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Generalized Adams-Type Second Derivative
Methods for Stiff Systems of ODEs

G. C. Nwachukwu * N.E. Mokwunyei '

Abstract—In this paper, a family of second deriva-
tive generalized Adams-type methods (SDGAMs) is
proposed. Here, a boundary value approach to
the numerical solution of stiff initial value problems
(IVPs) by means of second derivative linear multistep
formulae (SDLMF) is presented. Stability analysis
shows that these methods with order p = 2k + 2 for
all values of the step-length k£ > 1 are all 0, ;_,-stable
and A, _,-stable which must be used with (v,k — v)-
boundary conditions.
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1 Introduction

Nwachukwu and Okor [25] introduced a class of second
derivative generalized backward differentiation formulae
(SDGBDF) applied as boundary value methods (BVMs)
for stiff initial value problems (IVPs) in ordinary differ-
ential equations (ODEs)

Y = f(z,y), =€ [to, T], y(zo) = yo (1)

This class of methods which is 0, ;—,-stable and A, -
stable with (v,k-v)-boundary conditions and order p =
k + 1 for values of the steplength k£ > 1 is of the form

k
Z AjYnt5 = hﬁvfnJrv + h2f7lz+v (2)
k
%2 for even k

§=0
“:{k;lforoddk ' )

and is used with the following additional initial methods:

where

k
Doy =hBifi + B, i=120-1  (4)

=0

and final methods:

k
> ajy; =hBifi+h7f,, i=v+1-- N (5)
j=0
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The SDGBDF of Nwachukwu and Okor [25] has better
stability properties than the GBDF of Brugnano and Tri-
giante [7] which is also a BVM.

BVMs are linear multistep methods whose main feature
consists in approximating a given continuous IVP by
means of a discrete boundary value problem (BVP). The
solution of the initial value problem is given simultane-
ously at all grid points. This boundary value approach
circumvents the well known Dahlquist-barriers on conver-
gence and stability. BVMs, also provide several families
of methods which make them very flexible and computa-
tionally efficient. These methods have been analyzed in
details in [1, 4, 5, 6, 8, 24, 25, 26]

Brugnano and Trigiante [7] derived a family of methods
called the generalized Adams methods (GAMs) of or-
der k + 1 which are 0, ;_,-stable and A, j_,-stable with
(v, k —v)-boundary conditions for k£ > 1. These methods
can be written as

k
Yn+v — Yntv—1 = hz ﬂifn—i—i (6)
=0

where
for even k

k
— 2
v { —k21 for odd k @

They are conveniently used with the following set of ad-
ditional initial methods,

k
yi—yio=hY V% i=1..v-1 (8
1=0

and final ones,

k
i~y =h>_ B fyvi, j=N—k+tv+l,..,N. (9)
1=0

GAMs have better stability regions than the Reverse
Adams methods of Brugnano and Trigiante [2]. The Re-
verse Adams methods can also be used to approximate
the solution of stiff problems since for £ < 8 the (1, k—1)-
Absolute stability regions are unbounded. Although they
have good stability properties in comparison with the
Adams-Moulton methods they do not provide very high
order methods suitable for stiff problems. The trape-
zoidal rule which has order 2 is the only Adams-Moulton
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method appropriate for solving stiff problems because it
has an unbounded Absolute stability region.

Still on Adams methods, Jator and Sahi [21] pro-
posed a family of second derivative Adams-type methods
(SDAMSs) of order up to p = 2k+2 (k is the step number)
for IVPs. These methods are used as initial value meth-
ods (IVMs). The class of IVMs is a subclass of BVMs

The aim of this paper is to develop a family of second
derivative generalized Adams-type methods (SDGAMs)
for stiff systems of ODEs (1) with higher order than the
SDGBDF of Nwachukwu and Okor [25] and the GAMs of
Brugnano and Trigiante [7]. The developed methods (see
(10)) herein generalizes the second derivative methods of
Jator and Sahi [21] and extends the GAMs of Brugnano
and Trigiante to second derivative methods. The need for
second derivative is to improve the stability and order of
a given step length k of the GAMs, see [15]. Also the
proposed methods will be implemented using BVMs as
in [2, 3, 4, 8,9, 10, 11, 12, 13, 14, 18, 21, 25, 26, 27|
so that the numerical solution (y1,ys,---,yn)? of the
initial value problem is given simultaneously at all the
grid points.

This article is organized as follows: Section 2 introduces
the new methods. Section 3 considers the stability anal-
ysis of the methods. Section 4 presents the implementa-
tion strategy of the methods. Finally some problems are
solved to show comparison with some related works.

2 The New Methods

Let us consider the new SDGAMs of the form

k k
Yntv = Unto1 =0 > Bifuri+h>D> Yignyi  (10)

=0 =0
o={

Yn+i =~ y(xn + Zh)v fn+i = f(xn + z’h,y(xn + Zh)) and

_ df(zy(@) |
In+i = " gp

where .
== for odd k

% for even k

(11)

Y=Yn+i

T, is a discrete point at node point n, §; and ~; are
parameters to be determined by imposing the formula
(10) to reach its highest possible order which is 2k + 2.

The proposed class of methods (10) can be written in the
form

y(x +vh) —ylz+ (v—1)h) =
WK B (@ +ih) + B2 F vy (x4 ih)

The approach here is to employ Taylor’s series expansion
and method of undetermined coefficients to generate the
main methods and their coefficients at different values of
k as shown in Tables 1.

(12)

As in [16] and [23], the local truncation error associated
with (10) is the linear difference operator

Lly(@);h] = y(e + vh) - y(@ + (v = Dh)
—h S5 By (x k) — h2 S vy (x4 ih)
Assuming that y(z) is sufficiently differentiable, by Tay-

lor series expansion of y(z+ih), y'(z+ih) and y” (x+ih),
1=0,1,2,....,k the L{y(z); h] becomes

Lly(x); h] =
Coy(z) + Cr1hy/ (z) + -+ + thqy(q)(m) 4o

(13)

(14)

where

k
CO = E A,
=0

k
Ci=1-) B
=0
k k

o= g0~ =1 =i~ Y

i=1 =0

Cq =

The method (10) is said to be of order p if
C; =0, j=01)p and Cpi1 #0, (15)

Therefore Cpyq is the error constant (EC) and
Cpr1h?PTryP+L(z,) is the principal LTE at the point z,.
Hence the LTE is given as

LTE = Cpy 1 hP T yP T (2,) + O(RPT?)

The matrix form of the order equations is given in (21)

In table 1, for £ = 1(1)10, the order and the error con-
stant of the SDGAMs (10) are given.

3 Stability Analysis of the methods
The methods (10) can be written compactly as
p(E) = ho(E) fu + h*n(E)gn

Z?:o Biw’ and
n(w) = Ef:o ~;w® are the first, second and third charac-
teristic polynomial respectively, w € C and E'y, = vy,
is the shift operator ([19]). According to [20] the stability
analysis is achieved through linearization with the scalar
test equations

(16)

where p(w) = W Hw — 1), o(w) =

v =Xy and 3’ =Ny (17)
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which when applied to (16) gives the characteristics equa-
tion

k

m(w, 2) = w’ —w’ " —w' Z(Zﬂz + 2%7),

=0

(18)

where z = Ah. Then equating (18) to zero and inserting
w=e? t=0(1)k, 6 € [0,27] in (18) yields a polynomial
of degree two in z. The two roots of z are functions of ¢
describing the stability domain of the SDGAMs (10). For
even values of k the stability region of the SDGAMSs (10)
is given in Figure 1. For odd values of k the methods (10)
whose boundary loci coincide with the imaginary axis is
characterized by the following properties:

The polynomials p(w) have skew-symmetric coeflicients,
o(w) have symmetric coefficients and n(w) have skew-
symmetric coefficients a; = —ag_;, 8; = Br—; and v; =
—Yik—i, ©=0,1, -+ k respectively.

The new methods which are 0, ;_,-stable and A, j—-
stable are used with (v, k — v)-boundary conditions, see
Figurel. For the definitions of BVM, IVM, 0, ;_,-stable
and A, ;_,-stable, see [8, 25].

4 Implementation Strategy of the Meth-
ods

In what follows, we give the implementation strategy of
the new family of the Adams-type developed in the pre-
vious section for the numerical solution of systems of stiff
IVPs. The SDGAMs (10) are conveniently used with the
following set of additional methods which we define gen-
erally as:

initial methods

K 2
vi—yicr=h>_ Bifi+h*> g,
i=0 i=0

and final methods

2 k
Y=y =hY Bifn-i+h" Y eigni,

i=0 =0

(20)

j=N—-k+v+1,...,N

The coefficient of the additional methods are determined
by imposing each formula to reach its highest possible
order 2k + 2 as the main method. In order to solve the
discrete problem, we add v —1 initial and k& — v final addi-
tional equations (conditions) since the continuous prob-
lem provides only the initial condition y9. Hence we treat

the additional conditions as unknowns. Additional meth-
ods having the same order as the main method are intro-
duced in order to preserve the order of the main method.

The sixth order SDGAM,

11
Yn+1 — Yn (24Ofn+ fn+1+240fn+2)
13 1 1
h aindn — ZYn — ondn )
+ (2409 gIn+1~ 309 +2)
n=1...,N—1

can be used with the following final additional method

101
YN —YN—1 = (240fN 2+ fN 1+24Of N)
1 1 13
h? —
+ (809N 2+69N 1 2409N)

The eighth order SDGAM,

h
594 —(3fn—2+109fn_1 +109f, + 3fnt1)

2

10080
2

e

Yn —Yn-1 =

can be used with the following two additional (one initial
and one final) methods

Y1 — Y% = 18144(6893f0 + 8451 f1 + 2403 f2 + 397 f3)
h2
+ 5o (128390 — 765991 — 24219 — 163g3),
YN —YN-1 = 18144(397fN 3+ 2403 fn_2)
h
+ 18144(8451fN 1+ 6893fn)
2
+ 3o500 (16398 -3 + 24219 )
h2
+ 30240 (76599]\/_1 - 128391\7).

The tenth order SDGAM,
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Yn — Yn-1 = (26081 f,—2 + 1957456 f,—1)

4354560

h
+ m(2163456fn + 193456 f,+1)

2

725760

141117,
4354560( Fr2) +

2

725760
2

725760
n=2,...,N—2

(550969, -1 — 1065969,

(13768gp+1 + 515gn+2),

can be used with the following initial method,

Y1 — Yo (1539551 fo + 1429936 f,)

4354560

3nana0 7119362 + 6134565 + 59681 f,)

2

o
725760
2

725760

(26051go — 249656;)

(183708¢s + 4972095 + 223744)

and the two final additional methods,

(893g5,—2)

with boundary layers. The SDGAMs (10) of order 6, 8
and 10 are applied to numerical examples to illustrate
the accuracy and the efficiency of the new methods on
some systems of stiff IVPs. Note that the SDGAMs (10)
of orders six, eight and ten are denoted by SDGAMSG,
SDGAMS and SDGAM10 respectively.

Problem 1: Singularly Perturbed Problem ( [20])
Yo = Y1 — Y2 — Y3
y1(0) =1, 2(0) =1

The exact solution is y; = e~ 2,

yi = —(2+10")y1 + 103,

Y2 =e "
The numerical results for problem 1 are presented in Ta-
ble 6. From table 6, it can be seen that the implementa-
tion using SDGAMs (10) is better than the SDGBDF of
Nwachukwu and Okor [25] with respect to the steplength
k.

Problem 2: Moderately stiff problem solved by Jia-
Xiang and Jiao-Xun [22],

y(0) = 1;

z(0) = 0;

4 j—

y = —y— 10z, y(z) = e "coslOx

2 =10y — z, 2(z) = e *sinl0x

This problem is solved using step sizes h = {0.04,0.1,0.4}
and the maximum errors (Maz||y; —y(x;)||) in the inter-
val 0 < x < 10 are computed. xp are some points on
the range of integration. The numerical results displayed
in Table 7 show that the SDGAMs (10) is more accurate

UN TYN-1 = eeas (14111 fx 3 + 193456 fn —2)
than the DBDF method of Jia-Xiang and Jiao-Xun [22],
+ 4354560(2163456fN_1 + 1957456 f ) the BDF of Gear [17] and the BVM of Ehigie et al [14].
h? Problem 3: Linear stiff problem considered by Amodio
T 1354560 (26081 fy+1) + 795760 (5159N—-3) and Mazzia [2] and Jator and Sahi [21] on the range 0 <
h2 r < 1
2 Yy = =21y + 19y2 — 20y3, y1(0) =1,
— 95096gn + 893 ,
75760 000N - 893gN-c1) Yy =19y1 — 21yo +20ys,  12(0) =0,
ys = 40y1 — 40y + 40ys, y3(0) = —1.
YN+1 — YN = m(59681fN—3 + 613456 fn —2) The exact solution of the system is given by
h
+ (711936 fn_1 + 1429936 f )
1
4352560 , (@) = 5 (€7 + 71 (cos(40x) + sin(402))),
+ (1539551 fxs1) + ———(2237gn_3)
1
1000 725760 y2(2) = 5 (e — e (cos(40z) + sin(40))),
+ (49720gN 2 + 183708gn—1)
725760 g —t0a
B2 ys(x) = 5(26 (sin(40x) — cos(40z))).
249656gN — 26051 .
T 72760 N o8-+1)

5 Numerical results

All numerical computations were carried out using MAT-
LAB. Both linear and non-linear problems were solved

Problem 3 was solved using our methods for £ = 2 and
k = 3. From the details of the numerical results given in
Table 8, it is obvious that our method performed excel-
lently compared with Amodio and Mazzia [2] and Jator
and Sahi [21].
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Problem 4: Robertson’s equation, see [20] (nonlinear
problem)

yi = —0.04y1+10"yays, vy = 0.04y1—10"y2ys—3x107y3,
Y3 =3x 1075, 1(0)=1, y2(0) =0, y3(0)=0.

The eighth order SDGAM and the tenth order SDGAM
are implemented using Problem 4. The results are com-
pared with the solution from the Odelbs in MATLAB.
The solid lines are the solutions of the SDGAMs. Fig-
ures 2 and 3 show that the new methods coincide with
the Odelss in MATLAB.

Problem 5: Van der Pol equations (nonlinear problem),
[20]

Y = ya, Yh = —y1 + 10y2(1 — y3),

y1(0) =2, 2(0)=0

The results of this problem using the SDGAMs (10) of
order p = 8 and p = 10 are presented in Figures 4 and
5 respectively. It is seen from the figures that the new
methods are very comparable with the Odel5s in MAT-
LAB.

6 Conclusion

In this paper a new family of second derivative general-
ized Adams-type methods (SDGAMs) is considered for
the numerical solution of stiff IVPs in ODEs. The new
formulas are found to be 0, ;—,-stable and A, j_,-stable
with (v,k-v)-boundary conditions for all values of k > 1
and are of order p = 2k + 2. We have shown the accu-
racy of the proposed class of methods on some stiff (both
linear and non-linear) systems. From Figures 2, 3, 4 and
5 it is observed that the proposed methods (10) compare
favorably with Matlab Odelbs. From tables 6, 7 and 8
the numerical results show that the methods (10) perform
better than the existing methods cited in the literature
and are well suited for the integration of stiff systems in
ODEs.
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Table 1: The Coefficients, Error Constant (EC) and Order p of the classes of methods (10) for & = 1(1)10

Mz

Figure 1:

(21)

Rex

1 00 0 0 0 0 111 1
(w—1) 1 1 1 0 0 0 Bo v
(=12 0 2 24k 2 2 2 A v?
(v=1% 0 3 3xk? 0 3%2 3x2xk : v3
(v—1)* 0 4 4% k3 0 4%3 4% 3% k> B | = vt
(v—1> 0 5 5%k* 0 5% 4 5% 4x k3 % v°
(v-=1°% 0 6 6xk5 0 6% 5 6% 5% k* " V0

L (v=1)7 0 ¢ gx kD 0 gx(g—1) gx(q— k@2 || [ v ]

k|v Bo B B2 B3
T T
S 2 y X
2 |1 240 5 210 0
3 2 3 109 109 3
224 224 224 224
4 2 2608T 1223471 313 12091
4354560 272160 630 272160
5 3 4001 3581 136267 136267
4561920 168960 285120 285120
6 3 18227803 156486943 758335087 587192
56609280000 12972960000 1660538880 1216215
7 4 217426757 72234599 384031751 1569368687
3736212480000 29889699840 15375360000 3321077760
8 4 275618952431 97292813749 13323334967 1942806486353
14227497123840000 88921857024000 814302720000 4234374144000
9 5 27673701304843 50714562811 139894823711 3534206761517
7224981721251840000 200610349056000 35416577064960Q 131650541568000
10 5 331823317063312681 97072465037299218T 218383591648975999 10765992822744097
275891087727230976000000 9656188070453084160000 105966398578360320000 558807180003072000
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- 2 - = ——
09r y1(SDGAMS) i
0.8l % Y1(Odel5s) ]

® Y2(Odel5s)
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Figure 2: Numerical Results for Problem 4 using the eighth order SDGAM
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Figure 3: Numerical Results for Problem 4 using the tenth order SDGAM
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y1(SOGAMS)
Lol X Y1(Ode15s) |
' {) Y2(Ode15s)
k) 1F B
3
)
3 osl -
y2(SDGAMS)
_05 | | | | | | |
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t-axis

Figure 4: Numerical Results for Problem 5 using the eighth order SDGAM

NN

IR
%4
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Figure 5: Numerical Results for Problem 5 using the tenth order SDGAM
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Table 2: Table 1 continued

k B4 Bs Bs B Je
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
T4I11
4 4354560 48)1 0 0 0
3]
5 168960 1561920 0 0 0
6 68960401 89709329 IT73367 0 0
1660533880 12972960000 18869760000
= 1569363637 SRA651751 72931599 ANEVINEYY 0
3320077760 15375360000 20889699840 3736212480000
g 514532 BI7205 144427 4146181343 331406295143 14004257503
661620960 21171870720000 188581632000 144609285120000 948499808256000
9 31208478405773 S4298 27840577 3534206761517 1398948 711 50711569811
73139189760000 73139189760000 131650541568000 416577064960 200610349056000
10 | A789578706127 7599 1387127254973 TO35486633023 7577 3813303559036y 10945 74383125943
104267228921856000 | 2946280837500 | 521336144609280000 | 399147985716480000 | 784936285765632000
Table 3: Table 1 continued
k Bo B1o Y0 At
T -1
: 0 0 3ip 5y
; ; - e e
4 0 0 725760 90720
5 0 0 513 50517
1774080 5322240
6 0 0 ST 55167
62370208000 16016000
7 0 0 §75713 1503911
TG 24A00 5748019200
3 0 0 ST5095511 556887999
101624979456000 1270312243900
9 J76T370T304543 0 369733300593 6711914644
7224981721251840000 567677135241216000 5406448907059200
10 TA7407 778627852047 T877T60528485018593 13303809162621 T95720126044109
1931237614090616832000 | 1931237614090616832000000 | 218061180735897600000 | 7663641325756416000
Table 4: Table 1 continued
k V2 V3 V4 V5 Y6
1 0 0 0 0 0
2 = 0 0 0 0
—113 =31
3 1120 10080 0 0 0
1 =17 1721 —103 0 0
320 90720 145152
5 THSA7T —T4577T — 30517 —313 0
1330560 1330560 5322240 1774080
6 24151013 ~ 87969 —6398351 — 500979 —379397
276756480 272160 276756480 144144000 8805744000
7 153517011 1666501847 —1666591847 — 153317011 1205911
13837824000 14944849920 14944849920 13837824000 5748019200
3 ¥5580953 T19713951901 Z56r147al — 17444761861 2150058579
13571712000 1270312243200 118037760 705729024000 24429081600
9 3607240110641 66573836609 T09868350067579 | —109868350067579 06573826609
2365321396338400 6305980748800 965437304832000 965437304832000 6805980743300
10 BIREC0TH 1140819 1634612641 4417 687900349648099 ERTEIEANNPEL)) —OT1785775020757
756002846988288000 | 5321073142886400 | 6951148594790400 2874009600000 34755742973952000
Table 5: Table 1 continued
k ks 8 Yo 710 EC D
T
1 0 0 0 0 o 4
2 0 0 0 0 @ 6
3 0 0 0 0 7254081800 8
4 0 0 0 0 ST 10
5 0 0 0 0 2ET6R836006000 12
R 0 0 0 14
7 373621248000 0 0 0 550716 L a67A000 16
8 —1364044741 — 1964407 0 O 724523791 18
6351561216000 752777625600 242532 1883101907500
9 | =26072401 100641 Y AR AT Ty — 369733300393 0 599416863 20
2365321396838400 | 5406448907059200 | 567677135241216000 141590371678145239449600000
10 —19412T03395197 —15510407670221 —30149869152983 —224242994T6863 6546 672 29
EorinassrannG | S0rveiiaeronsiean | TEnsrictintenenn | TIOTRGRTIoRSTIR0000n | TRAGIEEIIasIRIoREATAIONG
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Table 6: Absolute error in problem 1, h = 0.01, Error y;=|y; — y(z;)|, i =1,2

Error in SDGAM10

x | y; | Error in SDGAMS | Error in SDGBDF4 [25] Error in SDGBDF5 [25]
(k=3,p=8) (k=3,p=4) (k=4,p=10) (k=4,p=5)
1.0 | 1.18313x10~10 3.06126x 10711 2.07187x10~12 3.43744x 10~ 11
yo | 4.04676x10713 4.22623x10~11 1.92618x10~12 4.96455x10~ 11
2.0 | 1 1.54753x10~ 13 1.03235x10~ 11 2.03823x 10~ 13 5.15573x 10~ 12
yo | 1.47077x10713 3.96899x 1011 7.08739% 10713 1.91052x10~ 11
3.0 [ 6.23676x10~1° 2.39019x 10~ 12 2.61852x10~ ™ 6.49362x10~13
Y2 5.19376x 10~ 2.40044x 10~ 2.60764x 10713 6.79007x 10712
4.0 |y | 7.85992x10~16 4.31932x10°13 3.51840x 10715 9.57145x10~ 14
yo | 2.08930x1014 1.20298x 1011 9.59406x 1014 2.61306x10712
5.0 | 1 9.34040x10~17 8.00396x10~ 1% 4.75368x 10~ 10 1.20228x 1014
ya | 7.37951x10715 5.82196x 10712 3.52695x 10714 9.28587x 10713
6.0 | 1.15866x 10~ 17 1.27167x10~ 14 6.42813x10~17 1.77133x10~1®
Yo 2.60686x10~1° 2.56518x 10712 1.29662x10~14 3.57306x 10~ 13
70 | 1.87491x10~ 18 2.18299x 1015 8.69321x10~18 2.22482% 10716
yo | 1.04864x10~15 1.15005% 10712 4.76669x 10715 1.26970x10~13
80 | y1 | 2.34152x10~1° 3.27871x 10716 1.17567x10~18 3.27798x 10~ 17
Yo 3.70580x 10716 4.79014x10~13 1.75229x10~1° 4.88578x 1014
9.0 | 2.94063x10~20 4.83562x10~17 1.59004x10~1° 4.11682x107 1
yo | 1.31676x10716 1.95919% 1013 6.44206x 1016 1.73602x10~ 14
10.0 |y 4.78731x10~ 21 7.87909x10~18 2.15042x10~%0 6.06524x10~1°
Yo | 5.32479x10717 8.33725x 1014 2.36830% 1016 6.67981x 10715
Table 7: Maximum error, Max||y; — y(z;)||, for problem 2
Method h N xrr Y1 Y2
(Maxly; — y(x)|) | (Max|y; — y(zi)])
SDGAMG6 | 0.4 | 25 | 10 1.93x107° 2.01x10~°
SDGAMS 0.4 25 | 10 9.60x107° 7.73x107°
BVM2 [14] | 0.4 | 25 | 10 3.20x107° 3.04x10~
BVM3 [14] | 0.4 [ 25 | 10 7.90x10~% 5.84x1073
DBDF [22] | 0.4 | 85 | 10 1.0x10~*
SDGAM6 | 0.1 | 50 | 5 9.11x107° 1.60x107°
SDGAMS | 0.1 | 50 | 5 2.33x10°7 8.57x10~7
BVM2 [14] | 0.1 | 50 | 5 6.5x107° 1.50x1073
BVM3 0.1 [ 50 | 5 7.45x10~% 9.5x107°
DBDF 0.1 | 47 | 5 4.4x107%
GEAR [17] | 0.04 | 122 | 5 3.8x10~4
SDGAM6 | 0.04 | 125 | 5 1.28x10~7 2.85x1078
SDGAMS | 0.04 | 125 | 5 1.17x1077 2.96%x10~10
BVM2 [14] | 0.04 | 125 | 5 7.45%1076 4.07x107°
BVMS3 [14] [ 0.04 | 125 | 5 8.33x10°° 1.32x10°°
Table 8: Relative error for problem 3
SDGAMG6 SDAM [21] Amodio [2] SDGAMS SDAM [21] Amodio [2]
k=2(p=6) | k=2(p=6) | k=5(p=6) | k=3(p=8) | k=3(p=8) | k=T(p=28)
Steps Error Error Error Error Error Error
20 1.3x10~ 11 2.9x1073 5.7x1072 7.3x10~ P 7.5x1074 2.9%x1072
40 2.1x10~ 1 7.3x107° 8.7x1073 1.3 x10~17 1.9x10~° 6.8x1073
80 3.2 x10715 1.8x107° 4.9%x107% 1.3 x10~17 1.4x10~7 7.8x1075
160 6.5 x10~17 3.3x10°8 1.2x107° 0.0 6.4x10~10 4.7x1077
320 | 1.3 x10~17 5.1x10-10 2.2x1077 2.6 x10~17 2.5x10~12 2.3x1079
640 2.6 x10~17 7.7%x10712 3.7x107° 0.0 9.8x10~1° 1.3x10~ 11
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