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Abstract—In this paper, a fast range and bearing estima-
tion method for a single near-field source is proposed. By
constructing the covariance matrix of received data, the phase
containing the information of range and the direction of arrival
is extracted. Finally, the phase is rewritten as matrix form,
and the closed-formed solution of range and bearing of the
source can be calculated by least square method. In contrast to
high-order statistics based methods, the proposed method can
obtain the range and bearing estimation without eigenvalue
decomposition and spectral search, which remarkably reduce
computational complexity. Simulation results show the proposed
method can provide improved estimation accuracy and higher
efficiency.

Index Terms—Estimation of range and bearing, single source,
near-field, linear antenna array.

I. INTRODUCTION

ESTIMATION of range and bearing using array of sen-
sors plays an important roles in microphone array, radar,

sonar, and navigation. Uniform linear array is commonly
used for target localization and allow for many fast esti-
mation methods. However, the fast estimation methods are
majority designed for far-field scenario, which the sources
are located far from the array and the range of all sources is
infinity. For the near-field sources , the sources are located
close to the array, and the received data is a coupling
of the direction of arrival (DOA) and range, the source
localization is more complicated than the far-field scenario
[1][2]. Therefore, the fast estimation methods are no longer
applicable.

Many algorithms have been developed for range and
bearing estimation of near-field sources, which can be mainly
grouped into two categories. On one hand, there are spectral
search based methods, especially the multiple signal clas-
sification (MUSIC) [3] based methods . Two-dimensional
(2-D) MUSIC algorithm was utilized to near-field multiple
source localization, which can achieve a sufficiently good
localization performance [4]. For a spherical microphone
array, spherical harmonics 2-D MUSIC was also developed
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Fig. 1: Near-field ULA configuration.

[5]. However, the computational complexity is tremendous
due to the 2D spectral search. To cope with this problem,
covariance approximation MUSIC (CA-MUSIC) [6], sym-
metric partition based MUSIC [7], and two-stage MUSIC [8]
were developed, in which using twice one-dimensional (1-D)
spectral search to substitute the 2-D search and reducing the
computational burden. To some extent, these algorithms can
reduce the computational complexity. However, twice 1-D
spectral search and the eigenvalue decomposition implemen-
tation still consume great computational burden. Reduced-
dimensional MUSIC algorithm for near-field sources was
proposed recently [9], which can obtain the angle estimation
by only 1-D search. On the other hand, high-order estima-
tion of signal parameters via rotational invariance technique
(ESPRIT) algorithms are proposed, such as the second-
order based method [10], four-order based method [11], and
simplified high-order estimation (SHOE) method [12]. In
[11], a four-order cumulant based total least square ESPRIT
(TLS-ESPRIT) method was proposed for passive localization
of near-field sources. High-order based algorithms always
accompany with ESPRIT, hence eigenvalue decomposition
is inevitable and increasing the computational complexity. In
the SHOE, localization for near-field sources can be achieved
based on the four-order cumulant and twice 1-D spectral
search MUSIC, which is still time consuming.

In order to reduce computational burden, a fast estimation
of range and bearing method is developed for a single near-
field source. Neither spectrum search nor the eigenvalue
decomposition operation is carried out in the proposed al-
gorithm, which can reduce the computational complexity to
a great extent. By constructing a correlation function based
on the array configuration, the proposed algorithm provides
a closed-form solution of the range and bearing based on
the least square approach. In addition, the phase ambiguity
is also considered. Compared with the SHOE and TLS-
ESPRIT algorithm, the proposed algorithm can achieve better
estimation accuracy and higher efficiency.
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II. SIGNAL MODEL

As illustrated in Fig. 1, a single narrowband near-field
source impinging on a uniform linear array (ULA) with M
identical sensors, in which the distance between two adjacent
elements is d and (θ, r) denotes the DOA and range of the
source. The received data at the mth sensor can be given by

xm(l) = s(l)ejψm + wm(l) (1)

where l = 1, 2, · · · , L, and L is the number of snapshots,
s(l) is the source signal, wm(l) is the additive Gaussian
white sensor noise, ψm is the phase shift between the signal
received by the first sensor and the m sensor. In near-field
scenario, ψm can be denoted as [13]

ψm =
2πr

λ

(√
1 +

m2d2

r2
− 2md sin θ

r
− 1

)
(2)

where λ is wavelength. For the source is in the Fresnel
region, which is satisfying 0.62(D3

/
λ)1/2 < r < 2D2

/
λ,

with D is the array aperture, by applying the second-order
Taylor expansion, the phase difference can be expressed as

ψm ≈ −
2πd sin θ

λ
m+

πd2cos2θ

λr
m2 +O

(
d2

r2

)
(3)

Neglecting the remainder term O
(
d2
/
r2
)

of Taylor formula,
ϕm can be written as

ψm = µm+ δm2 +O

(
d2

r2

)
(4)

where

µ=− 2πd

λ
sin θ (5)

δ=
πd2

λr
cos2θ (6)

Then, the received signal in Eq. (1) can be represented as

xm(l) = s(l)e
j(− 2πd

λ sin θ)m+j
(
πd2

λr cos2θ
)
m2

+ wm(l) (7)

We make the following assumptions through this paper. 1)
Impinging signal is circular. 2) The noise is independent from
the source signal.

III. PROPOSED ALGORITHM

To estimate the DOA and range, a correction function is
firstly constructed. The (p, q)th element in the covariance
matrix of received data is

Rp,q = E[xp(l)x
∗
q(l)]

= ρ2se
j(− 2πd

λ sin θ)(p−q)+j
(
πd2

λr cos2θ
)
(p2−q2) + ρ2n

(8)

where (·)∗ represents the complex conjugate, ρ2s and ρ2n are
the power of signal and noise, respectively. Due to there is
only a single source in the near-filed, we extract the phase
of Rp,q and obtain

σp,q =

(
−2πd

λ
sin θ

)
(p− q) +

(
πd2

λr
cos2θ

)(
p2 − q2

)
= −2πd

λ

[
(p− q) sin θ −

(
p2 − q2

) d
2r

cos2θ

]
(9)

It is known that the high direction finding accuracy can be
obtained by large apertures. The lager apertures, the more

TABLE I: Computation complexity of the methods.

Methods Computation complexity

TLS-ESPRIT O(4× 9(M
2
)2L+ 4

3
( 3M

2
)3)

SHOE O(9M2L+ 4
3
M3 +WM2)

Proposed method (M − u)L+ (M − u)(L− 1) +O(M)
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Fig. 2: Comparison of the computation complexity.

accurate estimation. From Eq.(3), we can obtain when d >
λ/2, there will be an ambiguity in the phase, which means
that the phase difference is larger than 2π. In this case, there
will exist at least two direction of arrivals giving rise to the
same received data. To guarantee there is no phase ambiguity
in σp,q , it should satisfy the condition that d/λ ≤ 1/4. Note
that the problem of phase ambiguity can also be solved by
modulo conversion method [14]. Then, Eq. (9) can be express
as

σp,q = −
2πd

λ

[
p− q
q2 − p2

]T [
sin θ
d
2r cos

2θ

]
(10)

where (·)T represents the transpose. Assume that p− q = u,
we can express Eq. (10) in matrix form as

σ = ZB (11)

where

σ = [σ1,1+u, σ2,2+u, · · · , σM−u,M ]
T (12)

Z = −2πd

λ


u (1 + u)

2 − 12

u
...
u

(2 + u)
2 − 22

...
M2 − (M − u)2

 (13)

B =

[
sin θ
d
2r cos

2θ

]
(14)

Note that u is a constant, which can be chosen as
1, 2, · · · ,M − 1. To exploit the greatest degree of array
aperture, we chose u = 2 in all of the simulations.

In practical, assume R̂p,q is the estimate of Rp,q , and σ̂p,q
is associated phase, by utilizing the least square method, the
estimate of B̂ can be obtained as

B̂ =
[
b̂1, b̂2

]T
=
(
ZTZ

)−1
ZT σ̂ (15)
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where σ̂ = [σ̂1,1+u, σ̂2,2+u, · · · , σ̂M−u,M ]
T . According to

Eq. (14), θ and r can be estimated as

θ̂ = arcsin(ŵ1) (16)

r̂ =
dcos2θ̂

2ŵ2
(17)

To analysis the estimation efficiency of the proposed
method, we compare the computation complexity of the
proposed algorithm with the TLS-ESPRIT based algorithm
and the SHOE. As shown in Table 1, for a single source, the
main computation load of the TLS-ESPRIT lies in construct-
ing cumulant matrices and performing the EVD. Summing
these two operations, the total computation load of the TLS-
ESPRIT is O(4×9(M2 )2L+ 4

3 (
3M
2 )3). While for the SHOE,

twice 1-D spectrum search is needed. For W points spectrum
search, the total computation load of the SHOE is roughly
O(9M2L + 4

3M
3 + WM2). In comparison, the proposed

algorithm needs neither constructing cumulant matrices nor
performing the EVD, it only requires to formulate multiply
operation in Eq. (8), and LS calculation in Eq. (15), and the
total computation complexity is (M−u)L+(M−u)(L−1).
Fig. 2 shows the computational complexity of the above three
methods with L = 256, u = 2, and the search step is 0.1◦,
from which we can obtain that the proposed method has a
much higher computational efficiency than the TLS-ESPRIT
based algorithm and SHOE.

The advantages of the proposed method are as follow:
1) Without performing spectral search and eigenvalue de-

composition, the proposed method has higher computational
efficiency than the TLS-ESPRIT based algorithm and SHOE.
2) The proposed algorithm can provide closed-form solution
of the range and bearing, and the has sufficiently good
estimation accuracy.

IV. CRAMER RAO LOWER BOUND

The Cramer Rao lower bound (CRLB) is an important ref-
erence to weigh the performance of an estimation algorithm.
The inverse of the Fisher information matrix (FIM) is the
CRLB, which bounds the error variance of the estimation
from the radar system. According to the signal and system
models, we can describe the FIM as

FIM =
2L

σ2
n

{
Re
[(

DHΠ⊥AD
)
�RT

S

]}
(18)

where D = [Dθ,Dr] with D(θ) = ∂A(θ,r)
∂r , D(r) =

∂A(θ,r)
∂θ , and A= [ejψ1 ,ejψ2 , · · · ,ejψM ]

T . Moreover, Π⊥A =

I − A
(
AHA

)−1
AH , RT

S = SSH
/
L, and S =

[s(1), s(2), · · · , s(L)]. Define F indicates the FIM for target,
which can be written as

F(θ, r) =

[
Fθθ Fθr
Frθ Frr

]
(19)

where

Ff,g =
2L

σ2
n

{
Re
[(

(D(f))
H

Π⊥A(D(g))
)
�RT

S

]}
(20)

and (f, g) ∈ {θ, r}

V. SIMULATION RESULTS

In this section, several simulations are carried out to verify
the performance of the proposed algorithm, which are also
compared with the TLS-ESPRIT [11], the SHOE [12], and
the CRLB [15]. For the simulations, a ULA with M = 9
and where K=500 is the number of Monte Carlo trials, x̂i
is the estimated DOA or range of the kth trail, and x is the
corresponding real value. d = λ/4 is utilized, and the noise
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Fig. 3: Scatter plot for θ = 30◦ and r = 2.3λ.
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Fig. 4: RMSE versus the SNR of DOA estimation.
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Fig. 5: RMSE versus the SNR of range estimation.
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Fig. 6: RMSE versus the number of snapshots of DOA
estimation.
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Fig. 7: RMSE versus the number of snapshots of range
estimation.

is additive white Gaussian noise. A single source is located
at (θ, r) = (30◦, 2.3λ). We define the root mean square error
(RMSE) of the estimate DOA and range as

RMSE =

√√√√ 1

K

K∑
k=1

(x̂k − x)2 (21)

Fig. 3 shows the scatter plot for L = 300, the signal-
to-noise ratio (SNR) is 10 dB, the number of Monte Carlo
is 200. We can obtain that the proposed methods holds a
better localization accuracy than the TLS-ESPRIT method
and SHOE.

As shown in Figs. 4 and 5, the RMSE of the DOA
and range against the SNR, respectively. The number of
snapshots is set as L = 300, and the SNR is varying from -5
to 25 dB. From these figures, we can see that the proposed
algorithm has a lower RMSE than the SHOE and TLS-
ESPRIT algorithm for both DOA and range estimation. Note
that the estimate performance is distinctly enhanced at low
SNR, which is ascribed to the proposed algorithm directly
extract phase operation to restrain the influence of noise.

As depicted in Figs. 6 and 7, we analysis the RMSE of the
DOA and range versus the number of snapshots. The SNR is
fixed as 0 dB, and the number of snapshots is varying from
100 to 1500. For the DOA estimation, although the proposed
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Fig. 8: Run time versus the number of sensors.

algorithm exhibits similar RMSE to the SHOE, it is superior
to that of the TLS-ESPRIT. For the range estimation, the
RMSE of the proposed method is lower than that of the
other two algorithms.

To demonstrate the computational efficiency, the simu-
lation time of the proposed algorithm is compared with
that of the SHOE and the TLS-ESPRIT. The number of
snapshots is fixed at 256, and the SNR is 20, M = 10.
The simulations are carried out at MATLAB platform with a
PC of Inter(R) Core(TM) i5-4440 CPU and 8G RAM. The
results are averaged over 500 runs. For the search interval
is 0.01◦, the computation consume of the SHOE, the TLS-
ESPRIT, and the proposed algorithm are 0.3029, 0.0113, and
1.3879 × 10−4 s, respectively. The runtime versus sensor
number is depicted in Fig. 8, in which we can see that the
proposed algorithm has much lower time consuming than the
SHOE and the TLS-ESPRIT.

VI. CONCLUSION

A fast estimation of range and bearing algorithm is
proposed for near-field source in this paper. To utilize the
phase performance of received data for the single source, a
correlation function matrix is constructed. The phase con-
tains information about the range and DOA, which can be
expressed as matrix multiply form. The closed-form solution
of range and DOA can be obtained by least square method
for the matrix. In addition, the CLRB of estimation is also
derived. Compared with the TLS-ESPRIT and SHOE, the
proposed method has higher accuracy and efficiency for
escaping from spectral search and eigenvalue decomposition.
Simulation results verify the performance advantages of the
proposed method.
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