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Abstract—In this paper, we study the optimal control of
an M/M/1 queue with exponential setup times. Customer’s
equilibrium joining strategies and facility manager’s profit-
maximizing pricing policies are explored under two common
toll structures. The first one is flat fee model and the second one
is time-based fee model. It is found the two different charging
mechanisms do not affect customers’ equilibrium joining rate,
server’s maximal profit and social welfare. Furthermore, the
price decision of a profit-maximizing server is always socially
optimal. In conclusion, under customers’ equilibrium, the two
different toll schemes are equivalent from the economic point
of view.

Index Terms—Queueing system, Setup times, Optimal con-
trol, Nash equilibrium, Profit maximizing.

I. INTRODUCTION

IN many situations, controlling quality of service is an im-
portant task. Indeed, when resource is limited and demand

is high, congestion occurs and service completion delay may
increase to an unacceptable level. By choosing a suitable
pricing scheme for the real conditions, facility managers can
control congestion and allocate resource properly. A wise
decision can benefit both the toll collectors and customers to
get to a win-win status.

Tolling a flat fee or charging by time are two common
pricing schemes in real life. It is expected that the two
different pricing policies may lead to different customer’s
entering rate as well as different server’s profits. Hence,
how to choose pricing schemes so that the service providers
can make a maximal profit and at the same time customers
can achieve Nash equilibrium state (no one can benefit by
changing the equilibrium strategies) is a valuable subject to
explore.

Generally, a service system can be described as a queueing
model. The queueing theory has been rapidly developed
in the past several decades. A lot of research has been
carried, such as [13], [9], [10]. In many queueing systems,
a server may be deactivated for economic reasons, suffer
random failures, go under preventive maintenance or attend
to a secondary system. Such situations often incur in real
applications. Due to the versatility and applicability, queue-
ing systems with removable servers have been extensively
explored. Detailed surveys are contained in [14,15]. Espe-
cially, a significant portion of these literatures are dedicated
to queues with setup times. In such models once a server
is reactivated, a random time is required for setup before it
can begin serving customers. Initially, Doshi [5] explored a
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GI/G/1 queueing system with setup times. Krishna Reddy
et al. [6] examined a bulk queueing model with multiple
vacations and setup times. Then Choudhury [4], Bischof
[1] and the references therein analyzed various single-server
systems with setup times. Recently, Yajima and Phung-Duc
[17] dealt with a Batch arrival single-server queue with setup
times.

Meanwhile, with the development of economics of queue-
ing systems, optimal pricing issues and equilibrium control
in service facilities have attracted more and more attention.
Low [7] considered an optimal dynamic pricing policies in
an M/M/s queue where customers’ arrival rate is a strictly
decreasing function of currently advertised price. Mendelson
and Whang [8] studied optimal incentive-compatible priority
pricing for an M/M/1 queue. Stidham [11] analyzed optimal
pricing and capacity for a service facility, in which the design
variables are the service rate and the arrival rate. Wang et
al. [16] presented the cost analysis of a Discrete-time queue.
Subsequently, Chen and Frank [2] carried out research that
allows the firm to adjust price to the state of demand for
maximizing social welfare. Subsequently, Sun and Li [12]
concerned the effect of information and pricing strategies on
servers profits in an unobservable single server queue. Chen
and Zhou [3] focused on the equilibrium strategies in the
single server queue with setup times and breakdowns. Zhang
and Wang [18] studied equilibrium strategies in an M/G/1
retrial queue with reserved idle times and setup times.

In the present paper, we study equilibrium strategies for
customers and optimal pricing polices for facility managers.
On one hand, Nash equilibrium state is favorable among
customers since no one will benefit by changing it. To
identify equilibrium strategies is a main objective for cus-
tomers. On the other hand, facility managers concern much
about toll mechanisms because it is expected they directly
affect business profits. Combining the two stakeholders’
goals, we investigate customers’ equilibrium strategies and
servers’ optimal pricing polices in an M/M/1 queue with
setup times. We give a multi-discussion and comparison
under two common toll structures. The first one is flat fee
model, in which customers are charged by a fixed fee if they
decide to join the queue. It is a pretty simple pricing scheme
for servers to collect fees. The second one is time-based fee
model where the server tolls a fee that is proportional to the
time of facility use. Thus the longer service time needed, the
more fees will pay.

The reminder of this paper is organized as follows. Section
2 presents the description of the model. Section 3 develops
the flat fee model. The time-based fee model is analyzed in
Section 4. We derive the equilibrium joining rate and inves-
tigate profit-maximizing server’s pricing behaviors. Then in
Section 5, we make a comparison between the two pricing
models and carry out numerical experiments. Finally, the
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conclusions come in Section 6.

II. MODEL DESCRIPTION

Generally, facility managers concern much about the
profits and want to gain the maximum value. Thus here
we consider a profit-maximizing server, who sets prices to
maximize his own benefit. Arriving customers do not know
the queue length and server state. The decision to join or balk
is irrevocable. After joining the queue, customers are served
according to first-come-first-served (FCFS) discipline.

Our model is based on the following assumptions.
1. Customers arrive according to a Poisson stream with rate
Λ at a single-server station. Λ is the potential arrival rate
which is not necessarily the actual joining rate of customers
to be served (which we refer to as λ) due to balking.
2. Service times are independently and identically distributed
(i.i.d.) exponential random variables with rate µ. For system
stability, we assume µ > λ .
3. In a queue with setup times: the server is deactivated as
soon as the queue becomes empty. When a new customer
arrives at an empty system, a setup process starts for the
server to be reactivated. The time required for setup is also
exponentially distributed with rate θ.
4. Inter-arrival times, service times, and setup times are
mutually independent.
5. Every joining customer receives a reward of R for com-
pleting service. There is a waiting cost of C per time unit
for a customer staying in the system (in queue or in service).
6. Customers are risk neutral.
7. For the model to be non-trivial, the condition of R ≥
C
(

1
µ + 1

θ

)
is assumed. This condition ensures that the

reward for service exceeds the expected waiting cost for
a customer joining an empty system. Otherwise, after the
system becomes empty for the first time, no customers will
ever enter.

We use the following notations:
ω Expected waiting time of a customer in the

system (including the service time).
P Price charged by the service provider

(0 < P < R).
U Expected utility of a joining customer.
B Expected benefit per time unit for the service

provider.
SW Expected social welfare per time unit in the

system.
Customers make joining or balking decision upon their

arrival instants. There exist two kinds of possible equilibria
in the system. In the first case, all the customers seeking
service enter the queue, i.e. λ = Λ. Clearly, customers have
a nonnegative expected utility so that all prefer to join in
this case. Hence, the profit-maximizing server could increase
his price without causing any balking until the expected
customer utility becomes zero. In the second case, arriving
customers follow a mixed strategy, where they join the queue
with a probability such that λ < Λ, for which the expected
customer utility is zero. Thus, there is no incentive for
customers to change their joining or balking behavior.

It is possible that the customer self-interest equilibrium
(denoted as λf in flat fee model and λt in time-based fee
model) cannot be reached because of the arrival rate’s upper

bound Λ. Hence, we study two cases: unbounded case (λf ≤
Λ or λt ≤ Λ) and bounded case (λf > Λ or λt > Λ).

III. FLAT FEE MODEL

Firstly, we consider the flat fee model, in which the service
provider charges a fixed price. We add a subscript f at the
bottom right corner of some variables. Thus, the expected
utility for a customer U = R− Pf − Cω.

In M/M/1 queue with exponential setup times, the mean
sojourn time for a customer ω = 1

µ−λ + 1
θ .

Suppose λf = µ − Cµθ√
CRµθ2−C2µθ

, then we give the

following theorem.

Theorem 1
(1) if λf ≤ Λ, there exists a unique equilibrium where

λ = λf and Pf = R−
√

CRµθ2−C2µθ+Cµ

µθ , Bf =(
µ− Cµθ√

CRµθ2−C2µθ

)(
R−

√
CRµθ2−C2µθ+Cµ

µθ

)
.

(2) if λf > Λ, there exists a unique equilibrium where
λ = Λ and Pf = R− C

(
1

µ−Λ + 1
θ

)
,

Bf = Λ
(
R− C

(
1

µ−Λ + 1
θ

))
.

Proof: (I) We begin with the case of λf ≤ Λ (Λ is large
enough).

Based on the fact that in equilibrium the expected utility
for a customer is zero, we obtain R = Pf + C

(
1

µ−λ + 1
θ

)
.

Hence the joining rate:

λ = µ− Cθ

(R− Pf )θ − C
. (1)

Substituting (1) into Bf = λPf , we have

Bf = Pf

(
u+

Cθ

C + θ(Pf −R)

)
.

Since R > Pf + C 1
θ , the second-order derivatives of the

profit function

∂2Bf

∂P 2
f

=
2Cθ2(Rθ − C)

(C + Pfθ −Rθ)3
< 0,

which means Bf is concave in Pf . Based on the necessary
conditions of maximizing Bf with respect to Pf , we obtain
the optimal prices of the service provider as

Pf = R−
√
CRµθ2 − C2µθ + Cµ

µθ
. (2)

Substituting (2) into (1), we obtain

λ = µ− Cµθ√
CRµθ2 − C2µθ

= λf (3)

Hence,

ωf =

√
CRµθ2 − C2µθ

Cµθ
+

1

θ
, (4)

Bf =

(
µ− Cµθ√

CRµθ2−C2µθ

)
∗(

R−
√
CRµθ2 − C2µθ + Cµ

µθ

)
. (5)
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(II) Next we consider the case where Λ poses an effective
limitation, namely λf > Λ. In this case, the profit maximiza-
tion equilibrium determined by (3) cannot be reached since
the maximal joining rate is Λ. Moreover, the server could
increase his price from it in (2) without affecting the joining
rate of the system until U equals zero. So we conclude

Pf = R− C

(
1

µ− Λ
+

1

θ

)
, (6)

Bf = Λ

(
R− C

(
1

µ− Λ
+

1

θ

))
. (7)

IV. TIME-BASED FEE MODEL

Next, we consider the time-based fee model, in which the
service provider charges a price that is proportional to the
time interval of facility use. We add a subscript t at bottom
right corner of some variables. Thus, the expected utility for
a customer U = R− Pt/µ− Cω.

Letting λt = µ −
√

Cµθ
Rθ−C , we can give the following

theorem.

Theorem 2
(1) if λt ≤ Λ, there exists a unique equilibrium where

λ = λt and Pt = Rµ−
√

Cµθ(Rθ−C)+Cµ

θ ,

Bt =
(
µ−

√
Cµθ

Rθ−C

)(
R− C

θ −
√

C(Rθ−C)
µθ

)
.

(2) if λt > Λ, there exists a unique equilibrium where
λ = Λ and Pt = µ

(
R− C

µ−Λ − C
θ

)
,

Bt = Λ
(
R− C

µ−Λ − C
θ

)
.

Proof: (I) Firstly, we consider the unbounded case λt ≤ Λ.
Based on the fact that in equilibrium the expected utility

for a customer is zero, we obtain R = Pt/µ+C
(

1
µ−λ + 1

θ

)
.

Hence the joining rate:

λ = µ− Cθ

(R− Pt/µ)θ − C
. (8)

Substituting (8) into Bt = λPt/µ, we have

Bt = Pt +
PtCθ

Ptθ + Cµ−Rµθ
.

Since R > Pt/µ+ C/θ, the second-order derivatives of the
profit function

∂2Bt

∂P 2
t

= − 2Cµθ2(Rθ − C)

(Rµθ − Cµ− Ptθ)3
< 0,

which means Bt is concave in Pt. We could maximize Bt

with respect to Pt, and get the optimal price as

Pt = Rµ−
√
Cµθ(Rθ − C) + Cµ

θ
. (9)

Substituting (9) into (8), we obtain

λ = µ−
√

Cµθ

Rθ − C
= λt. (10)

Hence,

ωt =
1

θ
+

√
Rθ − C

Cµθ
, (11)

and

Bt =

(
µ−

√
Cµθ

Rθ − C

)(
R− C

θ
−

√
C(Rθ − C)

µθ

)
.

(12)
(II) Next we consider the case of λt > Λ. In this case, the

profit maximization equilibrium determined by (10) cannot
be reached since the maximal joining rate is Λ. Moreover, the
server could increase his price without causing any balking
until U equals zero. So we conclude

Pt = µ

(
R− C

µ− Λ
− C

θ

)
, (13)

Bt = Λ

(
R− C

µ− Λ
− C

θ

)
. (14)

V. ANALYSIS AND NUMERICAL EXPERIMENTS

Based on the above results, we make some conclusions
and then carry out numerical experiments in this section.

In the unbounded case, we obtain the equilibrium
joining rate λf in flat fee model and λt in time-based fee
model. In the bounded case, Λ is always the customers’
equilibrium joining rate, no matter in flat toll model or in
time-based toll model. We can give the following corollaries.

Corollary 3
The charging mechanism does not affect customers’
equilibrium joining rate and social welfare.

Proof: In the unbounded case, from (3) and (10), we find
λf = λt. In the bounded case, the equilibrium joining rate
is always Λ. Those results indicate the equilibrium joining
rate is identical in the two different toll mechanisms. Hence,
the expected waiting time ω is also the same (i.e. ωf = ωt).
Since SW = λ(R − Cω), it is clear that the social welfare
is thus identical in the two toll models.

Therefore, the charging mechanism makes no difference
in customers’ joining behaviors as well as social welfare
between the flat fee model and the time-based fee model.

Corollary 4
The price decision of a profit-maximizing server is socially
optimal.

Proof: In both the two charging models, the social welfare
SW = λ(R− Cω).

In the fixed fee model, the server’s profit function Bf =
λfPf . The customers’ total expected utility λfU = λf (R−
Pf − Cωf ). When the joining rate is not constrained, this
expected utility equals zero in customers’ equilibrium, which
implies

Bf = λfPf = λf (R− Cωf ) = SWf ,

so that the server’s profit-maximizing price decision is
consistent with the society to achieve social optimization.

In time-based fee model, Bt = λtPt/µ and
U = R − Pt/µ − Cωt. Similarly, We could conclude
Bt = SWt. The price chosen by profit-maximizing server
also maximize the social welfare.

Corollary 5
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In customers’ equilibrium, the server’s maximal profit in
flat fee model is the same as in time-based fee model.

Proof: In unbounded case, from Corr. 3 and Corr. 4, we
obtain

Bf = SWf = SWt = Bt.

In bounded case, from (7) and (14), we make it directly.

Remark Corr.3-5 indicate in customers’ equilibrium,
the two different toll mechanisms are equivalent from the
economic point of view. Although customers charged by
different toll systems, they enter with the same probability
and the social as a whole obtain the same welfare. It is an
interesting conclusion that reveals some features not being
found before. Since obtaining the same maximal profits,
the facility manager can simply set a fixed price instead of
tolling by time so as to reduce workload.

Now we present a set of numerical experiments in the
unbounded case. Here we concern about the sensitivity of
customers’ equilibrium joining rate λ and server’s expected
benefit B (also seen as social welfare SW ) with respect to
system parameters.

In Fig. 1 and 3, it is obvious that λ and B are increasing
with θ, while decreasing with C. This means a small mean
setup time or per time unit cost is beneficial for customers’
joining rate and social welfare. Furthermore, if there is a
smaller value for C, the sensitivity of λ or B with respect to
θ turns to be less. In Fig. 2, the value of entering rate presents
as a plane with the variation of µ and R. If we choose a
certain value for R, there are more customers entering the
queue when higher service rate is provided. However, if we
choose a fixed value for µ, the joining rate varies as a slight
growth line, and is not affected very much by the variation of
service reward R. In Fig. 4, it is found that there is a ridge on
the protruding surface, which implies a higher service rate
or service reward is better for both facility managers and
customers.
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Fig. 1. Joint effect of vacation rate and per time waiting cost on λ, when
µ = 1, R = 20.
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Fig. 2. Joint effect of vacation rate and service reward on λ, when C =
1, θ = 0.3.
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Fig. 3. Joint effect of vacation rate and per time waiting cost on B/SW ,
when µ = 1, R = 20.

VI. CONCLUSION

In this paper, we discuss the optimal control of M/M/1
queueing system with setup times. Customer’s equilibrium
strategy and server’s optimal pricing behavior are explored
under two common toll structures. The first one is flat fee
model and the second one is time-based fee model. Facility
manager sets prices to gain the maximal profits, which is
common and practical. It is found that customers in equi-
librium have an identical entering rate in the two different
toll models. Furthermore, the server’s maximal benefit in
the fixed fee model is identical with it in the time-based
fee model. In addiation, the price decisions chosen by the
profit-maximizing facility manager are consistent with the
social to achieve social optimization. That is the objective
of a profit-maximizing server and the society coincides.
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Fig. 4. Joint effect of vacation rate and service reward on B/SW , when
C = 1, θ = 0.3.

In all, under customers’ equilibrium, the two different toll
mechanisms are equivalent from the economic perspective.
It is a valuable conclusion for facility managers since they
can simply choose the flat fee model by charging customers
with a fixed fee, instead of collecting tolls by time to avoid
heavy jobs.

Those research conclusions could instruct customers to
take optimal strategies and provide managers with reference
information on pricing problems in queueing systems. A
possible extension to this work could be to consider these
pricing schemes in multiple servers queues.
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