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Two Analytical Methods for Fractional Partial
Differential Equations with Proportional Delay
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Abstract—In this paper, two analytical methods, namely
residual power series method and homotopy analysis transform
method, are applied for solving the initial value problem of time
fractional partial differential equations with proportional delay.
By employing the methods, the explicit approximate solutions
are found. The efficiency and accuracy of two methods are
demonstrated by comparing the results with exact solutions
as well as the solutions obtained by homotopy perturbation
method and homotopy perturbation transform method. More-
over, the obtained results also show that the approximate
analytical solutions are exactly same as the Taylor series
expansions of the exact solutions when o = 1. Illustrative
examples through graphical representations and tables reveal
that the provided methods can be used as alternatives for
seeking the numerical solutions of such type of fractional partial
differential equations.

Index Terms—Residual power series method, Homotopy anal-
ysis transform method, Fractional partial differential equations,
Proportional delay.

I. INTRODUCTION

N recent years, the study of fractional calculus has

become a hot research area. One example is fractional
differential equations (FDEs), which can more accurately
describe non-local models. Due to its wide applications,
the FDEs have been paid close attention to. For example,
they can be used to simulate many phenomena such as the
mechanical properties of materials [1], [2], [3], the advection
and dispersion of solutes in natural porous or fractured media
[4], the description of mechanical systems subject to damping
[5], the behaviour of viscoelastic and viscoelastic materials
under external influences [6], the behaviour of human beings
in the mathematical psychology field [7], [8].

As is known to all, it is a challenging task to obtain
the exact or approximate solutions of FDEs. Therefore,
various methods have been extended and developed for
solving FDEs. For instance, there are Adomian decom-
position method [9], [10], tanh method [11], sine-cosine
method [12], differential transform method [13], variational
iteration method [14], Laplace decomposition method [15],
[16], homotopy perturbation method (HPM) [17], homotopy
perturbation transform method (HPTM) [18], [19], fractional
reduced differential transform method [20], [21] and spectral
collocation method [22], [23], [24]. In addition, Khan [25]
developed homotopy analysis transform method (HATM) by
combining homotopy analysis method and Laplace transform
method. The advantage of this technique is that it can
provide us with a simple way to solve nonlinear equations
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by choosing auxiliary parameters properly. Recently, Arqub
[26] has presented residual power series method (RPSM) to
get power series solutions with rapid convergence. For more
details of the mentioned methods, we refer to [27], [28], [29],
[30], [31], [32] and the references therein.

In the present paper, we consider the initial value au-
tonomous system of time fractional partial differential equa-
tions (TFPDEs) with proportional delay defined in [33]

Deu(x,t) = f(m, u(apz, bot), %u(alx, bit), -+,
(A, bt)), (1)

ub (@, 0) = i (x),

where a;,b; € (0,1) for i € {0,1,2,---,m}, ¢Yp(x) is
the initial value and f is the differential operator. For the
specially selected f, system (1) represents the important
models. One example is time fractional Kortewegde Vries
(KdV) equation appearing in the research of shallow water
waves

D¢ (u(z, 1)) = buu(agz, bot) + Zsu(arz, bit), ()

where 0 < o < 1, b is a constant. Another example is time
fractional nonlinear Klein-Gordon equation with proportional
delay arising in quantum field theory to describe nonlinear
wave interaction

32
5 u(aom, bot) — bu(arz, bit)

Di (u(z,t)) = un-
F(u(agx, bat)) + h(x,t), 3)

where 1 < a < 2, b is a constant, h(x,t) is a known
analytical function or source term and F' is a nonlinear
function of u(z,t). For more details of other models, please
refer to [34] and the references therein.

So far, a great deal of efforts have been made on the
approximate solutions for TFPDEs with proportional delay.
Saker et al. [33] used HPM to obtain the numerical solutions.
Singh and Kumar [35] applied extended reduced differential
transform to get the approximate analytic solutions. Singh
and Kumar [36] made use of HPTM to solve TFPDEs with
proportional delay.

The paper suggests two analytical methods namely RPSM
and HATM to find series solutions of TFPDEs with pro-
portional delay. After some simple computations, explicit
analytical solutions in the form of the power series are
possible to seek.

The remnant of this paper has been organized as follows.
In Section 2, Some preliminary results related to RPSM and
HATM are given. In Section 3, we describe the procedures
of RPSM and HATM. Numerical examples are provided to
illustrate the feasibility of proposed methods in Section 4.
Finally, Section 5 concludes the output of the whole paper.

(Advance online publication: 1 February 2019)



TAENG International Journal of Applied Mathematics, 49:1, [JAM 49 1 06

II. PRELIMINARY

In this section, we collect some fundamental definitions
and preliminary results of fractional calculus to RPSM and
HATM which are used in the paper. The fractional derivative
considered in this context is in the Caputo sense.

Definition 1. [37] The Caputo fractional derivative of
u(zx,t) is defined by

ﬁ f(;‘(t _ 7_)m—oz—1 %dﬂ
m—-—1<a<m,

9 311(,,?’“, a=mé€N,

Diu(x,t) =

where m is the smallest integer that exceeds .
Here are some simple arithmetic properties for the Ca-
puto’s fractional derivative

D*C =0, (C is a constant),
D (yf(t) + 0g(t)) = vD*f(t) + 6Dg(t),

where v and 0 are constants, and

07 B <a-— 17
DotP = r f—a B
(B+1)t
{ TG-arn D2~ 1L
Definition 2. [30] A power series (PS) of the form
Cm(tfto)ma = Co+61(t7to)a+62(t7to)2a
m=0

+ -, 0<n—-1<a<n, t<t,

is called the fractional PS about ¢ = ¢.
Theorem 1. [30] Suppose that f has a fractional PS
representation at ¢t = ¢y of the form

oo

ft) =

m=0

If f(t) is continuous on [tg,tg + R) and D™ f(t), m =

m(t — to)ma, to <t<to+ R.

0,1,2,--- are continuous on (tg,top + R), then ¢, =
?(Tf(to). Here, D™® = D% . D% ..... D“ (m-times).
mo

Remark 1. [30] The number R in Theorem 1 is called
the radius of convergence of fractional PS.
Definition 3. [30] A power series of the form

Z f’l’ﬂ

is called the multiple fractional PS about ¢ = #.
Theorem 2. [30] Suppose that P(z,¢) has a multiple
fractional PS representation at ¢ = t( of the form

Ejﬁn

Yt —to)™

t—to Yrel, to<t<ty+R.

If D"*P(z,t), m = 0,1,2,--- are continuous on I X
D" P(x,t
(thtO + R), then fm(.'L’) = ana)o)
Definition 4. [37] The Laplace transform of continuous
(or an almost piecewise continuous) function f(¢) in [0, c0)
is defined as

F@)LU@]Awesvth

where s is a real or complex number.

Definition 5. [37] The Laplace transform of the Caputo
fractional derivative is defined as

L[D{ u(,t)]

— Z(akl 1,0)

n—1l<a<n.

III. BASIC IDEA OF RPSM AND HATM

In this section, we will depict the procedures of RPSM and
HATM for the initial valued autonomous system of TFPDEs
with proportional delay

Dgu(.’l},t) f(l' u(aova()t)v%u(al‘rablt)a'" )
Zru(ame, bpt)), )
u(z,0) = Y(z),

where 0 < o < 1.

A. RPSM for TFPDEs

First, a detailed process of solving equation (4) by RPSM
will be given.
Assume that the solution of (4) can be written in the form
of series at t =0 as
TLOZ
an ),xel,0§t<R. (5)

n=0

Following the above equation, the k-th truncated series of
u(x,t) can be expressed as

}:n

Setting & = 0 together with the initial condition, the zeroth
residual power series (RPS) truncated solution of u(x,t) is

’ﬂOé

T(1+na)’ ©

UO(‘rat) = fO(x) = u(xv 0) = ¢($) @)
Consequently, equation (6) becomes
uk (&, +§:ﬁL 1+n® ®)

n=1

The residual function for (4) is defined as

Resu(x,t) = Dtau(xat) N f(la “(GO% bOt)v

D (a2, bit), - ) 2o, b)) ©)
Then, the k-th residual function takes the form
Resy (2, t) = Dfug(x,t) — f(z, ur(aox, bot), (10)

g (am@, bint)).

%U/k(alx7 blt)7 Ty (’)amm
Computing the fractional derivative of equation (10) with
respect ¢ and taking the value ¢ = 0 yields the following

formula

DF VRes, 1 (2,0) =0, k=12, (11)

After solving algebraic system (11), the coefficients f;(x)
(t=1,2,--- k) are got. By substituting them into formula
(8), we derive the k-th RPS approximate solution.
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B. HATM for TFPDEs

Next, we will introduce the simple produre of HATM. For
a more detailed description of HATM, the reader is referred
to [38], [25].

Taking the Laplace transform on both sides of equation
(4), we have

s*Lu(z,t)] — s tu(z,0) — L{f(z, u(aox, bot),

12
2 uarz, bit), ) 2ot bt))] = (12)
On simplifying
L[U(LE, t” - 1U(I7 0) — SiaL[f(‘Zy U(aox, bOt)a (13)
a%u(alx, bit), -, %u(amm, bt))] = 0.
We select a linear operator as
Llp(x,t;q)] = Ld(w,t; )] (14)
with the property £[c] = 0, where c is a constant.
Meanwhile, a nonlinear operator is defined as
Nlp(z,t;q)] = Llp(z,t;q)] — s~ (x)
- S_QL[f($,¢(ao$,b0t;q), (15)

881;Y1q5(a1x bit;q), -
B S (omts bt )

where ¢ € [0,1], ¢(z,t;q) is a real function about x,¢ and

q.
We construct the zeroth-order deformation equation:

(1 —=q)£[p(z,t;q) — uo(x,1)]

where % is a nonzero auxiliary parameter, H(z,t) # 0 is
an auxiliary function, ug(z,t) is an initial guess value of
u(zx,t) and ¢(z,t; q) is an unknown function. Let H (z,t) =
1. Obviously, when ¢ = 0 and ¢ = 1, it holds

¢z, 1;0) = uo(z,t), ¢(x, ;1) = u(z,1),

respectively. As a result, when p increases from 0 to 1, the
function ¢(z, t; q) varies from the initial guess value wug(z, t)
to the solution u(zx,t). It can also be expanded in Taylor
series about ¢

a7)

Qb(xat;Q) = uO(xvt) + Z qmum(xat)v

(18)
m=1
where L amg )
_ 1 9"o(x,tq
(1) = m! g™ ‘qzo'

By choosing proper auxiliary linear operator, the initial
guess value, the auxiliary parameter 7 and the auxiliary
function, the series (18) converges at ¢ = 1. Then, we have

u(z,t) = ug(z,t) + Z U (T, 1),

m=1

19)

which must be one of the solutions of the original equation.
For simplicity, we define the vectors

Uy, = (UO(xvt)vul(xat)v’UQ(‘T?t)’ T

s Un(x,t)).

We deduce the m-th order deformation equation by differen-
tiating equation (16) m times with the parameter ¢ and then

(20)

setting ¢ = 0. The m-th order deformation equation could be
written as
Llupy (x,t) — XmUm—1(z, )]
= hH (z,t) Ry (tUpm—1,x,t). 2D

Using the inverse Laplace transform on both sides of the
above equation, we have

’U,m(l’,t) = Xmumfl(mvt)
+ RLTMH (2, )R (G, 2, 1)), (22)
where
_ 1 9m e(a,tq)
Rm(umflvxvt) = (m — 1)' aan_l |q:0»
and
0, m<1,
Xm =\ 1, m>1.
Let H(xz,t) = 1, and we can compute u,,(z,t) for

m > 1. Hence, the M-th order approximate solution can
be represented as

(23)

= Z U (2, 1).

When M — oo, an accurate approximation of (4) is given:
o0

= Z U (z, 1).
m=0

IV. APPLICATIONS OF RPSM AND HATM 1O TFPDES
WITH PROPORTIONAL DELAY

(24)

In this section, two examples are given to illustrate the
validity, reliability and accuracy of RPSM as well as HATM.
Application 1. Consider time fractional generalized Burg-
ers equation with proportional delay as given in [33], [39]:

2

D?U(I,t) - U(%, %)%U(Z‘, %) = %u('rvt)
+ 2u(z,t)  (25)
'I.L(l‘, O) =
For a = 1, the exact solution of equation (25) is
u(z,t) = ze'. (26)

We will first use RPSM to solve (25). Suppose that the
solution to equation (25) can be written in the form of series:

Z fulz

Therefore, the k-th truncated series of w(z,t) could be
represented as:

’I’LOC

T(1+na)’ @7)

k tn(l

up(,t) =y h@)m-

n=0

(28)

According to the process described in Section III, we get
the zeroth RPS truncated solution of u(x,t) as

up(z,t) = fo(z) == (29)
The first RPS approximate solution could be written as
tOL
up(z,t) =x+x (30)

F'l+a)

(Advance online publication: 1 February 2019)
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The second RPS approximate solution is

a 2c
t) = —_— 2712ty ————
ug(®,t) = @+ opmo o2 (I 2T e
€29
We proceed as above and deduce the following results
to N t20¢
t) = — 271142t
+ @41+ 21 * 4 gl720 4 9273a
N I'(1+ 2a) 1-2a) 3
I'(l+ a)? I'(1+30)’
to N N t20¢
t) = _ 27 (1427
() g e T U2 o
+ x4—1(1 + 21—@ + 21—2(X + 22—30&
P(1+2a) ,_, > —1-3
T T rae T 3a) T
+ 2—1—404 + 2—1—50( + 2—2—@ + 2—2—2a
+ 272736! + 273 + 2760( + (272720(
150\ F(1+20) 1
1-5c 1-3a
— + (2
+ )F(l + a)? (
I'(1+ 3a i
+ 27404) ( ) )

I+ a)l(1+2a)’ T(1+4a)

If we repeat the process of RPSM, the higher degree of
approximate solution will be obtained.
In the special case of o = 1, the solution is given by

2 t3

which is exactly same as the Taylor series expansion of the
exact solution.
Next, we will use HATM to solve equation (25). Taking

the Laplace transform on both sides in equation (25), we get

1 0
Llu(xz,t)] — s x — s_aL[@u(x, t)
0 t Tt 1
+—axu(x, §)u(§, 5) + §u(a?,t)] =0 (32)

On the basis of HATM, we choose the linear operator as

£[¢(z,t;9)] = Ll (z, t; )], (33)
and the nonlinear operator as
Nig(z, t;q)] = Lig(z,t;q)] —s e
- WL[% (z,t;q)
+ a%qﬁ(ag;q)é(gé;q)
+ 3o sal (34)

Using the above definition, with assumption H (z,t) = 1,
we obtain the m-th order deformation equation
£um(x,t)

- Xmumfl(-ryt)] = hRm(ﬂmfl,ZC,t), (35)

where
Ro(lm_1,2,t) = Lum_1(x,t)] — (1 — xm)s 'z
2
B S_iL[ﬁ u,,é_xlz(x,t)

1
+ §um_1(x,t)].

Operating the inverse Laplace transform on both sides of
(35), we get

um(zat) = (h+Xm)um—1(z;t) - (1 _XnL)hI
2

o O
(s L[a g1 (2, )
-1
ﬁuk Tt
+ Z umflfk(§a§)
0

o (@, t)])

— hL™

(36)

k=
Ll
2

Noting ug(z,t) = x, we have

hxt®
T(1+a)
(1+ h)hat™
 T(1+a)

Rzt
L1+ 2)’
—(1 + h)2hat” o (14 BBzt

( ) €T +(1_|_21 o/)( ) T

Il+a«) I'(1+2a)
_ 2—3a+2—1—2(x+2—1—a+4—1

N I(l+20), , m) R a3
I'(1+ a)? (1 +3a)’
(1+ R)3hat™ 3
u4(ac,t) = —W + (5
yi-e) (1 + h)2R2wt>>
I'(1+2a)
2—304 + 2—1 + 2—1—04 _|_2—1—2a _|_ 21—304
2-2 4 (2—1—2a
20 I(1+ 2a) ) (1 + h)R3xt3e
T+ )2 ['(1+ 3a)
(2—1—3a L g-l-da 4 9-1-5a | 9—2-a
27272& +27273a +273 +276a
27175(1)11(1 + 20)
I'l1+a)?
I'(l1+3a)
I'l+a)l(1+2a)

+ (27> 427h

+27¢

_ (2,(1 4 27201

+ o+ + 4

+ 4

(2727204 4 (271730&

4+ 274

) Rt xtde
I'(1+4a)

Therefore, the fourth approximate solution of (25) is given
as

4
u(z,t) = Z U (2, T). (37)
m=0

The higher degree of approximate solution can be obtained
in the same manner.

Remark 2. There exists the equivalence of the solutions
by RPSM and HATM when selecting h = —1 in HATM.

(Advance online publication: 1 February 2019)
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TABLE 1

THE ABSOLUTE ERRORS OF u(x, t) FOR APPLICATION 1

(z,1) Euprm Erps

Egarm

(0.25,0.25)  2.122401E-06  2.122401E-06
(0.25,0.50)  7.094268E-05  7.094268E-05
(0.25,0.75)  5.634807E-04  5.634807E-04
(0.25,1.00)  2.487124E-03  2.487124E-03
(0.50,0.25)  4.244802E-06  4.244802E-06
(0.50,0.50)  1.418854E-04  1.418854E-04
(0.50,0.75)  1.126961E-03  1.126961E-03
(0.50,1.00)  4.974248E-03  4.974248E-03
(0.75,0.25)  6.369688E-06  6.367203E-06
(0.75,0.50)  2.128250E-04  2.128280E-04
(0.75,0.75)  1.690020E-03  1.690442E-03
(0.75,1.00)  7.461370E-03  7.461371E-03

2.122401E-06
7.094268E-05
5.634807E-04
2.487124E-03
4.244802E-06
1.418854E-04
1.126961E-03
4.974248E-03
6.367203E-06
2.128280E-04
1.690442E-03
7.461371E-03

24
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Fig. 1.  The fourth approximate solutions of RPSM and HATM for

Application 1 when o = 0.9, h = —1.
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We plot the numerical solutions for a = 0.9,1 and

absolute errors in Figures 1-3. When «

= 1, the compar-

ison results of the absolute errors by different methods are

demonstrated in Table I.

Application 2. We consider the following TFPDEs with
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Fig. 3. The errors of RPSM and HATM for Application 1 when o = 1,
h=—1.
proportional delay [33], [39]:

D¢u(z,t) =
u(z,0) = 22,

.’E,%) —U(l’,t), (38)

with the exact solution u(z,t) = z2e?, when a = 1.
Similarly, RPSM will be employed at first. Then, the

zeroth RPS approximate solution is given

o(z,t) = fo(z) = 2°. (39)
The first RPS approximate solution can be expressed as

ta

t)y=a*+a% .
up(z,t) =2° + T+ o)

(40)

Other higher degree of approximate solutions can be

(Advance online publication: 1 February 2019)
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represented as

ta t20¢
N o= g2 2 2(92—a _q
uz(x,t) 4+ 71"(1—}—04)4_96( )F(1+2a)’
ta t20¢
N o= g2 2 2(92-a _q
us(@,t) = @y e T+ 20)
422 (1 _92-a _yl-a 4 od-3a
N 21_2a1‘(1 + 2a)) {3
F1+a)?2/T(1+3a)’
o t2o¢
N = g2 2(92—a _qy__ "
w(@t) = e e T )
L2 (1 _92-a _ yl-a 4 9d-3a
n 2172041—‘(1 + 20‘)) £
Nl14 a2/ T+ 3a)
41tep(1
— 64_0‘,’1;2((20‘ _ ) ( +30é)
I'(l+a)I'(1+ 2a)
I'(l+2a)
+ 2oy ) ——— L 64424t
( )(F(l + a))?
4 24+3a _ 21+5a 4 42+0¢ _ 22+50¢ _ 22+3a
t4o¢
o)
+ I(1+4a)

When o = 1, the solution is reduced to

23

)z?,
which is exactly same as the Taylor series expansion of the
exact solution.

For HATM, by assuming H(x,t) = 1, we construct the
zeroth-order deformation equation

and the m-th order deformation equation
£[u7n($7 t) — XmUm-—1 (xa t)] = hR'rn(ﬁm—h x, t), (42)

where

Ry (tUpm—1,2,1) L{up—1(z,t)] — (1 — Xm)m2s*1

—1
ok Oup(z, ) t
— S L[Z TQQUm—l—k('r7 5)
k=0
—  Up—1(z,1)].

Using the inverse Laplace transform on both sides in (42),
we get

U (2,8) = (B4 Xon)Um—1(2, 1) — (1 — X ) h2?
m—1 q2 t
— AL L[Y %um_l_k(:ﬂ,%)
k=0
—  um_1(z,1)]) (43)

In view of the initial approximation value ug(,t) = 22 and

TABLE 1T
THE ABSOLUTE ERRORS OF u(x,t) FOR APPLICATION 2

(z,1) Eypym Egrps Egarm
(0.25,0.25)  5.300000E-07  5.306003E-07  5.306003E-07
(0.25,0.50) 1.773500E-05 1.773567E-05 1.773567E-05
(0.25,0.75) 1.408700E-04  1.408702E-04  1.408702E-04
(0.25,1.00) 6.217800E-04  6.217809E-04  6.217809E-04
(0.50,0.25)  2.123000E-06  2.122401E-06  2.122401E-06
(0.50,0.50)  7.094300E-05  7.094268E-05  7.094268E-05
(0.50,0.75)  5.634830E-04  5.634807E-04  5.634807E-04
(0.50,1.00)  2.487123E-03  2.487124E-03  2.487124E-03
(0.75,0.25)  4.776000E-06  4.775402E-06  4.775402E-06
(0.75,0.50)  1.596200E-04  1.596210E-04  1.596210E-04
(0.75,0.75) 1.267830E-03 1.267832E-03 1.267832E-03
(0.75,1.00)  5.596030E-03  5.596028E-03  5.596028E-03

the iterative scheme (43), we deduce the following results:

ha?t®
Frl+a)’

(1 + h)ha?te
(14
(1+ h)?ha?te
CI(lta)
_ 9 (14 h)h?z2t2>

I'(l+2a)
4+ 22T _ia
oo T(142a) | B2zt
M1+ a)?)'I'(1+3a)’
(1 + h)3ha?te
I'l+a)
(1 + h)2h2x2t2
S T(1+2a)
4+ 93—a 9320 _ogd-3a _ g _ (212
N 22_QQ)F(1 + 2a) ) (1 + h)R3 23
+

ui(x,t) = —

us(z,t) (1- 22_0‘)

us(z,t) = — +(23*a

(22—2a

ug(z,t) = — + (287 4227

- 3 + (227 4 222

T(1+a)?’ T(1+3a)

(2270 4 922 4 92-3a _ gi-3a

_ gi-da _gi-5a _ ] 4 96—6a

3-5a _ ol—2ay L (1 +20)

T2 )F(1+a)2
(1 + 3a) nta?tte

1+ o)1+ 2a) ) I'(1+4a)

_ (22735!

4—40()

Hence, the fourth approximate solution of equation (38)
is given as
4
u(x,t) = Z U (2, 1).

m=0

(44)

We can acquire the higher degree of approximate solution in
the similar way.

Remark 3. There exists the equivalence of the solutions
by RPSM and HATM when selecting & = —1 in HATM.

As in Application 1, the graphical results and absolute
errors are presented in Figures 4-6 and Table II.

From Figures 1-6, it is clear that we get very good
approximate solutions through RPSM and HATM. There
are nearly no differences between the graphs of numerical
solutions obtained by two methods. It should also be noted
from Table I-1I that all the methods including RPSM, HATM,
HPM and HPTM can reach almost the same errors.

(Advance online publication: 1 February 2019)
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Fig. 4.  The fourth approximate solutions of RPSM and HATM for
Application 2 when oo = 0.9, h = —1.
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Fig. 5. The fourth approximate solutions of RPSM and HATM for
Application 2 when o« = 1, = —1.
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Fig. 6. The figures of the errors of RPSM and HATM for Application 2
when o = 1,h = —1.

V. CONCLUSION

In this paper, RPSM and HATM have been successfully
employed to solve the initial value autonomous system of
TFPDEs with proportional delay. The results of graphs and
tables show that both of the proposed methods yield very
efficient and accurate approaches to solve the initial value
autonomous system of TFPDEs with proportional delay.
Comparing the results with the other methods, we may safely
conclude that both of the methods can be used as alternatives
for solving this type of system. The given examples also
reveal that there exists the equivalence of the solutions by
two methods when selecting h = —1 in HATM.
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