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Abstract—In this paper, a linear implicit energy-preserving
and a linear explicit momentum-preserving finite volume el-
ement scheme are proposed for the Gardner equation. The
proposed schemes are derived by using the discrete variational
derivative method (DVDM) in time and the finite volume
element method (FVEM) in space. The conservative properties
and the linear stability of the proposed schemes are analyzed. In
particular, the proposed methods are compared with a nonlinear
Crank-Nicolson FVEM and a third-order Runge-Kutta FVEM
in terms of accuracy, CPU time and conservative properties.

Index Terms—Energy, Momentum, Discrete variational
derivative method, Finite volume element method, Gardner
equation.

I. I NTRODUCTION

T HIS section is divided into the following parts:

• The introduction to the nonlinear Gardner equation;
• The DVDM and the FVEM;
• The literature review and a brief introduction to the

current work.

A. Nonlinear Gardner equation

The nonlinear Gardner equation

ut + 2αuux − 3βu2ux + µuxxx = 0, a ≤ x ≤ b, t > 0, (1)

whereu(x, t) is the amplitude of the wave andα, β andµ
are positive constants. It possesses solitary wave solutions
that have been identified in a large variety of wave(see
[1], [2]). The equation includes two nonlinear terms and a
dispersion term, the competition of three terms constitutes
the main interest [2]. Particularly, whenβ = 0, we obtain
the Korteweg-de Vries (KdV) equation, and whenα = 0,
we again obtain the modified Korteweg-de Vries (mKdV)
equation. Thus, the Gardner equation is also named KdV-
mKdV equation. Moreover, this equation has an infinite
number of conservation laws [3], and the first three of them
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are

M(t) =

∫ b

a

u(x, t) dx,

K(t) =
1

2

∫ b

a

u(x, t)2 dx,

J(t) =

∫ b

a

[

α

3
u(x, t)3 − β

4
u(x, t)4 − µ

2
ux(x, t)

2

]

dx,

which are respectively named mass, momentum, and energy.
The ability of a numerical scheme to reproduce these

quantities is extremely important, most particularly when
they are conservative. Some applications of this model can
be found in the hydrodynamics [4], plasma physics [5], and
so on.

B. The DVDM and the FVEM

As is said in [6], schemes that conserve the first integrals or
generalized geometric structure have been shown to be useful
when studying the long time behavior of dynamical systems.
These schemes sometimes called geometric or structure
preserving integrators [7].

The DVDM [8] is a class of important structure-preserving
method that can retain the conservative/dissipative properties
of the original partial differential equations. Up to now, it
has been applied to many conservative or dissipative partial
differential equations (PDEs)(see [9]–[11]). In particular,
Koide and Furihata [9] proposed four conservative difference
schemes for the regularized long wave equation. Matsuo
and Furihata [10] extended the general studies to complex-
valued PDEs. Miyatake and Matsuo [12] proposed a general
framework for constructing energy dissipative or conserva-
tive Galerkin schemes for time dependent PDEs. Yan [13]
developed a class of energy-preserving FVEM for the KdV
equation.

The FVEM, as a type of important numerical tool for
solving differential equations (see [11], [14]–[16]), has a
long history. This method is also known as a box method in
early references [17], or known as a generalized difference
method in China [18]. The method has been widely used in
several engineering fields, such as fluid mechanics, heat and
mass transfer and petroleum engineering. Perhaps the most
important property of the FVEM is that it can preserve the
conservation laws (mass, momentum and heat flux) on each
computational cell. This important property, combined with
adequate accuracy and ease of implementation, has attracted
more people to do research in this field. For example, Cai
[14] developed the general error analysis framework for
the FVEM. Yan [19] proposed a class of two-grid FVEM
for the Sobolev equation. Wang [16] proposed an energy-
preserving finite volume element method for the improved
Boussinesq equation. Further, Yan [11] developed a class of
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nonlinear energy-preserving and momentum-preserving finite
volume element scheme for the mKdV equation, and so on.
In this work, we will develop a class of linear conservative
FVEM based on the DVDM and the FVEM. Generally, the
main merits of the proposed methods can be summarized as
follows:

• They can precisely conserve the conservation or dissi-
pation properties of original systems.

• They are unconditionally stable and suitable for long
time computation.

C. The literature review and the current work

In recent years, different numerical techniques are devel-
oped for the solution of Eq.(1), such as, Hu [20] proposed
a multi-symplectic method for the KdV-mKdV equation.
Wang [21] developed a multi-symplectic Fourier pseudo-
spectral scheme for the Gardner equation. Nishiyama [22]
proposed two energy-preserving finite difference schemes for
the Gardner equation. However, there are few results about
structure-preserving methods for the Gardner equation. Yan
[23] proposed a class of nonlinear conservative schemes for
the complex KdV equation. However, most of the proposed
schemes are nonlinear and need an iterative solver. Thus, in
this paper, we will develop a class of linear implicit energy-
preserving scheme and a class of linear explicit momentum-
preserving scheme, which are accurate and unconditionally
stable (with long time computation ability) for the Gardner
equation. The proposed schemes only need to solve a linear
system at each time step and the schemes not require to solve
the inverse of the matrix corresponding to the linear system.
Thus, the proposed schemes are efficient with respect to the
nonlinear schemes.

The organization of this paper is as follows. In Section
2, the proposed schemes are derived and their conservation
properties are analyzed. In Section3, the linear stability of
the proposed schemes are analyzed. Section4 gives some nu-
merical examples to illustrate the efficiency of the proposed
schemes. A simple conclusion is provided in Section5.

II. N UMERICAL SCHEMES

In this section, we derived the proposed schemes and
analyzed their conservation properties.

In what follows, the numerical solution at(xk, tm) is
denoted byU (m)

k , and the following periodic boundary
conditions

∂ju

∂xj

∣

∣

∣

x=a
=
∂ju

∂xj

∣

∣

∣

x=b
(j = 0, 1, 2).

are specified for the Gardner equation. In addition, we
define the inner product of two functions,u(x) and v(x),
as (u(x), v(x)) ≡

∫ b

a
u(x)v(x) dx.

A. The proposed schemes

In order to derive the proposed schemes, we will adopt the
concept of variational derivatives. See also the monograph
[8]. we first define “free energy” or “local energy” of the
Gardner equation (1) as:

G(u, ux) =
α

3
u3 − β

4
u4 − µ

2

(

∂u

∂x

)2

, (2)

and integrate the “local energy” over the solution domain to
obtain the “global energy”,J(u) =

∫ b

a
G(u, ux) dx.

Then Eq. (1) can be written as

ut = − ∂

∂x
(
δG

δu
), (3)

where δG/δu = αu2 − βu3 + µuxx is the variational
derivative ofG(u, ux) defined byδG

δu = ∂G
∂u − ∂

∂x(
∂G
∂ux

).
We first define a linear scheme of “local energy” (2) as

Gd,k(U
(m+1), U (m)) =

α

6

[

U
(m+1)
k (U

(m)
k )2 + U

(m)
k (U

(m+1)
k )2

]

− β

4
(U

(m)
k )2(U

(m+1)
k )2 − µ

8

[

(δ+k U
(m+1)
k )2 + (δ−k U

(m+1)
k )2

+ (δ+k U
(m)
k )2 + (δ−k U

(m)
k )2

]

,
(4)

whereδ+k U
(m)
k = (U

(m)
k+1 − U

(m)
k )/h, δ−k U

(m)
k = (U

(m)
k −

U
(m)
k−1)/h.
Then we obtain a linear scheme ofδG/δu,

δGd

δ(U (m+1), U (m), U (m−1))k
=
α

3
U

(m)
k (U

(m−1)
k + U

(m)
k

+ U
(m+1)
k )− β

2
(U

(m)
k )2(U

(m+1)
k + U

(m−1)
k )

+
µ

2
δ
〈2〉
k (U

(m)
k + U

(m+1)
k ),

(5)
where

∑N
k=0

′′fk , 1
2f0 + f1 + · · ·+ fN−1 +

1
2fN denotes

a trapezoidal rule.
In the following, we will derive the proposed schemes by

resorting to the FVEM [11].
We multiply both sides of the Eq.(3) by each one of the

test functionsψi, i=1, 2,. . . , N, and integrate the product over
the solution domain to obtain the following semi-discrete
scheme:

(δ〈1〉m U (m), ψi) = −
((

δGd

δ(U (m+1), U (m), U (m−1))

)

x

, ψi

)

,

(6)
i=1, 2,. . . , N, andδ〈1〉m U (m) = (U (m+1) − U (m−1))/2∆t.

Substituting (5) into (6), we obtain its fully-discrete
scheme. The above method is a linear scheme and can
precisely conserve the mass and energy of the original
system. Thus, the above method is named the linear energy-
preserving finite volume element method (LEFVEM).

At the same time, Eq. (1) also conserve the momentum
K, thus we hope that the numerical methods still retain this
property. To this end, like the forward process, we first define
a scheme of “local energy” as follows:

Gd,k(U
(m)) =

α

3
(U

(m)
k )3 − β

4
(U

(m)
k )4

− µ

2

(

(δ+k U
m
k )2 + (δ−k U

m
k )2

2

)

.
(7)

Then, by resorting to (7) and the discrete variational deriva-
tive method, we obtain another scheme of the variational
derivativeδG/δu:

δGd

δ(U (m+1), U (m))k
=
α

3
[(U

(m+1)
k )2 + U

(m+1)
k U

(m)
k

+ (U
(m)
k )2]− β

4
[(U

(m+1)
k )2 + (U

(m)
k )2](U

(m+1)
k + U

(m)
k )

+
µ

2
δ
〈2〉
k (U

(m)
k + U

(m+1)
k ).

(8)
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Let (U (m)
+ )k = U

(m)
k+1 and (U

(m)
− )k = U

(m)
k−1, and substitute

them into (8) and in place ofU (m+1)
k andU (m)

k , respectively.
Then we obtain a new scheme of variational derivative
δG/δu:

δGd

δ(U
(m)
+ , U

(m)
− )k

=
α

3
[(U

(m)
k+1)

2 + U
(m)
k+1U

(m)
k−1 + (U

(m)
k−1)

2]

− β

4
[(U

(m)
k+1)

2 + (U
(m)
k−1)

2](U
(m)
k+1 + U

(m)
k−1)

+
µ

2
δ
〈2〉
k (U

(m)
k+1 + U

(m)
k−1).

(9)
We multiply both sides of (3) by each one of the test
functionsψj , j=1, 2, . . . , N, and integrate the product over
the solution domain to obtain the following semi-discrete
scheme:

(δ〈1〉m U (m), ψj) = −
(

∂

∂x

(

δGd

δ(U
(m)
+ , U

(m)
− )

)

, ψj

)

, (10)

j=1, 2,. . . , N.
Substituting (9) into (10), we obtain the corresponding

fully-discrete scheme of (10). The above method is a linear
scheme and can precisely conserve the mass and momentum
of the original system. Thus, the above method is called the
linear momentum-preserving finite volume element method
(LMFVEM).

In addition, for comparison, we also propose a Crank-
Nicolson finite volume element method (CNFVEM) [24]
and a Runge-Kutta [25] finite volume element method (RK-
FVEM) for the Gardner equation (1).

The semi-discrete CNFVEM is presented as follows:

(δ〈1〉m U (m+1/2), ψk) = β(F1(U)(m+1/2)
x , ψk)

− α((F2(U)(m+1/2) − µU (m+1/2)
xx )x, ψk),

(11)

where k=1, 2,. . . , N, and

δ〈1〉m U (m+1/2) =
U (m+1) − U (m)

∆t
,

F1(U)(m+1/2) =
(U (m))3 + (Um+1)3

2
,

F2(U)(m+1/2) =
(U (m))2 + (U (m+1))2

2
.

Similarly, the RKFVEM is derived as follows:

(ut, ψk) =
(

(βF1(u)− αF2(u)− µuxx)x, ψk

)

, (12)

where k=1, 2, . . . , N,F1(u) = u3, F2(u) = u2, and the
third order Heun Runge-Kutta method is used for the time
discretization.

In this paper, we mainly concerned with the conservation
of the first integrals of the proposed schemes. The discrete
mass, momentum, and energy are respectively defined as

Md =
1

2

N
∑

k=0

′′(U (m)
k + U

(m+1)
k )∆x,

Kd =
1

2

N
∑

k=0

′′U (m)
k U

(m+1)
k ∆x,

Jd =

N
∑

k=0

′′Gd,k(U
(m)
k , U

(m+1)
k )∆x,

(13)

whereGd,k(U
(m)
k , U

(m+1)
k ) is defined by (4).

Remark II.1. The LEFVEM is a three-level linear energy-
preserving scheme. The initial valueU (1) is approximated
by the the following energy-preserving method [11]

(
U (1) − U (0)

∆t
, ψi) = −

(

∂

∂x

(

δGd

δ(U (1), U (0))

)

, ψi

)

, (14)

where i=1, 2,. . . , N, and

δGd

δ(U (1), U (0))k
=
α

3
[(U

(1)
k )2 + U

(1)
k U

(0)
k + (U

(0)
k )2]

− β

4
[(U

(1)
k )2 + (U

(0)
k )2](U

(1)
k + U

(0)
k ) +

µ

2
δ
〈2〉
k (U

(0)
k + U

(1)
k ).

Remark II.2. The LMFVEM is a three-level linear
momentum-preserving scheme. The initial valueU (1) is
approximated by the the following momentum-preserving
method [11]

(
U (1) − U (0)

∆t
, ψi) = −

(

∂

∂x

(

δGd

δ(U
(0)
+ , U

(0)
− )

)

, ψi

)

, (15)

where i=1, 2,. . . , N, and

δGd

δ(U
(0)
+ , U

(0)
− )

k

=
α

12

[

(U
(1)
k+1 + U

(0)
k+1)

2

+ (U
(1)
k+1 + U

(0)
k+1)(U

(1)
k−1 + U

(0)
k−1) + (U

(1)
k−1 + U

(0)
k−1)

2
]

− β

32

[

(U
(1)
k+1 + U

(0)
k+1)

2 + (U
(1)
k−1 + U

(0)
k−1)

2
]

(U
(1)
k+1 + U

(0)
k+1 + U

(1)
k−1 + U

(0)
k−1) +

µ

4
δ
〈2〉
k (U

(1)
k+1 + U

(0)
k+1

+ U
(1)
k−1 + U

(0)
k−1).

B. Conservation properties of the schemes

In this section, we study the conservation properties of the
LEFVEM and the LMFVEM.

We first study the conservation properties of the LEFVEM,
which can precisely conserve the discrete mass and energy.

Theorem II.1. (Mass conservation law) LetU = U (m) be
the solution of (6), and suppose the following conditions are
satisfied, namely

[

− δGd

δ(U (m+1), U (m), U (m−1))

]b

x=a
= 0,

then the solution of the scheme (6) satisfies

1

2

∫ b

a

(U (m) + U (m+1)) dx = const.

The conservation of mass can be easily proved, which is
similar as [23].

Theorem II.2. (Energy conservation law) LetU = U (m) be
the solution of (6), and suppose the following conditions are
satisfied, namely

[

− 1

2

(

δGd

δ(U (m+1), U (m), U (m−1))

)2]b

x=a

= 0,

then the solution of the scheme (6) satisfies
∫ b

a

Gd(U
(m+1), U (m)) dx = const,

IAENG International Journal of Applied Mathematics, 48:4, IJAM_48_4_11

(Advance online publication: 7 November 2018)

 
______________________________________________________________________________________ 



whereGd(U
(m+1), U (m)) is defined by (4).

Proof:

1

2∆t

∫ b

a

(

Gd(U
(m+1), U (m))−Gd(U

(m), U (m−1))
)

dx

=

∫ b

a

δGd

δ(U (m+1), U (m), U (m−1))

(

U (m+1) − U (m−1)

2∆t

)

dx

= −1

2

∫ b

a

∂

∂x

(

δGd

δ(U (m+1), U (m), U (m−1))

)2

dx

=

[

− 1

2

(

δGd

δ(U (m+1), U (m), U (m−1))

)2]b

x=a

= 0.

Next, we study the conservation properties of the LM-
FVEM, which can precisely conserve the discrete mass and
momentum.

Theorem II.3. (Mass conservation law) LetU = U (m) be
the solution of (10), and assume the following conditions are
satisfied, namely

[

− δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

= 0,

then the solution of the scheme (10) satisfies

1

2

∫ b

a

(U (m) + U (m+1)) dx = const.

Theorem II.4. (Momentum conservation law) LetU = U (m)

be the solution of (10), and assume the following conditions
are satisfied, namely

−
[

U (m) δGd

δ(U
(m)
+ , U

(m)
− )

]b

x=a

,
[

Gd(U
(m))

]b

x=a
= 0,

then the solution of the scheme (10) satisfies

1

2

∫ b

a

U (m)U (m+1) dx = const.

Proof:

1

2∆t

[

Kd(U
(m+1), U (m))−Kd(U

(m), U (m−1))
]

=

∫ b

a

U (m)δ〈1〉m U (m) dx

= −
∫ b

a

U (m) ∂

∂x

(

δGd

δ(U
(m)
+ , U

(m)
− )

)

dx

=

∫ b

a

∂U (m)

∂x

δGd

δ(U
(m)
+ , U

(m)
− )

dx

=

∫ b

a

∂Gd

∂x
dx = 0.

At last, the scheme (11) conserve the discrete global mass.

Theorem II.5. (Mass conservation law) LetU = U (m) be
the solution of (11), and suppose the following conditions
are satisfied, namely

−
[

βF1(U)(m+1/2)−αF2(U)(m+1/2)−µU (m+1/2)
xx

]b

x=a

= 0,

then the solution of the scheme (11) satisfies
∫ b

a

U (m) dx = const.

III. L INEAR STABILITY ANALYSIS

In this section, we analyze the linear stability of the
the LEFVEM and the LMFVEM using the technique of
Von Neumann approach. The LEFVEM and the LMFVEM
are unconditionally linear stable under periodic boundary
condition.

Theorem III.1. Let U = U (m) be the solution of (6) and
(10), and assume it satisfy the periodic boundary condition,
then the LEFVEM and the LMFVEM are unconditionally
linear stable.

Proof: First of all, we consider the LEFVEM (6), which
can be written as the following form:

− α1U
(m+1)
k−2 + α2U

(m+1)
k−1 + α3U

(m+1)
k − α2U

(m+1)
k+1

+ α1U
(m+1)
k+2 = α1U

(m−1)
k−2 − α2U

(m−1)
k−1 + α3U

(m−1)
k

+ α2U
(m−1)
k+1 − α1U

(m−1)
k+2 + α4

[

U
(m)
k−1(U

(m−1)
k−1 + U

(m)
k−1

+ U
(m+1)
k−1 )− U

(m)
k+1(U

(m−1)
k+1 + U

(m)
k+1 + U

(m+1)
k+1 )

]

+ α5

[

(U
(m)
k+1)

2(U
(m+1)
k+1 + U

(m−1)
k+1 )

− (U
(m)
k−1)

2(U
(m+1)
k−1 + U

(m−1)
k−1 )

]

, k = 0, 1, . . . , N,

where α1 = 3µ∆t, α2 = 6µ∆t, α3 = 6h3, α4 =
2αh2∆t, andα5 = 3βh2∆t. For the stability analysis, we
consider the linear version of the above scheme, and let
C = max0≤k≤N{|U (m)

k |}, then we have

− α1U
(m+1)
k−2 + α2U

(m+1)
k−1 + α3U

(m+1)
k − α2U

(m+1)
k+1

+ α1U
(m+1)
k+2 = α1U

(m−1)
k−2 − α2U

(m−1)
k−1 + α3U

(m−1)
k

+ α2U
(m−1)
k+1 − α1U

(m−1)
k+2 + Cα4

(

U
(m−1)
k−1 + U

(m)
k−1

+ U
(m+1)
k−1 − U

(m−1)
k+1 − U

(m)
k+1 − U

(m+1)
k+1

)

+ C2α5

(

U
(m+1)
k+1 + U

(m−1)
k+1 − U

(m+1)
k−1 − U

(m−1)
k−1

)

,

To apply Von Neumann method, we setU (m)
k = Vm(ξ)eiξkh

and substitute it into the above linearized schemes and cancel
the common factor ofeiξkh gives the following relation for
V ≡ V (ξ):

(α3 + iβ)V m+1(ξ)− (α3 − iβ)V m−1(ξ) + 2γVm(ξ) = 0,

where β = 2(α1 sin(2ξh) − α2 sin(ξh) + Cα4 sin(ξh) −
C2α5 sin(ξh)), γ = iCα4 sin(ξh).

Let Vm(ξ) = gm, and divide by(α3−iβ)gm−1, we obtain
a quadratic equation forg,

(α3 + iβ)g2 + 2γg − (α3 − iβ) = 0.

Then we can obtain its eigenvalues by solving the above
quadratic equation

g1,2 =
−γ ±

√

(α2
3 + β2) + γ2

α3 + iβ
.

After a series of straightforward computation, we obtain
|g1|2 = 1 and |g2|2 = 1. Thus, the LEFVEM (6) is
unconditionally linear stable.

Similarly, we can also prove that the LMFVEM (10) is
also unconditionally linear stable.
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IV. N UMERICAL EXPERIMENTS

In this section, we present several numerical examples to
illustrate the efficiency of the proposed schemes. In partic-
ular, we analyze the numerical errors and the conservation
properties of the proposed schemes, and compare them with
the CNFVEM and the RKFVEM. All computational results
are obtained in Matlab software R2009 on a computer with
3.2 GHz CPU and8 GB RAM.

A. Single solitary wave

In this example, we consider the following Gardner equa-
tion

ut+6uux−6u2ux+uxxx = 0,−40 ≤ x ≤ 40, t > 0, (16)

which subject to the periodic boundary condition
u(−40, t) = u(40, t). The above equation has the following
exact solution

u(x, t) =
κ2

1 +
√
1− κ2 cosh[κ(x− κ2t− x0)]

,

whereκ ∈ (0, 1) andx0 is a given constant.
In this example, unless otherwise specified, the wave is

initially centered atx0 = 15 and κ = 0.8. This solution
represents a solitary wave with an amplitude that ranges from
zero to one, and initially located atx = x0. For convenience,
the initial valuesU (0) andU (1) of the three-level schemes
(6) and (10) are respectively approximated byu(x, 0) and
u(x, 1).

In order to estimate the numerical errors and the con-
vergence rates of the proposed schemes in both the spatial
and temporal variables, we consider the normalizedL2-norm
defined byE(t) = ‖Un − u(·, t)‖/‖u(·, t)‖, t = n∆t, n=1,
2, . . . .

In order to measure the spatial errors and the rates of
convergence of the proposed methods, space stepsh =
1/2, 1/4, 1/8, 1/16, and a small time step∆t = 0.0001 are
taken to render the temporal errors negligible. TheL2 errors
were recorded att = 0.1, 0.5 and 1, respectively. The con-
vergence rate corresponding to different runs with different
spatial meshes2h and h is defined to belog2

(

E2h/Eh

)

,
as usual. The convergence rates and the associated spatial
errors are presented in Tables I and II. From the results,
we clearly see that the convergence rates of the LEFVEM
and the LMFVEM are2. Moreover, the LEFVEM is more
accurate than the LMFVEM. Similarly, in order to estimate
the temporal errors of the LEFVEM, a small space step
h = 1/32 is adopted to render the spatial errors negligible,
and the time steps∆t = 1/2, 1/4, 1/8, 1/16 are chosen for
the LEFVEM. TheL2 errors were recorded att = 1, 2 and3,
respectively. Table III presents the temporal accuracy and the
convergence rates. It can be observed that the convergence
rate of the LEFVEM is also2.

For the LMFVEM, in fact, it is a explicit scheme, thus it
is hard to see the asymptotic rate of the temporal error. Thus,
as in [26], we made a reference calculation for a fixed value
of h. We took a small value∆t = ∆tref = h/5000, then
the approximate solutionU (m) = U (m)(h,∆tref ) obtained
by the reference simulation differs from the exact solution
by an error that is almost purely from the spatial direction.
For the same values ofh, we then define a modified error as

E∗(t) = ‖U (n)(h,∆t) − U (m)(h,∆tref )‖/‖u(·, t)‖, where
t = n∆t = m∆tref , and the values of∆t are larger
than∆tref . The modified temporal errors and corresponding
convergence rates are presented in Table IV, which clearly
shows that the convergence rate of the LMFVEM is also2
in time direction. Besides, for comparison, we also present
the errors evaluated by theL2 norm.

In order to further illustrate the accuracy of the proposed
schemes, we compare the abstract errors of the numerical
solution att = 5, 10 and 20 for four different methods in
Figs.2. In these figures, one can see that the LMFVEM has
largest errors and the other proposed schemes have nearly
the same errors. Besides, we also compare the conservative
properties of the proposed schemes. To this end, we define
the relative errors of the invariants aslog(|I(n)−I(0)|/|I(0)|).
I(n) denotes the global invariants (13) evaluated along the
numerical solution, andI(0) denotes the global invariants
evaluated along the initial solution. In Fig.3, we compare
the relative errors in the energy and momentum for four
different methods, LEFVEM, LMFVEM, CNFVEM (which
are all second order), and a third order RKFVEM. We choose
third order RKFVEM because it has higher order accuracy
than the other methods, but it does not exactly preserve the
conservative properties of the governing equations, giving a
clear demonstration of the practical advantages of a structure-
preserving algorithms. Fig.3 shows that the LEFVEM can
precisely conserve the energy at the discrete level, and the
LMFVEM can precisely conserve the discrete momentum.
This is an important result for the proposed methods which
are all second-order, but demonstrate clear advantages over
the higher-order method that is not structure-preserving.
Thus, we conclude that the order of truncation error should
not be the only deciding factor on which method is used in
practice, and the structure-preservation is also an important
factor.

In what follows, we will test the conservative properties
of the proposed methods for a long time computation. To
this end, we will consider the Gardner equation (16) over
the interval[−40, 40], subject to the aforementioned periodic
boundary conditions.

The exact solution is taken as

u(x, t) =

{

κ2

1+
√
1−κ2 cosh[κ(x−t0)]

, x ∈ [−40 + t0, 40],
κ2

1+
√
1−κ2 cosh[κ(x−t0+80)]

, x ∈ [−40,−40+ t0),

wheret0 = mod(t, 80).

The above solution represents a solitary wave and it will
travel to initial position after a period of80. We perform
a simulation with space steph = 1/5 and time step
∆t = 0.01 for a single solitary wave over[−40, 40], and the
computations is done up to timet = 1000. Fig.4 presents
the numerical solutions of the LEFVEM in the time interval
[0, 20] and [900, 1000], respectively. In Fig.4a one can see
that the solitary wave initially located atx0 = 0, and the
wave moves to the right at a constant speed and the amplitude
almost unchanged as time processes, as is expected. In
addition, the relative errors of the proposed methods are
presented in Fig. 5, which is in agreement with the theory
results.
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TABLE I: ErrorsE(t) and spatial rates of convergence for the LEFVEM
with ∆t = 0.0001, κ = 0.8 andx0 = 15.

h t = 0.1 t = 0.5 t = 1

E(t) order E(t) order E(t) order

1/2 2.2148e− 04 — 1.1000e− 03 — 2.3000e− 03 —
1/4 5.5806e− 05 1.99 2.9216e− 04 1.91 5.9143e− 04 1.96
1/8 1.4087e− 05 1.99 7.3713e− 05 1.99 1.4892e− 04 1.99
1/16 3.5324e− 06 2.00 1.8471e− 05 2.00 3.7293e− 05 2.00

TABLE II: Errors E(t) and spatial rates of convergence for the LM-
FVEM with ∆t = 0.0001, κ = 0.8 andx0 = 15.

h t = 0.1 t = 0.5 t = 1

E(t) order E(t) order E(t) order

1/2 1.1000e− 03 — 5.7000e− 03 — 1.1300e− 02 —
1/4 2.9106e− 04 1.92 1.4000e− 03 2.03 2.9000e− 03 1.96
1/8 7.3026e− 05 1.99 3.6191e− 04 1.95 7.2841e− 04 1.99
1/16 1.8276e− 05 2.00 9.0775e− 05 2.00 1.8257e− 04 2.00

TABLE III: Errors E(t) and temporal rates of convergence for the
LEFVEM with h = 1/32, κ = 0.8 andx0 = 15.

∆t
t = 1 t = 2 t = 3

E(t) order E(t) order E(t) order

1/2 5.8000e− 03 — 9.7000e− 03 — 1.3800e− 02 —
1/4 1.4000e− 03 2.05 2.6000e− 03 1.90 3.6000e− 03 1.94
1/8 3.8296e− 04 1.87 6.9227e− 04 1.91 9.3179e− 04 1.95
1/16 9.9644e− 05 1.94 1.7851e− 04 1.96 2.3834e− 04 1.97

TABLE IV: ErrorsE(t) and temporal rates of convergence
for the LEFVEM withh = 1/16,∆tref = 1

5000h, t = 0.01
andx0 = 15.

∆t ∆th−1 E(T ) E∗(T ) order

1/10000 1/625 1.8365e − 06 1.0501e − 09 —
1/20000 1/1250 1.8364e − 06 6.0831e − 10 0.79
1/40000 1/2500 1.8364e − 06 1.5129e − 10 2.01
1/80000 1/5000 1.8364e − 06 3.5763e− 011 2.08

REF
1/160000 1/10000 1.8364e − 06
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Fig. 1: (a) CPU time of the proposed schemes, plotted against the spatial stepsh,(b) CPU time versus errorE(T ).

B. Interaction of two solitary waves

Now, we turn to consider the interaction of two solitary
waves with different amplitudes. The initial solution is given

as follows:

u(x, 0) =

2
∑

i=1

κ2i
1 +

√

1− κ2i cosh[κi(x− xi)]
, (17)
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Fig. 2: Abstract errors of the numerical solutions obtained by the proposed schemes withh = 1/8, ∆t = 0.001, (a) T=5,
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Fig. 3: (a) relative error of the energy for different methods withh = 1/8, ∆t = 0.001 andT = 20, (b) relative error of
the momentum.
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Fig. 4: Numerical solutions of the LEFVEM withh = 1/5,∆t = 0.01, κ = 0.8 andx0 = 0: (a) t ∈ [0, 20], (b)t ∈ [900, 1000].

whereκi ∈ (0, 1) and xi, (i=1, 2) are arbitrary constants.
This solution represents two solitary waves with different
amplitudes, one initially located atx1 and the other located
atx2, and moving towards the same direction. The problem is
considered in the interval[−40, 40], and the corresponding
parameters are chosen asκ1 = 0.9, κ2 = 0.6, x1 = −5
and x2 = 15. Here, the initial valueU (1) at the second
level is respectively approximated by the scheme (14) and
the scheme (15) for the LEFVEM and the LMFVEM.

Fig.6a presents the surface plot of the numerical solution
of the LEFVEM. Fig.6b shows the interaction process of
two solitary wave at different times. It is clearly seen that
the taller wave initially located at the left of the shorter wave,
and at aboutt = 27.5, the taller wave catches up with the
shorter wave and two waves overlapped together; At about
t = 38.5, two waves start to leave away, and att = 49.5,
two waves completely separate and continue to travel to the
right. Fig.7 presents the relative errors of the invariants of
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Fig. 5: The relative errors of the invariants evaluated along the numerical solutions withh = 1/5, ∆t = 0.01 and t ∈
[0, 1000]: (a) LEFVEM, (b) LMFVEM.
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0 11 22 33 44 55
10

−20

10
−15

10
−10

10
−5

10
0

t

re
la

tiv
e 

er
ro

rs
 o

f i
nv

ar
ia

nt
s

 

 

mass
energy
momentum

0 11 22 33 44 55
10

−20

10
−15

10
−10

10
−5

10
0

t

re
la

tiv
e 

er
ro

rs
 o

f i
nv

ar
ia

nt
s

 

 

mass
energy
momentum

(a) (b)

Fig. 7: The relative errors of the invariants of the proposed methods: (a) LEFVEM withh = 1/4 and ∆t = 0.1, (b)
LMFVEM with h = 1/4, ∆t = 0.001.

the proposed methods. It is noted that the LMFVEM need
smaller time steps than the LEFVEM.

C. Zabusky-Kruskal wave

In order to further illustrate the effectiveness of the
proposed scheme, we consider the the following Zabusky-
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Kruskal’s problem,

ut + uux + (4.84× 10−4)× uxxx = 0,

in the interval[0, 2], subject to the periodic boundary con-
dition u(0, t) = u(2, t). The initial solution is given by
u(x, 0) = cos(πx), and the initial valueU (1) is also provided
by the scheme (14) and (15).

As is stated in [27], the solution starts with a cosine wave
and later develops a train of8 solitary waves which travel
at different speeds and interact with each other, detailed
description about the solution, see [28]. According to [27],
there are several critical moments for the solution:

• t = tc =
1
π ≈ 0.32, the solution start to break up;

• t = 3.6tc ≈ 1.15, the solution develops into8 solitary
waves.

For computation, we seth = 1/200, ∆t = 0.01 and the
computations are done up to timet = 10. The numerical
solution of the LEFVEM att = 0, 0.32, 1.15 and t = 10
are presented in Fig.8a, which shows that, att = 0.32,
the solution start to break up; att = 1.15, 8 solitary
waves appears. The results are in well agreement with the
numerical results obtained by Zabusky and Kruskal in 1965
[28]. The relative errors of the invariants corresponding to
the LEFVEM are plotted in Fig.8b.

V. CONCLUSIONS

In this paper, the linear conservative finite volume element
methods are proposed for the Gardner equation. The numer-
ical results show that the linear LEFVEM and LMFVEM
have better conservation properties than the CNFVEM and
RKFVEM. Moreover, the proposed methods are more ef-
ficient than the classical nonlinear schemes. In addition,
the LEFVEM is more stable than the LMFVEM, i.e. the
LMFVEM needs smaller time steps.
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Fig. 8: Numerical results of the LEFVEM at different times withh = 1/200 and∆t = 0.01: (a) numerical solution, (b)
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