dimensional 
problems (such as long thin beam or liquid jet) usually have 
sufficiently smooth solutions and intrinsically simple 
boundaries in their geometry, despite their probably complex 
governing equations[19], [20]. These properties imply that 
the spectral method is naturally suitable to solve 
one-dimensional problems to obtain higher accuracy and 
decrease computational costs simultaneously. 

The contents of this paper are organized as follows: in 
Section 2, the modified version of Kirchhoff equations for the 
treatment of bending, twisting and stretching are provided. In 
Section 3, the discretization of the differential equations using 
the polynomial collocation method[18], [21] is discussed. 
Finally, in Sections 4 and 5, several benchmark problems are 
solved to verify the accuracy of the method, in addition to 
some examples followed by an application to the open coiled 
helical spring. 

II. GOVERNING EQUATIONS 

The column vector T
1 2 3[ ] [ , , ]d d d d represents a local 

coordinate system of a beam, where 1d  and 2d  lie along the 
principal axes of the cross-section and 3 1 2 d d d which 
points along the axis of the beam. The local coordinate system 
is related to the global frame column vector T[ ] [ , , ]x y ze e e e  
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by, 
 [ ] [ ][ ]d T e  (1) 

where the matrix [T] is defined by the Euler parameters 
1 2 3 4, , ,     as[22] , 
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3 4 2 3 1 4 2 4 1 3

2 2
2 3 1 4 2 4 3 4 1 2

2 2
2 4 1 3 3 4 1 2 2 3

1 2
2 1 2

1 2

         

         

         

    
 

    
     

 (2) 

and these parameters must satisfy the constraint 
 2 2 2 2

1 2 3 4 1       . (3) 

In local coordinates, the components 1 , 2  and 3  of the 
angular rate of rotation κ are interpreted as two curvatures 
and the twist of the beam. Differentiating (1) with respect to 
the arclength s gives the change rate of the directors,  
   , 1,2,3i is

i  d κ d  (4) 

The balance of the forces and moments yields the following 
equations 
 0s  F f , (5) 

 3 0s   M d F , (6) 

where the internal and body forces are F  and f , respectively, 
and M  is the internal moment. In the local coordinates, (5) 
and (6) turn out to be given by 

  
3

1
0i is

i
F



    d κ F f , (7) 

  
3

3
1

0i is
i

M


     d κ M d F . (8) 

We restrict our discussion to the static linear elastic beams, 
implying that the moments are proportional to the differences 
between the current and intrinsic rotation angular rates given 
by 0

1 1 1( )M A    , 0
2 2 2( )M B     and 

0
3 3 3( )M C    . Here, 1A EI  and 2B EI , where E is 

the Young’s modulus and 1I  and 2I  are the moments of 
inertia about the axes 1d  and 2d . PC GI  is the torsional 
stiffness of the cross section, where G is the shear modulus 
and PI  is the polar moment of inertia. Thus, (7) and (8) can 
be expanded as 

1 2 3 3 2 1

2 3 1 1 3 2

3 1 2 2 1 3

0
0
0

s

s

s

F F F f
F F F f
F F F f

 
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 

   
    
    

, (9) 
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   

0 0
1 2 3 3 3 2 2 2
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3 1 2 2 2 1 1 0

s
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s

A C B F

B A C F

C B A

      

      

      

     
      


    

. (10) 

From (1)-(4), we obtain the curvatures and twist in terms of 
Euler parameters as 

 
 
 

1 2 1 1 2 4 3 3 4

2 3 1 4 2 1 3 2 4

3 4 1 3 2 2 3 1 4

2
2
2

s s s s

s s s s

s s s s

        

        

        

    
     
     

. (11) 

To solve for the first-order derivatives of the Euler parameters 
from (11), we differentiate (3) and obtain 
 1 1 2 2 3 3 4 4 0s s s s           . (12) 

Inverting (11) and (12) yields the following first-order system 
of ordinary differential equations for the Euler 
parameters[22], 

 

1 3 4 2 3 1 2

2 2 4 3 3 1 1

3 1 4 3 2 2 1

4 1 3 2 2 3 1

2
2
2

2

s

s

s

s

      

      

      

      

   
    
   
    

 (13) 

All of the above 10 governing equations (9), (10) and (13) can 
be used to solve for 10 unknowns ( F , κ and Euler 
parameters). Here, we obtain the Euler parameter version of 
Kirchhoff equations and the system is closed. 

To solve for the configuration of the beam and apply the 
boundary conditions in a convenient manner, we write the 
differential equations for the centreline of the beam in terms 
of the Euler parameters 

 
 
 
 

2 4 1 3

3 4 1 2

2 2
1 4

2
2

2 1

s

s

s

x
y

z

   

   

 

  
  
   

. (14) 

III. IMPLEMENTATION OF THE POLYNOMIAL 
COLLOCATION METHOD 

For the governing equations, we approximate the 
solution   by the polynomial interpolants, 

    
0

N

j j
j
Φ l  



  (15) 

where  jl   is the Lagrange interpolating polynomials 
defined in [-1,1],

 
and N+1 is the number of nodes. Two 

polynomial basis functions are employed including the 
Legendre and Chebyshev polynomials. The interpolation 
nodes i  are the Legendre Chebyshev-Lobatto points 
(Chebyshev points)  and Legendre Guass-Lobatto points 
(LGL) given by, 

 
 

cos / Chebyshev
1, zeros of LGLi

N

i N
L ξ




  
, 

where  NL ξ  stands for the derivative of the Nth-order 
Legendre polynomial. Here, and below, prime refers to the 
derivative taken with respect to  . [18] and [21] describe the 
algorithm for the calculation of nodes i  and the 
corresponding quadrature weights iw . The derivative of the 
polynomial interpolant at any node is given by 
 

   
0 0

0,1, ,

N N

i j j i ij j
j j
Φ l D Φ

i N

  
 

  

 

  , (16) 

where  ij j iD l   can be expressed as the derivative matrix 
[D], the non-diagonal elements of which are 

( )
j

ij
i i j

w
D

w  



 

and the diagonal elements are 
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0,

N

ii ij
j j i

D D
 

   [21].  

Considering the stretching, the arclength s of the deformed 
beam can be expressed as the sum of the original length S(s) 
and the axial stretching U(s), which is s=S(s)+U(s). Taking 
the derivative of both sides, we obtain d d 1 ( )S s s  , 
where ( ) d ds U s   is the axial strain with respect to the 
current configuration. The axial stain is proportional to the 
axial force 3F Ea , where a is the area of the original 
cross-section (the change of the area is neglected due to small 
local elongation). Assuming that the arclength of the original 
beam is 0L , we could obtain the relation 0d d 2S L  . 
According to the chain rule, the transformation between the 
derivative of the current arclength and the local interpolation 
space should be given by 

3

0

d d d d 2 1
d d d d

FS
s S s L Ea
  




     
 

. 

Thus, (9) and (10) are discretized as 

1 3 2 2 3 1

3 1 2 1 3 2

2 1 1 2 3 3

([ ]*[ ])[ ] [ ]*[ ] [ ]*[ ] [ ]
[ ]*[ ] ([ ]*[ ])[ ] [ ]*[ ] [ ]
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 (17) 
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
   

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F C D κ κ κ κ

κ κ κ

F κ κ κ C D κ

κ κ κ

κ κ κ κ κ κ

C D κ

, (18) 

in which [ ]iF  ( 1,2,3i  ) are the column vector with the 
elements corresponding to the node values 

      T
0 1[ ]i i i NF F F   and the same holds for  [ ]iκ , 

[ ]if  etc. Notation “*” implies the Hadamard product (element 
by element multiplication). [ ]C  is the transformation matrix, 
which is  

 3
1

[ ]2[ ] 1 [1 1 1]NL Ea 
     
 

F
C     (19) 

Eqs.(13) can be discretized as, 
1 2 1 3 2 4 3

2 1 1 4 2 3 3

3 4 1 1 2 2 3

4 3 1 2 2 1 3

2[ ]*[ ][ ] [ ]*[ ] [ ]*[ ] [ ]*[ ]
2[ ]*[ ][ ] [ ]*[ ] [ ]*[ ] [ ]*[ ]
2[ ]*[ ][ ] [ ]*[ ] [ ]*[ ] [ ]*[ ]
2[ ]*[ ][ ] [ ]*[ ] [ ]*[ ] [ ]*[ ]

   

  

  

   

C D χ χ κ χ κ χ κ
C D χ χ κ χ κ χ κ
C D χ χ κ χ κ χ κ
C D χ χ κ χ κ χ κ

 

   (20)

  

The first-order differential equations of the centreline (14) are 
discretized as 

 
 
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2 4 1 3

3 4 1 2

1 1 4 4

[ ]*[ ][ ] 2 [ ]*[ ] [ ]*[ ]

[ ]*[ ][ ] 2 [ ]*[ ] [ ]*[ ]

[ ]*[ ][ ] 2 [ ]*[ ] [ ]*[ ] 1

 


 
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C D x χ χ χ χ

C D y χ χ χ χ

C D z χ χ χ χ

.    (21) 

Thus, the problem is transformed to a system of nonlinear 
algebraic equations comprised of (17), (18) and (20). The 
parameter ji  is introduced to designate the jth 

( 1,2, ,10j   ) nodal variables (representing 1 2 3, , ,F F F  

1 2 3, , ,   1 2 3, ,    and 4 ) at the ith node ( 0,1, ,i N   ). 
Then, the governing equations could be expressed as 

  0kl jiH   , where 1,2, ,10l     and 0,1, ,k N   .  

We note that each discretized differential equation contains 
matrix [D] which is not a full rank matrix (rank=N). There are 
only 10N independent equations for solving 10(N+1) 
unknowns. Thus, 10 boundary conditions are needed to 
replace the first or the last rows of each discretized 
differential equation and eliminate the singularity. Two types 
of boundary conditions are considered here: 

1) One end is fixed, and the other is free (cantilever beam). 

In this situation, 3 boundary conditions of F , 3 boundary 
conditions of κ  (at the free end) and 4 boundary conditions 
of [ ]χ  (at the fixed end) are needed for the enclosure of the 
system as follows, 

   
   
   
   
   

1 1 2 2

3 3 1 1

2 2 3

1 1 2 2

3 3 4 4

,

,

,

0 , 0

0 , 0

L L

L L

L L

F L F F L F

F L F L M A

L M B L T C



 

   

   

  


 


 
  
  

,           (22) 

where L is the arclength after the deformation. 1
LF , 2

LF  and  

3
LF  are the tip loads along the principal axis at the free end. 

1
LM , 2

LM and LT are the tip bending moments and torsion. 

When the end load T[ ] [ ]L L L L
x y zF F FF  is expressed in 

the Cartesian coordinates, the principal components can be 
derived though a transformation matrix [T] expressed in (2) 
given by 
   [ ][ ] 1, 2,3L L

i iF L i T F , (23) 

where [ ]L
iT  is the ith row of the transformation matrix at s=L. 

The similar treatment can be carried out in dealing with the 
distributing load. The , 1,2,3,4i i   are the boundary values 
of the Euler parameters representing the orientation of the 
cross-section at the fixed end and satisfying the constraint of 
(3).  

2) One end is fixed and the other is hinged. 

In this situation, the orientation of fixed ends is known and 
is determined by 1 2 3, ,    and 4 ,  

 
   
   

1 1 2 2

3 3 4 4

0 , 0

0 , 0

   

   

 

 
 (24) 

A hinged end in 3D space indicates the end position is 
determined without the reaction of the moment and torsion. 
Thus, zero curvatures and twist are involved, 

      1 2 30, 0, 0L L L      (25) 

Assume that one end is located at T[0,0,0]  for s=0. The other 
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end is at the given position   x y zs L X Y Z   r e e e . By 
integrating and discretizing (14), the position of the beam end 
at s=L is obtained as 

   3
0 32 1 /

N
i

i
i i

wLL
F Ea


r d . (26) 

The component of (26) appears to be,  
T T

1 3 2 4
T T

1 2 3 4
T T

1 1 4 4

2[ ] [ ][ ] 2[ ] [ ][ ]
2[ ] [ ][ ] 2[ ] [ ][ ]

2[ ] [ ][ ] 2[ ] [ ][ ] [ ]

X
Y

Z trace

  


  
   

χ W χ χ W χ
χ W χ χ W χ

χ W χ χ W χ W
 (27)  

where 
3

/ 2
[ ] ( )

1 /
i

i

Lw
diag

F Ea



W , 0,1, ,i N   . Here, 

( )idiag   is a square matrix with elements of i  on the 
diagonal. 

To ensure that the procedure for finding the solution is 
robust, we use an incremental algorithm combined with the 
modified Newton-Raphson (mN-R) method. The external 
forces are divided into several load steps. At each load step, 
the tangential stiffness matrix is formed and decomposed only 
in the first iteration. At the nth iteration, a system of linear 
equations takes the following form,  

   1( ) ( ) ( )[ ] [ ] [ ]n n n
  ψ K H , (28) 

where ( )[ ] nK  is the Jacobian matrix with the shape of 

10( 1) 10( 1)N N   . ( )[ ] nH  is the residues of the nonlinear 

governing equations at the trial solutions ( )[ ] nψ . ( )[ ] nψ  
contains all of the corrections to the 10( 1)N   unknown 
nodal variables. Thus, the correction is followed to obtain a 
new trial solution for the next iteration, 
 ( 1) ( ) ( )[ ] [ ] [ ]n n n   ψ ψ ψ  (29) 

The process is iterated until the norm of the residues is less 
than the desired accuracy defined by 

 ( ) (1) 8[ ] [ ] , 1 10n     H H  (30) 

IV. BENCHMARK SOLUTIONS AND EXAMPLES 
The first benchmark problem involves a cantilever beam 

deforming under a transverse force applied at the free end. 
The beam has the length of L=2 and the bending rigidity of 
A=100. Extremely large axial stiffness is set up as 

201 10Ea    to implement the inextensible assumption in the 
literature. The domain is discretized by 31 Chebyshev nodes 
(N=30). The deflected shape of central axis is plotted as 
shown in Fig. 1. Fig. 2 shows the plots of the load versus the 
normalized horizontal and vertical displacements for the 
beam tip obtained by the spectral method compared to the 
solutions presented by Mattiasson[23]. Our results are in 
good agreement with Mattiasson’s solutions. The vertical 
displacements errors for N=2 to 50 are calculated (due to 
lacking the double precision analytical solution, we suppose 
that the solutions of N=50 are exact). The error convergence 
as a function of N is shown in Fig. 3 for both the Legendre 
Gauss-Lobatto approximation and the Chebyshev 
approximation. We note that for both polynomial base, the 
error decays exponentially until the rounding error is reached 
(when N=26, error<10-12).  

 

 
 

 
 

 

 
The second benchmark problem involves the cantilever 

beam subjected to an end moment as shown in Fig. 4. The 
straight beam properties are L=2 and A=100. 31 Chebyshev 
nodes are employed, and the deformation exhibits a circle 
when 100M   and a half circle when 50M  . The 

 
Fig. 3.  Convergence of the maximum errors for Chebyshev and Legendre 
Gauss-Lobatto collocation approximations to the cantilever beam under tip 
vertical force P=250. 

 
Fig. 1.  Deformed shape of central axis for straight cantilever beam under tip 
vertical force P. 

 
Fig. 2.  Load vs. tip displacement diagram for cantilever beam under tip 
vertical force P. u/L and w/L  present the dimensionless horizontal and vertical 
deflection here and in Figures below. Data shown by circles and stars are taken 
from Ref. [19] while solid lines show our results. 
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descent curve for 2-norm of errors with the increase of the 
number of nodes is shown in Fig. 5, and is compared to the 
exact solutions (perfect circle) for the tip moment of 100 . 
We noticed that N=20 is exact enough to reach the rounding 
error in this case. Another observation is that for this 
particular problem, the Chebyshev approximation is more 
accurate than the Legendre Gauss-Lobatto approximation. 
 

 
 

 
The third and fourth benchmark problems involve beams 

subjected to the follower load. This kind of problems has been 
studied by Argyris[24] and Nallathambi[11] using the finite 
element method and the fourth-order Runge-Kutta with 
shooting method separately. We use the same beam properties 
as in [11]. Figs. 6 and 7 show the resulting deformation 
profiles under different concentration forces. 31 Chebyshev 
nodes are used in the calculations and our results are in good 
agreement with the data reported in [24] and [11], as shown in 
Figs. 8 and  9. Furthermore, our results are in better agreement 
with the results of the fourth-order Runge-Kutta which is also 
a higher accuracy method compared to the finite element 
method; however, our method is more general and adaptable. 
 

 

 
 

 
More examples are presented below in different load and 

boundary conditions. In all examples, the discretization is 
carried out using 31 Chebyshev nodes. Fig. 10 shows the 
deflected shapes of the cantilever beam under the distributed 

 
Fig. 8.  Load vs. tip displacement diagram for cantilever beam under follower 
force(showed in Fig.6). The solid lines and dashed line are from [11] and [20]. 

 
Fig. 4. Deformed shape of central axis for straight cantilever beam under tip 
moment M. 

 
Fig. 6.  Deformed shape of central axis for straight cantilever beam under 
follower load P which is always orthogonal to the beam tip. 
 

 
Fig. 7.  Deformed shape of beam central axis for intrinsically curved cantilever 
beam under the tip force P which is always along the tangent of the curve tip. 

 
Fig. 5.  Convergence of the norm errors for Chebyshev and Legendre 
Gauss-Lobatto collocation approximations to the cantilever beam under tip 
moment M=100π. 
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vertical load q. One example of such situations is the large 
deformation of a very soft cantilever beam under gravity. The 
straight beam properties are the same as those of the first 
benchmark problem. We compare them to the results of the 
finite element code Calculix shown in Fig. 11. In the Calculix 
calculation, 20 three-node beam elements (element B32, all 
together 41 nodes) are used. The maximum relative deviation 
between the two solutions is less than 3%. 

 

 
 

 

 
Fig. 12 illustrates an intrinsically curved beam deformed 

with a fixed end and the other moving hinged end. This beam 
has the same properties as the beam in Fig. 7. When the 
hinged end moves horizontally with a certain displacement u, 
horizontal force P and vertical reaction N are provided to 
maintain the beam balance. Two reaction forces are shown in 
Fig. 13 as functions of the horizontal displacement.  
 

 
 

 
 

 
A 3D large deformation example is obtained by applying 

the follower bending moment and torsion simultaneously on 
the free end of a cantilever beam with circular cross-section. 
According to Love[25], the curvature of the central-line is 

 
Fig. 10. Deformed shape of central axis for straight cantilever beam under 
distributed vertical force q. 
 

 
Fig. 9.  Load vs. tip displacement diagram for intrinsically curved cantilever 
beam under follower force(showed in Fig.7). The solid lines and dashed line 
are from [11] and [20]. 

 
Fig. 14.  Deformed shape of central axis for straight elastic beam with circle 
corss-section under tip bending moment and torsion. 

 
Fig. 13.  Horizontal force P and vertical reaction force N vs. horizontal 
displacement u of the hinged end. 

 
Fig. 12.  Deformed shape of central axis for intrinsically curved beam with a 
fixed end and the other moving hinged end. 

 
Fig. 11.  Load vs. tip displacement diagram for cantilever beam under 
distributed vertical force q (showed in Fig. 10). Circles and stars show the 
results obtained by Calculix while solid lines show the results obtained using 
our method. 
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constant and the beam will bend into the helical form. In the 
test, the elastic beam has the length of L=2, the bending 
stiffness of A=B=100, and the twisting stiffness of C=76.923. 
It can be seen from Fig. 14 that with the increase of both 
torsion and bending moments from 0 to 400 , the number of 
helix turns increases. 

V. OPEN COILED HELICAL SPRING 
An important application of the flexible beam (or rod) in 

engineering is the open coiled helical spring with circular 
cross-section. The angle α between the coils and the plane 
perpendicular to the helix axis is not small, as shown in Fig. 
15. The deformation of the wire produced by the axial 
compression load P includes twist and bending. The classical 
linear theory for the calculation of the spring deflection λ by 
the axial load is given in [26] as, 

 
3 2 2cos sin=

4cos P

PD n
GI EI

  


 
 

 
 

 (31) 

where D is the diameter of the cylindrical surface containing 
the centerline of the spring, n denotes the number of coils and 
β is the correction factor approximated as 1 for a very thin 
wire. Some researchers further developed the nonlinear 
formula by introducing the correction of α [27]. Here, we 
calculate the deflection of one coil spring (n=1) by using the 
spectral method proposed in this paper.  

The initial and intrinsic state of the spring is described by 
three Euler angles namely, the precession angle ψ=2scosα/D, 
the nutation angle θ=π/2-α and the spin angle φ=0 (the 
underlines denote the initial state). Four initial state Euler 
parameters are derived from the Euler angles as[28], 

 
1

+
= cos cos

2 2
  

 , 2 =cos sin
2 2

  



, 

3 =sin sin
2 2

  



,    4 =sin cos

2 2
  




. 

(32) 

In the calculation, a modified first-type boundary condition is 
employed. We assume that one end of the wire is fixed at 
(0,0,0). The ending force F is generated by the compression 
load P, which is divided into many load steps and is applied 
according to (23). The ending moment for the ith load step is 
calculated as   ( ) ( 1) ( 1)/ 2i i i

xD L   M e r F , in which 

  3sin 2 /=D    and  Lr  is the position vector of the free 
ending. We also note that the nutation angles of both ends 
must be the same and ψ=0 at the fixed point, which induced, 

 

( 1)( ) 2 2
1 1 40

ii

L
  



  ,  3 0
0  , 

( 1)( ) 2 2
2 2 30

ii

L
  



  ,  4 0
0  . 

(33) 

The scheme proposed above is robust in the numerical tests 
and is easy to implement. 

The parameters in the numerical test are listed as G=80 
GPa, E=200 GPa, D=100 mm, α=10° and the diameter of the 
wire cross-section d is 5 mm. The helix height of one coil h is 
approximately 55.39 mm. The maximum compression load is 
applied as 100 N. According to the linear theory (31), the 
maximum deflection can reach 16.141 mm which is 
approximately 30% of the helix height. 

 

 
 

 
 

 
Fig.16 shows the 3D plot of numerical results for one coil 

spring deflection. From the top to bottom, the applied loads 
are 0, 20, 40, 60, 80 and 100 N. In Fig. 17, a deflection 
comparison is performed for the classical linear theory, our 
numerical method and He’s equation. Fig. 17(a) shows that 
when the load is relatively small (1-10 N), all results agree 
with the linear theory very well. However, when the load 
become relatively large (10-100 N), as shown in Fig. 17(b), 
our numerical results (“circles”) depart from the linear 
straight line (“stars”) slightly by the nonlinearity from the 
variation of both α and D. The magnified views (c) and (d) 

 
Fig.15. Sketch of open coiled helical spring. 

 
Fig.16. 3D plot of the one coil spring deflection. 

 
(a)                                  (b) 

 

 
 (c)                                 (d) 

 
Fig.17. Deflection comparison among different methods. Symbol “star”
denotes the result from linear theory(31), “circle” denotes our numerical result 
and “triangle” is from the He’s equation. (c) and (d) are the zoom views of the 
square area in (a) and (b) separately. 
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show this result more clearly. We note that the results 
(“triangles”) from He’s equation (7) in [27] also depart from 
the linear straight line slightly but with the opposite direction 
compared to our result. The reason is that only the variation of 
α is considered in his theory but the increase of the spring 
diameter D. For example, Fig. 18 shows that the change of α 
and D with the increase of the axial load in our numerical test. 
When the load reaches 100 N, α and D become 0.12243 rad 
(7.015°) and 101.05 mm. If we substitute these values into the 
linear equation (31) to estimate the bound, the deflection is 
16.576mm, near our numerical result of 16.435mm. However, 
when only α=0.12243 is substituted into the linear equation, 
the deflection is 16.065 mm, smaller than the classical linear 
theory result 16.141 mm, and the spring behaves stiffer. This 
is in agreement with the results as we have seen from Fig. 
17(d). 

 

 

VI. CONCLUSION 
In this paper, we present an algorithm based on the 

polynomial collocation spectral method for the study of a thin 
elastic beam. Ten governing equations are discretized on the 
Chebyshev and Legendre Gauss-Lobatto points. Several 
benchmark problems and applications are tested to check the 
results and accuracy under different kind of loading 
conditions, intrinsic configurations and boundary conditions. 
The solutions are in good agreement with the results reported 
in the literature. The analysis also shows that the spectral 
method gives out extremely good quality with high precision 
on finite nodes. As the number of the nodes increases, the 
error decreases dramatically. This approach is more 
convenient to implement than traditional numerical methods, 
as the algorithm includes traditional routines that could 
simplify the coding task. With the advantages above, the 
method can be effectively applied in practice, especially in the 
fields that requiring rapid analysis with high accuracy. 
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Fig.18. Variation of α and spring diameter D with the increase of the axial 
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