TAENG International Journal of Applied Mathematics, 48:4, IJAM_48 4 11

Linear Conservative Finite Volume Element
Schemes for the Gardner Equation

Jin-Liang Yan and Liang-Hong Zheng

Abstract—In this paper, a linear implicit energy-preserving are
and a linear explicit momentum-preserving finite volume el- b
ement scheme are proposed for the Gardner equation. The M (t) :/ u(
proposed schemes are derived by using the discrete variational o
b
a

x,t)dr,
derivative method (DVDM) in time and the finite volume 1
5/ (z,t)? de,

element method (FVEM) in space. The conservative properties K (¢) =

and the linear stability of the proposed schemes are analyzed. In

particular, the proposed methods are compared with a nonlinear bry s B A M )

Crank-Nicolson FVEM and a third-order Runge-Kutta FVEM J(t) = / [gu(% t)” — Zu(x,t) - Euz(ﬂfat) dz,

in terms of accuracy, CPU time and conservative properties. a

Index Terms—Energy, Momentum, Discrete variational which are_r_espectlvely named mass, momentum, and energy.

derivative method, Finite volume element method, Gardner ~ 1h€ ability of a numerical scheme to reproduce these

equation. guantities is extremely important, most particularly when
they are conservative. Some applications of this model can
be found in the hydrodynamics [4], plasma physics [5], and

SO on.
I. INTRODUCTION

HIS section is divided into the following parts: B. The DVDM and the FVEM

As is said in [6], schemes that conserve the first integrals or
generalized geometric structure have been shown to be useful

hen studying the long time behavior of dynamical systems.

hese schemes sometimes called geometric or structure
preserving integrators [7].

The DVDM [8] is a class of important structure-preserving
method that can retain the conservative/dissipative properties
A. Nonlinear Gardner equation of the original partial differential equations. Up to now, it
has been applied to many conservative or dissipative partial
differential equations (PDEs)(see [9]-[11]). In patrticular,
Koide and Furihata [9] proposed four conservative difference
schemes for the regularized long wave equation. Matsuo
and Furihata [10] extended the general studies to complex-
whereu(z,t) is the amplitude of the wave and § andy  yalued PDEs. Miyatake and Matsuo [12] proposed a general
are positive constants. It possesses solitary wave soluti@psnework for constructing energy dissipative or conserva-
that have been identified in a large variety of wave(sege Galerkin schemes for time dependent PDEs. Yan [13]
[1], [2]). The equation includes two nonlinear terms and @eveloped a class of energy-preserving FVEM for the KdV
dispersion term, the competition of three terms constitutgauation.
the main interest [2]. Particularly, whe# = 0, we obtain  The FVEM, as a type of important numerical tool for
the Korteweg-de Vries (KdV) equation, and when= 0, solving differential equations (see [11], [14]-[16]), has a
we again obtain the modified Korteweg-de Vries (mKdViong history. This method is also known as a box method in
equation. Thus, the Gardner equation is also named Kddarly references [17], or known as a generalized difference
mKdV equation. Moreover, this equation has an infinittethod in China [18]. The method has been widely used in
number of conservation laws [3], and the first three of thegeyeral engineering fields, such as fluid mechanics, heat and

mass transfer and petroleum engineering. Perhaps the most
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« The introduction to the nonlinear Gardner equation;

o The DVDM and the FVEM;

« The literature review and a brief introduction to th
current work.

The nonlinear Gardner equation

g + 20ty — 3Puuy + pitigee = 0,0 < x < bt >0, (1)
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nonlinear energy-preserving and momentum-preserving findad integrate the “local energy” over the solution domain to
volume element scheme for the mKdV equation, and so agbtain the “global energy”J(u) = f;’ G(u, uy) dx.
In this work, we will develop a class of linear conservative Then Eq. (1) can be written as

FVEM based on the DVDM and the FVEM. Generally, the a9 G
main merits of the proposed methods can be summarized as Up = *%(E), (3)
follows:
. . _where 6G/6u = ou?® — Bud + pug, is the variational
« They can precisely conserve the conservation or dlsgérivative/oflé:(u,uw) definﬂed by% e 5 56)

pation properties of original systems.

« They are unconditionally stable and suitable for long
time computation. Gd,k(U("”“), Umy = %[Ulngrl)(Ulgm))Q n Ulgm)(Ulgm+1))2]

- PR - B GO + o)
In recent years, different numerical techniques are develr (5;Uém))2 + (5,;U,5m))2},

oped for the solution of Eq.(1), such as, Hu [20] proposed (4)

a multi-symplectic method for the KdV-mKdV equationwhere(s;UlgW - (Ué’fi _ U,Em))/h, 5;(]}8’0 — (Ulg"ﬂ _

Wang [21] developed a multi-symplectic Fourier pseudq;(m) /h.

spectral scheme for the Gardner equation. Nishiyama [22T—Fﬁen we obtain a linear scheme & /du,

proposed two energy-preserving finite difference schemes for

the Gardner equation. However, there are few results about 0Ga = QU(m)(U(mfl) +ytm

structure-preserving methods for the Gardner equation. Yand(U "+, U ) gm=1)), — 37k 7k *

[23] proposed a class of nonlinear conservative schemes for U(erl)) B Q(U(m))g(U(mH) n U(mq))

the complex KdV equation. However, most of the proposed k 2k k k

schemes are nonlinear and need an iterative solver. Thus, iny ﬁé,iQ)(U,Em) + U,Em“)),

this paper, we will develop a class of linear implicit energy- (5)

i i ici N
preserving scheme and_a class of linear explicit mom_e_”tUWhereZk:O " A %fo T %fN denotes
preserving scheme, which are accurate and U“CO”d't'O”aAWrapezoidal rule.

stable (with long time computation ability) for the Gardner |, the following, we will derive the proposed schemes by
equation. The proposed schemes only need to solve a "nF'é’s’orting to the FVEM [11].

system at each time step and the schemes not require to soluge multiply both sides of the Eq.(3) by each one of the
the inverse of the matrix corresponding to the linear systegag; functionsl;, i=1, 2,..., N, and integrate the product over

Thus, the proposed schemes are efficient with respect to {ig sojution domain to obtain the following semi-discrete
nonlinear schemes. scheme:

The organization of this paper is as follows. In Section 5G
2, the proposed schemes are derived and their conservati@f’ U™, ;) = — (( ¥y (T‘i) =y ) ,¢i),
properties are analyzed. In SectiBnthe linear stability of U Ut u )/ @ 6)
the proposed scheme_s are analyzed._ S_eatgmes some nu- i=1. 2. N anas{Dy(m) — (U1 _ rm=1)) j2A¢,
merical examples to illustrate the efficiency of the prOposedSubstituting (5) into (6), we obtain its fully-discrete

schemes. A simple conclusion is provided in Section scheme. The above method is a linear scheme and can
precisely conserve the mass and energy of the original
Il. NUMERICAL SCHEMES system. Thus, the above method is named the linear energy-
In this section, we derived the proposed schemes aprbserving finite volume element method (LEFVEM).
analyzed their conservation properties. At the same time, Eg. (1) also conserve the momentum
In what follows, the numerical solution &tx,t,) is K, thus we hope that the numerical methods still retain this
denoted byU,E’”), and the following periodic boundaryproperty. To this end, like the forward process, we first define

Oug /"
We first define a linear scheme of “local energy” (2) as

C. The literature review and the current work

conditions a scheme of “local energy” as follows:
Ay du . « . B
—| == =0,1,2). (m)y = Z(uimh3 — Sy
929 | oea i z:b(j 0,1,2) Gd,k(U ) 3(Uk ) 4(Uk ) -
are specified for the Gardner equation. In addition, we o ((GEUR)? + (5, U
define the inner product of two functions(z) and v(z), 2 2 '
b
as (u(z),v(z)) = [, uw(x)v(z)da. Then, by resorting to (7) and the discrete variational deriva-
tive method, we obtain another scheme of the variational
A. The proposed schemes derivativedG /du:
In order to derive the proposed schemes, we will adopt the 0Gy B g[(U(mH))Q L gl
concept of variational derivatives. See also the monograph(y(m+1) {y(m)), — 3"k k k
[8]. we first define “free energy” or “local energy” of the m s a1 m mt1 m
Gardner equation (1) as: +(U™M)?) - Z[(UIE D2+ UM + ™)
Glunn) = S B ()’ gy RO
3 4 2\0z) "’ (8)
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Let (U™), = U,E’H and (U™, = U{™, and substitite Remark Il.1. The LEFVEM is a three-level linear energy-
them into (8) and in place df’]g’”"'l) andU,g’”), respectively. preserving scheme. The initial valdé) is approximated
Then we obtain a new scheme of variational derivati®y the the following energy-preserving method [11]

e U (52 (s ) v ) @9
0Ga___ _ &yptmne L pmptm) o (rimyey At T o \sUm,um) )1 )

(m) (m) 3 k+1 k+1"k—1 k—1 .

S(UL, US )y, where i=1, 2,..., N, and
B irrm)y2 (m)y2177(m) | pr(m) 6Gy o

B Z[(Ukﬂ) + (U)W + U2 mk = g[(Ulgl))Q + U,E”U;io) + (Uzio))Q]
K2 m m ’

+ 507 (U + U E

7’
@ TR UOPIOY U+ G U
We multiply both sides of (3) by each one of the test

functionsy;, j=1, 2, ..., N, and integrate the product oveRemark 11.2. The LMFVEM is a three-level linear
the solution domain to obtain the following Semi'diSCfetﬁmmentum-preserving scheme. The initial vali&’ is
scheme: approximated by the the following momentum-preserving
U ) = (52 (s ) vs). o) M
dr \s(Uy™,ul™) v —y©® 9 Gy
- (Tﬂ/fi) = (6_ (W)ﬂ/h‘), (15)
i=1, 2,..., N. z\s(U'”, )

Substituting (9) into (10), we obtain the correspondin .
fully-discrete scheme of (10). The above method is a Iine\glrhere =1,2,..., N, and
scheme and can precisely conserve the mass and momentum 0G4 _ o [(U(l) + U® )2
of the original system. Thus, the above method is called theg(r{”, r®) ~— 12 R
linear momentum-preserving finite volume element method 1 0 1 0 1 0
(LMEVEM). + UL + U0, + U2 + 02 + U2
In addition, for comparison, we also propose a Crank- _ ﬁ[( ]£1>1 +U,§0)1)2 + (Uél)l +U,£°)1)2}
Nicolson finite volume element method (CNFVEM) [24] 320 * - -

and a Runge-Kutta [25] finite volume element method (RK- (U{Y, + U, + U, + U + Es@ W, + Ul%

k+1
FVEM) for the Gardner equation (1). 1) ©) 4
i-di i . + U, +U).
The semi-discrete CNFVEM is presented as follows: k—1 k—1

(57<7?U(m+1/2)a Z/ch) = /B(Fl (U)Snm+1/2)v u)k) (11)

— a(Fo(U)m+1/2) — qu(m+1/2)) ), B. Conservation properties of the schemes
where k=1, 2,..., N, and In this section, we study the conservation properties of the

[mt) _ gy(m) LEFVEM and the LMFVEM.
sy m+1/2) — — We first study the conservation properties of the LEFVEM,

(U3 4 (m1y3 which can precisely conserve the discrete mass and energy.

Fi(U)7 /%) =

5 . Theorem II.1. (Mass conservation law) Ldl = U™ be
FQ(U)(’"H/Q) _ (U(m))Q + (U(m+1))2 Lr;tiissf?élétlonr;g(EﬁG), and suppose the following conditions are
2 ' ' y
Similarly, the RKFVEM is derived as follows: [_ 0Ga T’ _o
5(U(m+1), U(m), U(m—l)) r—a — Y

(ue, ¥r) = ((BFL(u) — aFa(u) — ptiga)e, i), (12)

then the solution of the scheme (6) satisfies

where k=1, 2, ..., NJFi(u) = u?, Fy(u) = »?, and the .
third order Heun Runge-Kutta method is used for the time 1/ (U(m) + U(m+1)>dx — const.
discretization. 2/,

In this paper, we mainly concerned with the conservation

of the first integrals of the proposed schemes. The discretery o -onservation of mass can be easily proved, which is
mass, momentum, and energy are respectively defined aimilar as [23].

N
1 m m Theorem I1.2. (Energy conservation law) Léf = U™ be
My =Y "0 + UMY A, _ 9y : -
¢ kZ::O (U k Jaz the solution of (6), and suppose the following conditions are
LN satisfied, namely
m m+1
Ki=3 S oMo A, (13) 1 5 0o ;
Nk:O o 5 5(U(m+1), U(m), U(m—l)) Y e
Jg = Z”Gd,k(U,im), U™ A, then the solution of the scheme (6) satisfies
k=0 b
; ; (m+1) (m) _
whereGy (U™, U™ ) is defined by (4). /a Ga(UT™™H, U™ dx = const,

(Advance online publication: 7 November 2018)
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where G, (U™+1) U(m) is defined by (4). then the solution of the scheme (11) satisfies
. b
Proof. / U™ dz = const.
1 b m m m m— @
Q—At/a (Gq(U™HD )y — Gu(U™, um=1)) dzx
b 5Gy ym+1) _ y(m—1) J IIl. L INEAR STABILITY ANALYSIS
7/(1 5(U(m+1>,U(m>,U(m1>)< 2At ) v In this section, we analyze the linear stability of the
119 5G4 2 the LEFVEM and the LMFVEM using the technique of
= —§/a %(5(U(m+1),U(m),U(m 1))) dx Von Neuma_np approfa\ch. The LEFVEM and.thg LMFVEM
91 are unconditionally linear stable under periodic boundary
_ { l< 0Ga > ] —0 condition.
2\ §(Um+1) y(m) pj(m-1) ’
v U, U )/ L= Theorem .1, LetU = U™ be the solution of (6) and

o (10), and assume it satisfy the periodic boundary condition,

Next, we study the conservation properties of the LMpen the LEFVEM and the LMFVEM are unconditionally
FVEM, which can precisely conserve the discrete mass apSear stable.

momentum.
) Proof: First of all, we consider the LEFVEM (6), which
Theorem 11.3. (Mass conservation law) Lt = U™ be .41 pe written as the following form:

the solution of (10), and assume the following conditions are

satisfied, namely — U + U™ + as U™ Y — e U
|: 6Gd b » + alUIE’r—:,ékl) _ alUlnggl) _ OZQU]SZLII) + OLSUlgmfl)
s U] ey + U Y — U + an [U (0 + U

then the solution of the scheme (10) satisfies + UMDY = Ui ol + o + Ul
m m—+1 m—1
L (m) (m+1) +oas [(U;i+i)2(U1£_:f_ ) + Ulg-‘rl ))
Py (U +U ) dx = const. (m)\2 /77(m+1) (m—1)
a — (U, (U + U )},k:O,l,...,N,

2
. , where a; = 3uAt, as = 6uAt, as = 6h3, ay =
Theorem I1.4. (Momentum conservation law) LEt= U('”)” 2ah2At, and a; = 38h2At. For the stability analysis, we
be the solution of (10), and assume the following conditioggnsider the linear version of the above scheme, and let

are satisfied, namely C = maXOSkSN{|U]iM)|}* then we have
b 7 7 m m
- {U “’”%] L [Gawtm™)t_ =0, — U 4 aoU Y 4 as U = anU Y
5(U+ ,U, ) r=a -+ OleIEZ_L;l) = OZ1U]£T2_1) - OZQU]gr_nl_l) + OégU]gm_l)
then the solution of the scheme (10) satisfies n 042U1£Tf1) _ oz1U,§T{1) 4+ Coy (U,ETfl) + U,gTi
1 b m+1 m—1 m m+1
5/ UMyt gz = const. + U]gif )~ UI£+1 ) - Ul§+i - UIEH+ ))
“ +Cras (Ui D+ U - O U Y),
Proof: To apply Von Neumann method, we g&{™) = V'™ (¢)eiskh
and substitute it into the above linearized schemes and cancel

—— [Ka(U D Uy — KU, Um=1)] the common factor o#i*" gives the following relation for
2At _ .

? prm) s rm) =V
- m m m N m— 7
= / U U de (a5 +iBV™H(E) — (0 — iBV™ () + 29V™(€) = 0,
_ bU(m)ﬂ 0Gy du where 8 = 2(ay sin(2&h) — agsin(éh) + Caysin(éh) —

i dx \ 5™, U™ C?ag sin(Eh)), v = iCay sin(Eh).

b orrim) 5 o Let V™ (¢) = g™, and divide by(cs —i3)g™ !, we obtain

— v Ga dz a quadratic equation fay,
o Oz suim™ Ut o 2 .

b o T (a3 +B)g” + 279 — (a3 —iB) = 0.

=/ a—xddx = 0. Then we can obtain its eigenvalues by solving the above
“ quadratic equation
At last, the scheme (11) conserve the discrete global mass. dp= + /(03 +52) ++2
’ asz +if '

Theorem 11.5. (Mass conservation law) Ldi = U™ be
the solution of (11), and suppose the following conditio
are satisfied, namely

fter a series of straightforward computation, we obtain
gi1)> = 1 and |g2|> = 1. Thus, the LEFVEM (6) is
unconditionally linear stable. ]

Similarly, we can also prove that the LMFVEM (10) is
also unconditionally linear stable.

b
_ ﬁFl(U>(m+1/2)aFQ(U)(m+1/2)uU£Z«L+1/2)] —0,

r=a

(Advance online publication: 7 November 2018)
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IV. NUMERICAL EXPERIMENTS Ex(t) = U™ (h, At) — U™ (h, Atyeyp)||/||u(-, t)]], where

In this section, we present several numerical examplestio= At = mAt.cr, and the values ofAl are larger
illustrate the efficiency of the proposed schemes. In parti®@nAtr. ;. The modified temporal errors and corresponding
ular, we analyze the numerical errors and the conservatioPflvergence rates are presented in Table IV, which clearly
properties of the proposed schemes, and compare them \§iapWs that the convergence rate of the LMFVEM is also
the CNFVEM and the RKFVEM. All computational resultsn time direction. Besides, for comparison, we also present
are obtained in Matlab software R2009 on a computer witi€ €rrors evaluated by th, norm.

3.2 GHz CPU an®8 GB RAM. In order to further illustrate the accuracy of the proposed
schemes, we compare the abstract errors of the numerical
solution att = 5,10 and 20 for four different methods in
Figs.2. In these figures, one can see that the LMFVEM has
_ In this example, we consider the following Gardner equggrgest errors and the other proposed schemes have nearly
tion the same errors. Besides, we also compare the conservative
2 roperties of the proposed schemes. To this end, we define
et Gutty = GuTs F tiaer = 0,—40 < w <40, 0, (16) tphe?elative errors 2f tEe invariants lag (|1 — 10| /| 1)),
which subject to the periodic boundary conditiod(™ denotes the global invariants (13) evaluated along the
u(—40,t) = u(40,t). The above equation has the followinghumerical solution, and(®) denotes the global invariants

A. Single solitary wave

exact solution evaluated along the initial solution. In Fig.3, we compare
(o.1) K2 the relative errors in the energy and momentum for four
u(z,t) = , different methods, LEFVEM, LMFVEM, CNFVEM (which
A1 — k2 24 ’ ’ ’
L+ V1= k2 coshlr(z — £2t — z0)] are all second order), and a third order RKFVEM. We choose
wherex € (0,1) andz is a given constant. third order RKFVEM because it has higher order accuracy

In this example, unless otherwise specified, the wave tisan the other methods, but it does not exactly preserve the
initially centered atz, = 15 and x = 0.8. This solution conservative properties of the governing equations, giving a
represents a solitary wave with an amplitude that ranges fr@ffear demonstration of the practical advantages of a structure-
zero to one, and initially located at= x(. For convenience, preserving algorithms. Fig.3 shows that the LEFVEM can
the initial valuesU® and U!) of the three-level schemesprecisely conserve the energy at the discrete level, and the
(6) and (10) are respectively approximated bz, 0) and LMFVEM can precisely conserve the discrete momentum.
u(z, 1). This is an important result for the proposed methods which

In order to estimate the numerical errors and the coare all second-order, but demonstrate clear advantages over
vergence rates of the proposed schemes in both the spatial higher-order method that is not structure-preserving.
and temporal variables, we consider the normalizgghorm Thus, we conclude that the order of truncation error should
defined byE(t) = |[U™ — u(-,t)||/[|u(-,t)||, t = nAt, n=1, not be the only deciding factor on which method is used in

2,.... practice, and the structure-preservation is also an important
In order to measure the spatial errors and the rates fattor.
convergence of the proposed methods, space steps |5 what follows, we will test the conservative properties

1/2,1/4,1/8,1/16, and a small time step\t = 0.0001 aré  of the proposed methods for a long time computation. To
taken to render the temporal errors negligible. Theerrors g end, we will consider the Gardner equation (16) over

were recorded at = 0.1,0.5 and 1, respectively. The con- the interval[—40, 40], subject to the aforementioned periodic
vergence rate corresponding to different runs with d'ﬁereﬁbundary conditions.

spatial meshegh and h is defined to beog, (Egh_/Eh), 'Tre exact solution is taken as

as usual. The convergence rates and the associated spatia

errors are presented in Tables | and Il. From the results, ,

we clearly see that the convergence rates of the LEFVEMx o] TR C’Zsh[ﬁ(w_to)]ﬂf € [-40 + 1o, 40],

and the LMFVEM are2. Moreover, the LEFVEM is more ’ K L@ € [—40, —40 + to),
accurate than the LMFVEM. Similarly, in order to estimate 1+V1=r? coshir(z—to+80)]

the temporal errors of the LEFVEM, a small space step

h = 1/32 is adopted to render the spatial errors negligiblévhereto = mod(t, 80).

and the time stepat = 1/2,1/4,1/8,1/16 are chosen for ~ The above solution represents a solitary wave and it will
the LEFVEM. TheL- errors were recorded at= 1,2 and3, travel to initial position after a period o80. We perform

respectively. Table Il presents the temporal accuracy and thesimulation with space step = 1/5 and time step
convergence rates. It can be observed that the convergeae¢e= 0.01 for a single solitary wave over40, 40], and the
rate of the LEFVEM is als@. computations is done up to time= 1000. Fig.4 presents

For the LMFVEM, in fact, it is a explicit scheme, thus itthe numerical solutions of the LEFVEM in the time interval
is hard to see the asymptotic rate of the temporal error. Thi,20] and [900, 1000], respectively. In Fig.4a one can see
as in [26], we made a reference calculation for a fixed valdleat the solitary wave initially located aty, = 0, and the
of h. We took a small valueAt = At,.; = h/5000, then wave moves to the right at a constant speed and the amplitude
the approximate solutiot’™ = U™ (h, At,.;) obtained almost unchanged as time processes, as is expected. In
by the reference simulation differs from the exact solutioaddition, the relative errors of the proposed methods are
by an error that is almost purely from the spatial directiomresented in Fig. 5, which is in agreement with the theory
For the same values &f, we then define a modified error agesults.

(Advance online publication: 7 November 2018)
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TABLE I: Errors E(t) and spatial rates of convergence for the LEFVEM
with At = 0.0001, x = 0.8 andzy = 15.

h t=0.1 t=0.5 t=1
E(t) order E(t) order E(t) order
1/2  2.2148e — 04 — 1.1000e — 03 — 2.3000e — 03 —
1/4  5.5806e — 05 1.99 2.9216e—04 1.91 5.9143e—04 1.96
1/8 1.4087e — 05 1.99 7.3713e—05 1.99 1.4892¢—04 1.99
1/16  3.5324e — 06 2.00 1.847le—05 2.00 3.7293e—05 2.00

TABLE II: Errors E(t) and spatial rates of convergence for the LM-
FVEM with At = 0.0001, x = 0.8 andxy = 15.

h t=0.1 t=0.5 t=1
E(t) order E(t) order E(t) order
1/2 1.1000e — 03 — 5.7000e — 03 — 1.1300e — 02 —
1/4  2.9106e —04 1.92 1.4000e —03 2.03  2.9000e —03 1.96
1/8 7.3026e — 05 1.99 3.6191e—04 1.95 7.284le—04 1.99
1/16  1.8276e —05 2.00 9.0775e — 05 2.00 1.8257e¢ —04  2.00

TABLE llI: Errors E(t) and temporal rates of convergence for the
LEFVEM with h =1/32, k = 0.8 andzo = 15.

At t=1 t=2 t=3
E(t) order E(t) order E(t) order
1/2 5.8000e — 03 — 9.7000e — 03 — 1.3800e — 02 —
1/4 1.4000e — 03  2.05 2.6000e —03 1.90 3.6000e —03 1.94
1/8 3.8296e — 04  1.87 6.9227¢e —04 1.91 9.3179¢ — 04 1.95
1/16  9.9644e — 05 1.94 1.785le—04 1.96 2.3834e—04 197

TABLE IV: Errors E(t) and temporal rates of convergence

for the LEFVEM withh = 1/16, At,er = zgo5h, t = 0.01
andzy = 15.
At Ath~ 1 E(T) E*(T) order
1/10000 1/625  1.8365¢ — 06  1.0501e — 09 —
1/20000  1/1250  1.8364e — 06  6.0831le —10  0.79
1/40000  1/2500  1.8364e —06  1.5129¢ —10  2.01
1/80000  1/5000  1.8364e — 06 3.5763¢ — 011  2.08
REF
1/160000 1/10000 1.8364¢ — 06
10* ‘ 10* ‘
—e—LEFVEM —— LEFVEM
—=—LMFVEM —= LMFVEM
——CNFVEM ——CNFVEM
10° —+—RKFVEM|| 10% —+— RKFVEM ]
o, 2 2 2
. D_ = o
% 10 o) 10
10" ! 10' 3
0 0
10 L L L L 10 - ‘7 ‘7 ‘7 B
0 0.1 0.2 0.3 0.4 0.5 10° 10 107 1072 107"
h E(T)
(@) (b)

Fig. 1: (a) CPU time of the proposed schemes, plotted against the spatiahgep€PU time versus errab(T).

B. Interaction of two solitary waves

Now, we turn to consider the interaction of two solitary

as follows:

2

u(z,0) = Z

=1

waves with different amplitudes. The initial solution is given (17)

2
ki
1+ /1= #2 cosh[r;(x — z;)]

(Advance online publication: 7 November 2018)
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Fig. 2: Abstract errors of the numerical solutions obtained by the proposed schemds with8, At = 0.001, (a) T=5,
(b) T=10, (c) T=20.
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Fig. 3: (a) relative error of the energy for different methods with- 1/8, At = 0.001 and T = 20, (b) relative error of
the momentum.

Fig. 4: Numerical solutions of the LEFVEM with = 1/5, At = 0.01, k = 0.8 andzy = 0: (&)t € [0, 20], (b)t € [900, 1000].

wherex; € (0,1) and z;, (i=1, 2) are arbitrary constants. Fig.6a presents the surface plot of the numerical solution
This solution represents two solitary waves with differerdf the LEFVEM. Fig.6b shows the interaction process of
amplitudes, one initially located at; and the other located two solitary wave at different times. It is clearly seen that
atx,, and moving towards the same direction. The problemftise taller wave initially located at the left of the shorter wave,
considered in the intervdl-40, 40], and the correspondingand at about = 27.5, the taller wave catches up with the
parameters are chosen as = 0.9, ko = 0.6, z; = —5 shorter wave and two waves overlapped together; At about
and z» = 15. Here, the initial valueU") at the second ¢ = 38.5, two waves start to leave away, andtat 49.5,
level is respectively approximated by the scheme (14) atslo waves completely separate and continue to travel to the
the scheme (15) for the LEFVEM and the LMFVEM. right. Fig.7 presents the relative errors of the invariants of

(Advance online publication: 7 November 2018)
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Fig. 5: The relative errors of the invariants evaluated along the numerical solutiongiwith /5, At = 0.01 andt¢ €
[0,1000]: (a) LEFVEM, (b) LMFVEM.
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Fig. 6: Numerical solution of the LEFVEM withyy = —5, 2o = 15, k1 = 0.9, ko = 0.6, h = 1/4 and At = 0.1: (a)
surface plot, (b) the interaction process.
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Fig. 7: The relative errors of the invariants of the proposed methods: (a) LEFVEM /with1/4 and At = 0.1, (b)
LMFVEM with h = 1/4, At = 0.001.

the proposed methods. It is noted that the LMFVEM nedd. Zabusky-Kruskal wave

smaller time steps than the LEFVEM. In order to further illustrate the effectiveness of the
proposed scheme, we consider the the following Zabusky-

(Advance online publication: 7 November 2018)
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Kruskal’s problem, [11]

g + utty + (4.84 X 107%) X Ugpy = 0,

in the interval[0, 2], subject to the periodic boundary con{12]
dition u(0,t) = w(2,t). The initial solution is given by
u(z,0) = cos(rx), and the initial valud/(!) is also provided

by the scheme (14) and (15). [13]

As is stated in [27], the solution starts with a cosine wave

and later develops a train @&f solitary waves which travel [14]
at different speeds and interact with each other, detailed
description about the solution, see [28]. According to [275%
there are several critical moments for the solution:

o t=t. =1~ 0.32, the solution start to break up;
e t = 3.6t. = 1.15, the solution develops int® solitary
waves.

For computation, we set = 1/200, At = 0.01 and the
computations are done up to tinte= 10. The numerical
solution of the LEFVEM att = 0,0.32,1.15 and¢ = 10
are presented in Fig.8a, which shows that,tat 0.32,
the solution start to break up; & = 1.15, 8 solitary [19]
waves appears. The results are in well agreement with the
numerical results obtained by Zabusky and Kruskal in 196y
[28]. The relative errors of the invariants corresponding to
the LEFVEM are plotted in Fig.8b.

[16]

(17]

(18]

[21]

V. CONCLUSIONS [22]

In this paper, the linear conservative finite volume element
methods are proposed for the Gardner equation. The nun}%]—
ical results show that the linear LEFVEM and LMFVEM
have better conservation properties than the CNFVEM and
RKFVEM. Moreover, the proposed methods are more 5—4]
ficient than the classical nonlinear schemes. In addition,
the LEFVEM is more stable than the LMFVEM, i.e. the

LMFVEM needs smaller time steps. [25]
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